
Aerospace Blockset™ 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Blockset™ User’s Guide

© COPYRIGHT 2002–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 Online only New for Version 1.0 (Release 13)
July 2003 Online only Revised for Version 1.5 (Release 13SP1)
June 2004 Online only Revised for Version 1.6 (Release 14)
October 2004 Online only Revised for Version 1.6.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.6.2 (Release 14SP2)
May 2005 Online only Revised for Version 2.0 (Release 14SP2+)
September 2005 First printing Revised for Version 2.0.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.1 (Release 2006a)
September 2006 Online only Revised for Version 2.2 (Release 2006b)
March 2007 Online only Revised for Version 2.3 (Release 2007a)
September 2007 Second printing Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.2 (Release 2008b)
March 2009 Online only Revised for Version 3.3 (Release 2009a)
September 2009 Online only Revised for Version 3.4 (Release 2009b)
March 2010 Online only Revised for Version 3.5 (Release 2010a)

Contents

Getting Started

1
Product Overview . 1-2
Real-Time Workshop Code Generation Support 1-2
Embedded MATLAB Function Support 1-2

Related Products . 1-4
Requirements for the Aerospace Blockset Product 1-4
Other Related Products . 1-4

Running a Demo Model . 1-5
Introduction . 1-5
What This Demo Illustrates . 1-5
Opening the Model . 1-6
Key Subsystems . 1-7
Running the Demo . 1-10
Modifying the Model . 1-12

Learning More . 1-17
Using the MATLAB Help System for Documentation and
Demos . 1-17

Finding Aerospace Blockset Help . 1-17

Using the Aerospace Blockset Software

2
Introducing the Aerospace Blockset Libraries 2-2
Introduction . 2-2
Opening the Aerospace Blockset Library 2-2
Summary of Aerospace Blockset Libraries 2-4

Creating Aerospace Models . 2-8

v

Basic Steps . 2-8
Model Referencing Limitations . 2-9

Building a Simple Actuator System 2-10
Building the Model . 2-10
Running the Simulation . 2-14

About Aerospace Coordinate Systems 2-16
Fundamental Coordinate System Concepts 2-16
Coordinate Systems for Modeling . 2-18
Coordinate Systems for Navigation 2-20
Coordinate Systems for Display . 2-23
References . 2-24

Introducing the Flight Simulator Interface 2-26
About the FlightGear Interface . 2-26
Obtaining FlightGear . 2-26
Configuring Your Computer for FlightGear 2-27
Installing and Starting FlightGear 2-30

Working with the Flight Simulator Interface 2-32
Introduction . 2-32
About Aircraft Geometry Models . 2-33
Working with Aircraft Geometry Models 2-35
Running FlightGear with the Simulink Models 2-38
Running the NASA HL-20 Demo with FlightGear 2-48

Case Studies

3
Ideal Airspeed Correction . 3-2
Introduction . 3-2
Airspeed Correction Models . 3-2
Measuring Airspeed . 3-3
Modeling Airspeed Correction . 3-5
Simulating Airspeed Correction . 3-7

1903 Wright Flyer . 3-9

vi Contents

Introduction . 3-9
Wright Flyer Model . 3-10
Airframe Subsystem . 3-10
Environment Subsystem . 3-14
Pilot Subsystem . 3-15
Running the Simulation . 3-16
References . 3-17

NASA HL-20 Lifting Body Airframe 3-19
Introduction . 3-19
NASA HL-20 Lifting Body . 3-19
The HL-20 Airframe and Controller Model 3-20
References . 3-33

Missile Guidance System . 3-34
Introduction . 3-34
Missile Guidance System Model . 3-34
Modeling Airframe Dynamics . 3-35
Modeling a Classical Three-Loop Autopilot 3-42
Modeling the Homing Guidance Loop 3-44
Simulating the Missile Guidance System 3-50
Extending the Model . 3-52
References . 3-53

Block Reference

4
Actuators . 4-2

Aerodynamics . 4-2

Animation . 4-2
MATLAB-Based Animation . 4-3
Flight Simulator Interfaces . 4-3
Animation Support Utilities . 4-3

Environment . 4-4
Atmosphere . 4-4

vii

Gravity & Magnetism . 4-5
Wind . 4-5

Flight Parameters . 4-6

Equations of Motion . 4-7
Three DoFs . 4-7
Six DoFs . 4-8
Point Masses . 4-10

Guidance, Navigation, and Control 4-10
Control . 4-11
Guidance . 4-12
Navigation . 4-12

Mass Properties . 4-13

Propulsion . 4-13

Utilities . 4-13
Axes Transformations . 4-13
Math Operations . 4-15
Unit Conversions . 4-16

Blocks — Alphabetical List

5

Aerospace Units

A

Index

viii Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Related Products” on page 1-4

• “Running a Demo Model” on page 1-5

• “Learning More” on page 1-17

1 Getting Started

Product Overview
The Aerospace Blockset™ product lets you model aerospace systems in the
Simulink® and MATLAB® environments. The Aerospace Blockset product
brings the full power of Simulink to aerospace system design, integration,
and simulation by providing key aerospace subsystems and components
in the adaptable Simulink block format. From environmental models to
equations of motion, from gain scheduling to animation, the blockset gives
you the core components to assemble a broad range of large aerospace system
architectures rapidly and efficiently.

You can use the Aerospace Blockset and Simulink products to develop
your aerospace system concepts and to efficiently revise and test your
models throughout the life cycle of your design. Animate your aerospace
motion simulations with MATLAB Graphics or the optional Simulink® 3D
Animation™ viewer.

Real-Time Workshop Code Generation Support
Use the Aerospace Blockset software with the Real-Time Workshop® software
to automatically generate code for real-time execution in rapid prototyping
and for hardware-in-the-loop systems.

Embedded MATLAB Function Support
The Aerospace Blockset product supports the following Aerospace Toolbox
quaternion functions in the Embedded MATLAB Function block:

quatconj
quatinv
quatmod
quatmultiply
quatdivide
quatnorm
quatnormalize

For further information on using the Embedded MATLAB Function block, see:

• “Using the Embedded MATLAB® Function Block” in Simulink User’s Guide

1-2

Product Overview

• asbQuatEML demo, which demonstrates quaternions and models the
equations

1-3

1 Getting Started

Related Products

In this section...

“Requirements for the Aerospace Blockset Product” on page 1-4

“Other Related Products” on page 1-4

Requirements for the Aerospace Blockset Product
In particular, the Aerospace Blockset product requires current versions of
these products:

• MATLAB

• Aerospace Toolbox

• Simulink

Other Related Products
The related products listed on the Aerospace Blockset product page at
the MathWorks Web site include toolboxes and blocksets that extend the
capabilities of the MATLAB and Simulink products. These products will
enhance your use of the Aerospace Blockset product in various applications.

For More Information About MathWorks Products
For more information about any MathWorks™ software products, see either

• The online documentation for that product if it is installed

• The MathWorks Web site at www.mathworks.com; see the “Products” section

1-4

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/aerotb/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/aeroblks/related.html
http://www.mathworks.com

Running a Demo Model

Running a Demo Model

In this section...

“Introduction” on page 1-5

“What This Demo Illustrates” on page 1-5

“Opening the Model” on page 1-6

“Key Subsystems” on page 1-7

“Running the Demo” on page 1-10

“Modifying the Model” on page 1-12

Introduction
This section introduces a missile guidance model that uses blocks from the
Aerospace Blockset software to simulate a three-degree-of-freedom missile
guidance system, in conjunction with other Simulink blocks.

The model simulates a missile guidance system with a target acquisition and
interception subsystem. The model implements a nonlinear representation of
the rigid body dynamics of the missile airframe, including aerodynamic forces
and moments. The missile autopilot is based on the trimmed and linearized
missile airframe. The missile homing guidance system regulates missile
acceleration and measures the distance between the missile and its target.

For more information on this model, see Chapter 3, “Case Studies”.

What This Demo Illustrates
The missile guidance demo illustrates the following features of the blockset:

• Representing bodies and degrees of freedom with the Equations of Motion
library blocks

• Using the Aerospace Blockset blocks with other Simulink blocks

• Using the Aerospace Blockset blocks in the Stateflow® charts

• Feeding in and feeding out Simulink signals to and from Aerospace
Blockset blocks with Actuator and Sensor blocks

1-5

1 Getting Started

• Encapsulating groups of blocks into subsystems

• Visualizing and animating an aircraft with the Animation library blocks

Note The Stateflow module in this demo is precompiled and does not
require Stateflow software to be installed.

Opening the Model
To open the missile guidance demo, type the demo name, aeroblk_guidance,
at the MATLAB command line. The model opens.

A Stateflow chart for the guidance control processor also appears.

1-6

http://www.mathworks.com/products/stateflow/

Running a Demo Model

Alternatively, you can open demos through the MATLAB Help browser. To
do this, click the Help button on the MATLAB Command Window. The
MATLAB Help browser displays. In this browser, you can select Aerospace
Blockset > Demos > Vehicle System Modeling > Air > Three Degree of
Freedom Guided Missile.

Key Subsystems
The model implements the missile environment, airframe, autopilot, and
homing guidance system in subsystems.

• The Airframe & Autopilot subsystem implements the ISA Atmosphere
Model block, the Incidence & Airspeed block, and the 3DoF (Body Axes)
block, along with other Simulink blocks.

The airframe model is a nonlinear representation of rigid body dynamics.
The aerodynamic forces and moments acting on the missile body are
generated from coefficients that are nonlinear functions of both incidence
and Mach number.

1-7

1 Getting Started

• The model implements the missile autopilot as a classical three-loop design
using measurements from an accelerometer located ahead of the missile’s
center of gravity and from a rate gyro to provide additional damping.

1-8

Running a Demo Model

• The model implements the homing guidance system as two subsystems:
the Guidance subsystem and the Seeker/Tracker subsystem.

- The Guidance subsystem uses a Stateflow chart to control the tracker
directly by sending demands to the seeker gimbals.

- The Seeker/Tracker subsystem consists of Simulink blocks that control
the seeker gimbals to keep the seeker dish aligned with the target and
provide the guidance law with an estimate of the sight line rate.

1-9

1 Getting Started

Running the Demo
Running a demo lets you observe the model simulation in real time. After you
run the demo, you can examine the resulting data in plots, graphs, and other
visualization tools. To run the missile guidance model, follow these steps:

1 If it is not already open, open the aeroblk_guidance demo.

2 From the Simulation menu, select Start. On Microsoft® Windows®

systems, you can also click the start button in the model window toolbar.

The simulation proceeds until the missile intercepts the target, which takes
approximately 3 seconds. Once the interception has occurred, four scope
figures open to display the following data:

a A three-dimensional animation of the missile and target interception
course

b Plots that measure flight parameters over time, including Mach number,
fin demand, acceleration, and degree of incidence

1-10

Running a Demo Model

c A plot that measures gimbal versus true look angles

1-11

1 Getting Started

d A plot that measures missile and target trajectories

Modifying the Model
You can adjust the missile guidance model settings and examine the effects
on simulation performance. Here are two modifications that you can try. The
first modification adjusts the missile engine thrust. The second modification
changes the camera point of view for the interception animation.

1-12

Running a Demo Model

Adjusting the Thrust
As in any Simulink model, you can adjust aerospace model parameters from
the MATLAB workspace. To demonstrate this, change the Thrust variable in
the model workspace and evaluate the results in the simulation.

1 Open the aeroblk_guidance model.

2 In the MATLAB desktop, find the Thrust variable in theWorkspace pane.

The Thrust variable is defined in the aeroblk_guid_dat.m file, which the
aeroblk_guidance model uses to populate parameter and variable values.
By default, the Thrust variable should be set to 10000.

3 Single-click the Thrust variable to select it. To edit the value, right-click
the Thrust variable and select Edit Value. Change the value to 4500.

Before you run the demo again, locate the Miss Distance (Display) block
display in the aeroblk_guidance model.

1-13

1 Getting Started

����������	
��������

Start the demo, and after it finishes, note the miss distance display again.
The miss distance should become greater than the original distance. You
can experiment with different values in the Thrust variable and assess the
effects on missile accuracy.

Changing the Animation Point of View
By default, the missile animation view is Fly Alongside, which means the
view tracks with the missile’s flight path. You can easily change the animation
point of view by adjusting a parameter of the 3DoF Animation block:

1 Open the aeroblk_guidance model, and double-click the 3DoF Animation
block. The Block Parameters dialog box appears.

1-14

Running a Demo Model

2 Change the view to Cockpit.

3 Click the OK button.

Run the demo again, and watch the animation. Instead of moving alongside
the missile’s flight path, the animation point of view lies in the cockpit. Upon
target interception, the screen fills with blue, the target’s color.

1-15

1 Getting Started

You can experiment with different views to watch the animation from
different perspectives.

1-16

Learning More

Learning More

In this section...

“Using the MATLAB Help System for Documentation and Demos” on page
1-17

“Finding Aerospace Blockset Help” on page 1-17

Using the MATLAB Help System for Documentation
and Demos
The MATLAB Help browser allows you to access the documentation and demo
models for all the MathWorks products that you have installed. The online
help includes an online search system.

Consult the Help for Using MATLAB section of the MATLAB Desktop Tools
and Development Environment documentation for more about the MATLAB
help system.

Opening Aerospace Demos
To open an Aerospace Blockset demo from the Help browser, open the
MATLAB Command Window and select Aerospace Blockset > Demos.

You can also open the Aerospace Blockset demos from the Start button of
the MATLAB desktop:

1 Click the Start button.

2 Select Blocksets, then Aerospace, and then Demos.

This opens the Help browser with Demos selected in the Help Navigator
pane.

Alternatively, you can open the Demos window by entering demos at the
MATLAB command line.

Finding Aerospace Blockset Help
This user’s guide also includes a reference chapter.

1-17

1 Getting Started

• Appendix A, “Aerospace Units” explains the unit systems used by the
blockset.

1-18

2

Using the Aerospace
Blockset Software

• “Introducing the Aerospace Blockset Libraries” on page 2-2

• “Creating Aerospace Models” on page 2-8

• “Building a Simple Actuator System” on page 2-10

• “About Aerospace Coordinate Systems” on page 2-16

• “Introducing the Flight Simulator Interface” on page 2-26

• “Working with the Flight Simulator Interface” on page 2-32

2 Using the Aerospace Blockset™ Software

Introducing the Aerospace Blockset Libraries

In this section...

“Introduction” on page 2-2

“Opening the Aerospace Blockset Library” on page 2-2

“Summary of Aerospace Blockset Libraries” on page 2-4

Introduction
Constructing a simple Aerospace Blockset model is easy to learn if you know
how to create Simulink models. If you are not familiar with the Simulink
product, please see the Simulink documentation. The Aerospace Blockset
library is organized into hierarchical libraries of closely related blocks for
use in the Simulink library.

Opening the Aerospace Blockset Library
You can open the Aerospace Blockset library from the Simulink Library
Browser. The procedure is the same on Windows and UNIX® platforms.

Opening the Simulink Library Browser

To start the Simulink Library Browser, click the button in the MATLAB
toolbar, or enter

simulink

at the command line.

Simulink Libraries
The libraries in the Simulink library Browser contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

2-2

Introducing the Aerospace Blockset™ Libraries

Opening the Aerospace Blockset Library
The Simulink Library Browser opens when you type simulink in the MATLAB

Command Window or click the button. The left pane contains a list of
all the blocksets that you currently have installed.

The first item in the list is the Simulink library itself, which is already
expanded to show the available Simulink libraries. Click the symbol to the
left of any blockset name to expand the hierarchical list and display that
blockset’s libraries within the browser.

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

Double-click any library in the window to display its contents. The following
figure shows the Aerospace Blockset library window.

2-3

2 Using the Aerospace Blockset™ Software

For a complete list of all the blocks in the Aerospace Blockset library, see
“Summary of Aerospace Blockset Libraries” on page 2-4.

See the Simulink documentation for a complete description of the Simulink
Library Browser.

Summary of Aerospace Blockset Libraries
The blocks of the Aerospace Blockset library are organized into these libraries.

Actuators Library
The Actuators library provides blocks for representing linear and nonlinear
actuators with saturation and rate limits.

Aerodynamics Library
The Aerodynamics library provides the Aerodynamic Forces and Moments
block using the aerodynamic coefficients, dynamic pressure, center of gravity,
and center of pressure.

Animation Library
The Animation library provides the animation blocks for visualizing flight
paths and trajectories and for working with a flight simulator interface. The

2-4

Introducing the Aerospace Blockset™ Libraries

Animation library contains the MATLAB-Based Animation, Flight Simulator
Interfaces, and Animation Support Utilities sublibraries.

MATLAB-Based Animation Sublibrary. The MATLAB-Based Animation
sublibrary provides the 3DoF Animation block and the 6DoF Animation block.
Using the animation blocks, you can visualize flight paths and trajectories.

Flight Simulator Interfaces Sublibrary. The Flight Simulator Interfaces
sublibrary provides the interface blocks to connect the Aerospace Blockset
product to the third-party FlightGear flight simulator.

Animation Support Utilities Sublibrary. The Animation Support Utilities
sublibrary provides additional blocks for running the FlightGear flight
simulator. It contains a joystick interface for Windows platform and a block
that lets you set the simulation pace.

Environment Library
The Environment library provides blocks that simulate aspects of an aircraft
and spacecraft environment, such as atmospheric conditions, gravity,
magnetic fields, and wind. The Environment library contains the Atmosphere,
Gravity, and Wind sublibraries.

Atmosphere Sublibrary. The Atmosphere sublibrary provides general
atmospheric models, such as ISA and COESA, and other blocks, including
nonstandard day simulations, lapse rate atmosphere, and pressure altitude.

Gravity Sublibrary. The Gravity sublibrary provides blocks that calculate
the gravity and magnetic fields for any point on the Earth.

Wind Sublibrary. The Wind sublibrary provides blocks for wind-related
simulations, including turbulence, gust, shear, and horizontal wind.

Equations of Motion Library
The Equations of Motion library provides blocks for implementing the
equations of motion to determine body position, velocity, attitude, and related
values. The Equations of Motion library contains the 3DoF, 6DoF, and Point
Mass sublibraries.

2-5

2 Using the Aerospace Blockset™ Software

3DoF Sublibrary. The 3DoF sublibrary provides blocks for implementing
three-degrees-of-freedom equations of motion in your simulations, including
custom variable mass models.

6DoF Sublibrary. The 6DoF sublibrary provides blocks for implementing
six-degrees-of-freedom equations of motion in your simulations, using Euler
angles and quaternion representations.

Point Mass Sublibrary. The Point Mass sublibrary provides blocks for
implementing point mass equations of motion in your simulations.

Flight Parameters Library
The Flight Parameters library provides blocks for various parameters,
including ideal airspeed correction, Mach number, and dynamic pressure.

GNC Library
The GNC library provides blocks for creating control and guidance systems,
including various controller models. The GNC library contains the Control,
Guidance, and Navigation sublibraries.

Control Sublibrary. The Control sublibrary provides blocks for simulating
various control types, such as one-dimensional, two-dimensional, and
three-dimensional models.

Guidance Sublibrary. The Guidance sublibrary provides the Calculate
Range block, which computes the range between two vehicles.

Navigation Sublibrary. The Navigation sublibrary provides blocks for
three-axis measurement of accelerations, angular rates, and inertias.

Mass Properties Library
The Mass Properties library provides blocks for simulating the center of
gravity and inertia tensors.

Propulsion Library
The Propulsion library provides the Turbofan Engine System block, which
simulates an engine system and controller.

2-6

Introducing the Aerospace Blockset™ Libraries

Utilities Library
The Utilities library contains miscellaneous blocks useful in building models.
The library contains the Axes Transformations, Math Operations, and Unit
Conversions sublibraries.

Axes Transformations Sublibrary. The Axes Transformations sublibrary
provides blocks for transforming axes of coordinate systems to different types,
such as Euler angles to quaternions and vice versa.

Math Operations Sublibrary. The Math Operations sublibrary provides
blocks for common mathematical and matrix operations, including sine and
cosine generation and various 3-by-3 matrix operations.

Unit Conversions Sublibrary. The Unit Conversions sublibrary provides
blocks for converting common measurement units from one system to another,
such as converting velocity from feet per second to meters per second and
vice versa.

2-7

2 Using the Aerospace Blockset™ Software

Creating Aerospace Models

In this section...

“Basic Steps” on page 2-8

“Model Referencing Limitations” on page 2-9

Basic Steps
Regardless of the model’s complexity, you use the same essential steps for
creating an aerospace model as you would for creating any other Simulink
model. For general model-building rules, see the Simulink documentation.

1 Select and position the blocks. You must first select the blocks that you
need to build your model, and then position the blocks in the model window.
For the majority of Simulink models, you select one or more blocks from
each of the following categories:

a Source blocks generate or import signals into the model, such as a sine
wave, a clock, or limited-band white noise.

b Simulation blocks can consist of almost any type of block that performs
an action in the simulation. A simulation block represents a part of
the model functionality to be simulated, such as an actuator block, a
mathematical operation, a block from the Aerospace Blockset library,
and so on.

c Signal Routing blocks route signals from one point in a model to another.
If you need to combine or redirect two or more signals in your model,
you will probably use a Simulink Signal Routing block, such as Mux
and Demux.

As an alternative to the Mux block, you can use the Vector option of
the Concatenate block Mode parameter (also known as the Vector
Concatenate block). This block provides a more general way for you to
route signals from one point in the a model to another. The Vector mode
takes as input a vector of signals of the same data type and creates a
contiguous output signal. Depending on the input, this block outputs a
row or column vector if any of the inputs are row or column vectors,
respectively.

2-8

Creating Aerospace Models

d Sink blocks display, write, or save model output. To see the results of
the simulation, you must use a Sink block.

2 Configure the blocks. Most blocks feature configuration options that let
you customize block functionality to specific simulation parameters. For
example, the ISA Atmosphere Model block provides configuration options
for setting the height of the troposphere, tropopause, and air density at
sea level.

3 Connect the blocks. To create signal pathways between blocks, you connect
the blocks to each other. You can do this manually by clicking and
dragging, or you can connect blocks automatically.

4 Encapsulate subsystems. Systems made with Aerospace Blockset blocks can
function as subsystems of larger, more complex models, like subsystems in
any Simulink model.

Model Referencing Limitations
The Model block allows you to include a model as a block in another model.
If you include a model that contains continuous blocks from the Aerospace
Blockset library, the referenced model containing the Aerospace Blockset
blocks will not inherit its sample time from the parent model of the Model
block. The referenced model will have intrinsic sample times. See “Inheriting
Sample Times” in the Simulink User’s Guide guide about this limitation. If
you want to use the Real-Time Workshop software to generate code, do not
use the following Aerospace Blockset blocks in referenced models. Because
they are noninlined S-functions, Real-Time Workshop cannot generate
standalone executables (Real-Time Workshop targets) for referenced models
that include these blocks:

• WGS84 Gravity Model

• COESA Atmosphere Model

• Non-Standard Day 210C, Non-Standard Day 310

• Pressure Altitude

If you are only interested in simulation, see “Simulink Model Referencing
Limitations” in the Simulink user’s guide documentation for additional
limitations for simulating noninlined functions.

2-9

2 Using the Aerospace Blockset™ Software

Building a Simple Actuator System

In this section...

“Building the Model” on page 2-10

“Running the Simulation” on page 2-14

Building the Model
The Simulink product is a software environment for modeling, simulating,
and analyzing dynamic systems. Try building a simple model that drives an
actuator with a sine wave and displays the actuator’s position superimposed
on the sine wave.

Note If you prefer to open the complete model shown below instead of
building it, enter aeroblktutorial at the MATLAB command line.

The following section (“Creating a Model” on page 2-11) explains how to build
a model on Windows platforms. You can use this same procedure to build a
model on UNIX platforms.

The section describes how to build the model. It does not describe how to set
the configuration parameters for the model. See “Configuration Parameters
Dialog Box” in the Simulink Graphical User Interface documentation. That
section describes setting configuration parameters for models. If you do not set
any configuration parameters, simulating models might cause warnings like:

Warning: Using a default value of 0.2 for maximum step size.

2-10

Building a Simple Actuator System

The simulation step size will be equal to or less than this
value. You can disable this diagnostic by setting
'Automatic solver parameter selection' diagnostic to 'none'
in the Diagnostics page of the configuration parameters
dialog

Creating a Model

1 Click the button in the MATLAB toolbar or enter simulink at the
MATLAB command line. The Simulink library browser appears.

2 Select New > Model from the File menu in the Library Browser. A new
model window appears on your screen.

3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink
Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator to the model.

2-11

2 Using the Aerospace Blockset™ Software

a Click the symbol next to Aerospace Blockset in the Library Browser
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator
library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink
Sinks library.

b Drag the Scope block from the Sinks library into the model window.

7 Resize the Mux block in the model.

a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches
the input port of the Second Order Linear Actuator block. Release the
mouse button.

b Using the same technique, connect the output of the Second Order
Linear Actuator block to the second input port of the Mux block.

c Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold
down the mouse button and drag the line that appears over the line
from the output port of the Sine Wave block until double crosshairs

2-12

Building a Simple Actuator System

appear. Release the mouse button. The lines are connected when a knot
is present at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows
you to set the block’s parameters.

For this example, configure the block to generate a 10 rad/s sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

b Click OK.

c Double-click the Second Order Linear Actuator block.

2-13

2 Using the Aerospace Blockset™ Software

In this example, the actuator has the default natural frequency of 150
rad/s, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

Running the Simulation
You can now run the model that you built to see how the system behaves
in time:

1 Double-click the Scope block if the Scope window is not already open on
your screen. The Scope window appears.

2 Select Start from the Simulation menu in the model window. The signal
containing the 10 rad/s sinusoid and the signal containing the actuator
position are plotted on the scope.

3 Adjust the Scope block’s display. While the simulation is running,
right-click the y-axis of the scope and select Autoscale. The vertical range
of the scope is adjusted to better fit the signal.

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to
open its parameter dialog box. This causes the simulation to pause.

b You can then change the frequency of the sinusoid. Try entering 1 or
20 in the Frequency field. Close the Sine Wave dialog box to enter

2-14

Building a Simple Actuator System

your change and allow the simulation to continue. You can then observe
the changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is
usually the case for parameters that directly or indirectly alter a signal’s
dimensions or sample rate. However, there are some parameters, like the
Sine Wave Frequency parameter, that you can tune without stopping the
simulation.

Note Opening a dialog box for a source block causes Simulink to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow Simulink to continue.

Running a Simulation from a MATLAB File
You can also modify and run a Simulink simulation from a MATLABMATLAB
file. By doing this, you can automate the variation of model parameters to
explore a large number of simulation conditions rapidly and efficiently. For
information on how to do this, see the Simulink documentation.

2-15

2 Using the Aerospace Blockset™ Software

About Aerospace Coordinate Systems

In this section...

“Fundamental Coordinate System Concepts” on page 2-16

“Coordinate Systems for Modeling” on page 2-18

“Coordinate Systems for Navigation” on page 2-20

“Coordinate Systems for Display” on page 2-23

“References” on page 2-24

Fundamental Coordinate System Concepts
Coordinate systems allow you to keep track of an aircraft or spacecraft’s
position and orientation in space. The Aerospace Blockset coordinate systems
are based on these underlying concepts from geodesy, astronomy, and physics.

Definitions
The blockset uses right-handed (RH) Cartesian coordinate systems. The
right-hand rule establishes the x-y-z sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. In an inertial
frame, Newton’s second law holds: force = mass•acceleration. Loosely
speaking, acceleration is defined with respect to the distant cosmos, and an
inertial frame is often said to be nonaccelerated with respect to the “fixed
stars.” Because the Earth and stars move so slowly with respect to one
another, this assumption is a very accurate approximation.

Strictly defined, an inertial frame is a member of the set of all frames not
accelerating relative to one another. A noninertial frame is any frame
accelerating relative to an inertial frame. Its acceleration, in general, includes
both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The blockset models the Earth’s shape (the geoid) as an oblate spheroid, a
special type of ellipsoid with two longer axes equal (defining the equatorial
plane) and a third, slightly shorter (geopolar) axis of symmetry. The equator
is the intersection of the equatorial plane and the Earth’s surface. The

2-16

About Aerospace Coordinate Systems

geographic poles are the intersection of the Earth’s surface and the geopolar
axis. In general, the Earth’s geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The
zero longitude or prime meridian passes through Greenwich, England.

Approximations
The blockset makes three standard approximations in defining coordinate
systems relative to the Earth.

• The Earth’s surface or geoid is an oblate spheroid, defined by its longer
equatorial and shorter geopolar axes. In reality, the Earth is slightly
deformed with respect to the standard geoid.

• The Earth’s rotation axis and equatorial plane are perpendicular, so that
the rotation and geopolar axes are identical. In reality, these axes are
slightly misaligned, and the equatorial plane wobbles as the Earth rotates.
This effect is negligible in most applications.

• The only noninertial effect in Earth-fixed coordinates is due to the Earth’s
rotation about its axis. This is a rotating, geocentric system. The blockset
ignores the Earth’s acceleration around the Sun, the Sun’s acceleration in
the Galaxy, and the Galaxy’s acceleration through the cosmos. In most
applications, only the Earth’s rotation matters.

This approximation must be changed for spacecraft sent into deep space,
i.e., outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets
The blockset uses the standard WGS-84 geoid to model the Earth. You can
change the equatorial axis length, the flattening, and the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body
that is well approximated by an oblate spheroid by changing the spheroid
size, flattening, and rotation rate. If the celestial body is rotating westward
(retrogradely), make the rotation rate negative.

2-17

2 Using the Aerospace Blockset™ Software

Coordinate Systems for Modeling
Modeling aircraft and spacecraft is simplest if you use a coordinate system
fixed in the body itself. In the case of aircraft, the forward direction is
modified by the presence of wind, and the craft’s motion through the air is
not the same as its motion relative to the ground.

See the “Equations of Motion” on page 4-7 for further details on how the
Aerospace Blockset product implements body and wind coordinates.

Body Coordinates
The noninertial body coordinate system is fixed in both origin and orientation
to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

• The x-axis points through the nose of the craft.

• The y-axis points to the right of the x-axis (facing in the pilot’s direction of
view), perpendicular to the x-axis.

• The z-axis points down through the bottom the craft, perpendicular to the
xy plane and satisfying the RH rule.

Translational Degrees of Freedom. Translations are defined by moving
along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles
P, Q, R or Φ, Θ, Ψ. They are:

P or Φ Roll about the x-axis

Q or Θ Pitch about the y-axis

R or Ψ Yaw about the z-axis

2-18

About Aerospace Coordinate Systems

Wind Coordinates
The noninertial wind coordinate system has its origin fixed in the rigid
aircraft. The coordinate system orientation is defined relative to the craft’s
velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

• The x-axis points in the direction of V.

• The y-axis points to the right of the x-axis (facing in the direction of V),
perpendicular to the x-axis.

• The z-axis points perpendicular to the xy plane in whatever way needed to
satisfy the RH rule with respect to the x- and yaxes.

Translational Degrees of Freedom. Translations are defined by moving
along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler
angles Φ, γ, χ. They are:

Φ Bank angle about the x-axis

γ Flight path about the y-axis

χ Heading angle about the z-axis

2-19

2 Using the Aerospace Blockset™ Software

Coordinate Systems for Navigation
Modeling aerospace trajectories requires positioning and orienting the aircraft
or spacecraft with respect to the rotating Earth. Navigation coordinates are
defined with respect to the center and surface of the Earth.

Geocentric and Geodetic Latitudes
The geocentric latitude λ on the Earth’s surface is defined by the angle
subtended by the radius vector from the Earth’s center to the surface point
with the equatorial plane.

The geodetic latitude µ on the Earth’s surface is defined by the angle
subtended by the surface normal vector n and the equatorial plane.

2-20

About Aerospace Coordinate Systems

NED Coordinates
The north-east-down (NED) system is a noninertial system with its origin
fixed at the aircraft or spacecraft’s center of gravity. Its axes are oriented
along the geodetic directions defined by the Earth’s surface.

• The x-axis points north parallel to the geoid surface, in the polar direction.

• The y-axis points east parallel to the geoid surface, along a latitude curve.

• The z-axis points downward, toward the Earth’s surface, antiparallel to the
surface’s outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth’s
surface.

ECI Coordinates
The Earth-centered inertial (ECI) system is a mixed inertial system. It is
oriented with respect to the Sun. Its origin is fixed at the center of the Earth.
(See figure following.)

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward in the Earth’s equatorial plane exactly at the
Sun. (This rule ignores the Sun’s oblique angle to the equator, which varies
with season. The actual Sun always remains in the xz plane.)

2-21

2 Using the Aerospace Blockset™ Software

• The y-axis points into the eastward quadrant, perpendicular to the xz plane
so as to satisfy the RH rule.

Earth-Centered Coordinates

ECEF Coordinates
The Earth-center, Earth-fixed (ECEF) system is a noninertial system that
rotates with the Earth. Its origin is fixed at the center of the Earth. (See
figure preceding.)

• The z′-axis points northward along the Earth’s rotation axis.

• The x′-axis points outward along the intersection of the Earth’s equatorial
plane and prime meridian.

• The y′-axis points into the eastward quadrant, perpendicular to the x-z
plane so as to satisfy the RH rule.

2-22

About Aerospace Coordinate Systems

Coordinate Systems for Display
Several display tools are available for use with the Aerospace Blockset
product. Each has a specific coordinate system for rendering motion.

MATLAB Graphics Coordinates
See the MATLAB 3-D Visualization documentation for more information
about the MATLAB Graphics coordinate axes.

MATLAB Graphics uses this default coordinate axis orientation:

• The x-axis points out of the screen.

• The y-axis points to the right.

• The z-axis points up.

FlightGear Coordinates
FlightGear is an open-source, third-party flight simulator with an interface
supported by the blockset.

• “Working with the Flight Simulator Interface” on page 2-32 discusses the
blockset interface to FlightGear.

• See the FlightGear documentation at www.flightgear.org for complete
information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the
standard body coordinate system about the y-axis by -180 degrees:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive toward the right of the vehicle.

• The z-axis is positive upward, e.g., wheels typically have the lowest z values.

2-23

http://www.flightgear.org/

2 Using the Aerospace Blockset™ Software

AC3D Coordinates
AC3D is a low-cost, widely used, geometry editor available from
www.ac3d.org. Its body-fixed coordinates are formed by inverting the three
standard body coordinate axes:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive upward, e.g., wheels typically have the lowest y
values.

• The z-axis is positive to the left of the vehicle.

References
Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate
Systems, R-004-1992, ANSI/AIAA, February 1992.

Mapping Toolbox User’s Guide, The MathWorks, Inc., Natick, Massachusetts.
www.mathworks.com/access/helpdesk/help/toolbox/map/.

2-24

http://www.ac3d.org
http://www.mathworks.com/access/helpdesk/help/toolbox/map/

About Aerospace Coordinate Systems

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA,
Reston, Virginia, 2000.

Sobel, D., Longitude, Walker & Company, New York, 1995.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd ed.,
Aircraft Control and Simulation, Wiley-Interscience, New York, 2003.

Thomson, W. T., Introduction to Space Dynamics, John Wiley & Sons, New
York, 1961/Dover Publications, Mineola, New York, 1986.

World Geodetic System 1984 (WGS 84),
http://earth-info.nga.mil/GandG/wgs84/.

2-25

http://earth-info.nga.mil/GandG/wgs84/

2 Using the Aerospace Blockset™ Software

Introducing the Flight Simulator Interface

In this section...

“About the FlightGear Interface” on page 2-26

“Obtaining FlightGear” on page 2-26

“Configuring Your Computer for FlightGear” on page 2-27

“Installing and Starting FlightGear” on page 2-30

About the FlightGear Interface
The Aerospace Blockset product supports an interface to the third-party
FlightGear flight simulator, an open source software package available
through a GNU General Public License (GPL). The FlightGear flight
simulator interface included with the blockset is a unidirectional transmission
link from the Simulink interface to FlightGear using FlightGear’s published
net_fdm binary data exchange protocol. Data is transmitted via UDP network
packets to a running instance of FlightGear. The blockset supports multiple
standard binary distributions of FlightGear. See “Running FlightGear with
the Simulink Models” on page 2-38 for interface details.

FlightGear is a separate software entity neither created, owned, nor
maintained by The MathWorks.

• To report bugs in or request enhancements to the
Aerospace Blockset FlightGear interface, use this form
http://www.mathworks.com/contact_TS.html.

• To report bugs or request enhancements to FlightGear itself, visit
www.flightgear.org and use the contact page.

Obtaining FlightGear
You can obtain FlightGear from www.flightgear.org in the download area
or by ordering CDs from FlightGear. The download area contains extensive
documentation for installation and configuration. Because FlightGear is an
open source project, source downloads are also available for customization
and porting to custom environments.

2-26

http://www.mathworks.com/contact_TS.html
http://www.flightgear.org
http://www.flightgear.org

Introducing the Flight Simulator Interface

Configuring Your Computer for FlightGear
You must have a high performance graphics card with stable drivers to use
FlightGear. For more information, see the FlightGear CD distribution or the
hardware requirements and documentation areas of the FlightGear Web
site, www.flightgear.org.

MathWorks tests of FlightGear’s performance and stability indicate
significant sensitivity to computer video cards, driver versions, and driver
settings. You need OpenGL® support with hardware acceleration activated.
The OpenGL settings are particularly important. Without proper setup,
performance can drop from about a 30 frames-per-second (fps) update rate to
less than 1 fps.

Graphics Recommendations for Windows
The MathWorks recommends the following for Windows users:

• Choose a graphics card with good OpenGL performance.

• Always use the latest tested and stable driver release for your video card.
Test the driver thoroughly on a few computers before deploying to others.

For Microsoft Windows XP systems running on x86 (32-bit) or
AMD-64/EM64T chip architectures, the graphics card operates in the
unprotected kernel space known as Ring Zero. This means that glitches
in the driver can cause Windows to lock or crash. Before buying a large
number of computers for 3-D applications, test, with your vendor, one
or two computers to find a combination of hardware, operating system,
drivers, and settings that are stable for your applications.

Setting Up OpenGL Graphics on Windows
For complete information on OpenGL settings, refer to the documentation at
the OpenGL Web site: www.opengl.org.

Follow these steps to optimize your video card settings. Your driver’s panes
might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on
your video card. On Windows, access this configuration through Start >

2-27

http://www.flightgear.org
http://www.opengl.org/

2 Using the Aerospace Blockset™ Software

Settings > Control Panel > Display, which opens the following dialog
box. Select the Settings tab.

2 Click the Advanced button in the lower right of the dialog box, which
brings up the graphics card’s custom configuration dialog box, and go to the
OpenGL tab. For an ATI Mobility Radeon 9000 video card, the OpenGL
pane looks like this:

2-28

Introducing the Flight Simulator Interface

3 For best performance, move the Main Settings slider near the top of the
dialog box to the Performance end of the slider.

4 If stability is a problem, try other screen resolutions, other color depths in
the Displays pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known
as 65536 color mode, 16-bit color). For example, on an ATI Mobility Radeon
9000 running a given model, 30 fps are achieved in 16-bit color mode, while 2
fps are achieved in 32-bit color mode.

Setup on Linux, Macintosh, and Other Platforms
FlightGear distributions are available for Linux®, Macintosh®, and other
UNIX platforms from the FlightGear Web site, www.flightgear.org.
Installation on these platforms, like Windows, requires careful configuration
of graphics cards and drivers. Consult the documentation and hardware
requirements sections at the FlightGear Web site.

2-29

http://www.flightgear.org

2 Using the Aerospace Blockset™ Software

Using MATLAB Graphics Controls to Configure Your OpenGL
Settings
You can also control your OpenGL rendering from the MATLAB command
line with the MATLAB Graphics opengl command. Consult the opengl
command reference for more information.

Installing and Starting FlightGear
The extensive FlightGear documentation guides you through the installation
in detail. Consult the documentation section of the FlightGear Web site for
complete installation instructions: www.flightgear.org.

Keep the following points in mind:

• Generous central processor speed, system and video RAM, and virtual
memory are essential for good flight simulator performance.

The MathWorks recommends a minimum of 512 megabytes of system RAM
and 128 megabytes of video RAM for reasonable performance.

• Be sure to have sufficient disk space for the FlightGear download and
installation.

• The MathWorks recommends configuring your computer’s graphics card
before you install FlightGear. See the preceding section, “Configuring Your
Computer for FlightGear” on page 2-27.

• Shutting down all running applications (including the MATLAB interface)
before installing FlightGear is recommended.

• MathWorks tests indicate that the operational stability of FlightGear
is especially sensitive during startup. It is best to not move, resize,
mouse over, overlap, or cover up the FlightGear window until the initial
simulation scene appears after the startup splash screen fades out.

• The current releases of FlightGear are optimized for flight visualization at
altitudes below 100,000 feet. FlightGear does work not well or at all with
very high altitude and orbital views.

Aerospace Toolbox supports FlightGear on a number of platforms
(http://www.mathworks.com/products/aerotb/requirements.html). The
following table lists the properties you should be aware of before you start to
use FlightGear.

2-30

http://www.flightgear.org
http://www.mathworks.com/products/aerotb/requirements.html

Introducing the Flight Simulator Interface

FlightGear
Property

Folder Description Platforms Typical Location

Windows C:\Program Files\FlightGear
(default)

Solaris™ or
Linux

Folder into which you installed
FlightGear

FlightGearBase-
Directory

FlightGear
installation folder.

Mac® /Applications
(directory to which you dragged
the FlightGear icon)

Windows C:\Program Files\-
FlightGear\data\-
Aircraft\HL20
(default)

Solaris or
Linux

$FlightGearBaseDirectory/-
data/Aircraft/HL20

GeometryModelName Model geometry
folder

Mac $FlightGearBaseDirectory/-
FlightGear.app/Contents/-
Resources/data/Aircraft/HL20

2-31

2 Using the Aerospace Blockset™ Software

Working with the Flight Simulator Interface

In this section...

“Introduction” on page 2-32

“About Aircraft Geometry Models” on page 2-33

“Working with Aircraft Geometry Models” on page 2-35

“Running FlightGear with the Simulink Models” on page 2-38

“Running the NASA HL-20 Demo with FlightGear” on page 2-48

Introduction
Use this section to learn how to use the FlightGear flight simulator and the
Aerospace Blockset software to visualize your Simulink aircraft models. If
you have not yet installed FlightGear, see “Introducing the Flight Simulator
Interface” on page 2-26 first.

Simulink® Driven HL-20 Model in a Landing Flare at KSFC

2-32

Working with the Flight Simulator Interface

About Aircraft Geometry Models
Before you can visualize your aircraft’s dynamics, you need to create or obtain
an aircraft model file compatible with FlightGear. This section explains how
to do this.

Aircraft Geometry Editors and Formats
You have a competitive choice of over twelve 3-D geometry file formats
supported by FlightGear.

Currently, the most popular 3-D geometry file format is the AC3D format,
which has the suffix *.ac. AC3D is a low-cost geometry editor available from
www.ac3d.org. Another popular 3-D editor for aircraft models is Flight Sim
Design Studio, distributed by Abacus Publications at www.abacuspub.com.

Aircraft Model Structure and Requirements
Aircraft models are contained in the FlightGearRoot/data/Aircraft/ folder
and subfolders. A complete aircraft model must contain a folder linked
through the required aircraft master file named model-set.xml.

All other model elements are optional. This is a partial list of the optional
elements you can put in an aircraft data folder:

• Vehicle objects and their shapes and colors

• Vehicle objects’ surface bitmaps

• Variable geometry descriptions

• Cockpit instrument 3-D models

• Vehicle sounds to tie to events (e.g., engine, gear, wind noise)

• Flight dynamics model

• Simulator views

• Submodels (independently movable items) associated with the vehicle

Model behavior reverts to defaults when these elements are not used. For
example,

• Default sound: no vehicle-related sounds are emitted.

2-33

http://www.ac3d.org
http://www.abacuspub.com

2 Using the Aerospace Blockset™ Software

• Default instrument panel: no instruments are shown.

Models can contain some, all, or even none of the above elements. If you
always run FlightGear from the cockpit view, the aircraft geometry is often
secondary to the instrument geometries.

A how-to document for including optional elements is included in the
FlightGear documentation at:

http://www.flightgear.org/Docs/fgfs-model-howto.html

Required Flight Dynamics Model Specification
The flight dynamics model (FDM) specification is a required element for
an aircraft model. To set the Simulink software as the source of the flight
dynamics model data stream for a given geometry model, you put this line in
data/Aircraft/model/model-set.xml:

<flight-model>network</flight-model>

Obtaining and Modifying Existing Aircraft Models
You can quickly build models from scratch by referencing instruments,
sounds, and other optional elements from existing FlightGear models. Such
models provide examples of geometry, dynamics, instruments, views, and
sounds. It is simple to copy an aircraft folder to a new name, rename the
model-set.xml file, modify it for network flight dynamics, and then run
FlightGear with the aircraft flag set to the name in model-set.xml.

Many existing 3-D aircraft geometry models are available for use with
FlightGear. Visit the download area of www.flightgear.org to see some of
the aircraft models available. Additional models can be obtained via Web
search. Search key words such as “flight gear aircraft model” are a good
starting point. Be sure to comply with copyrights when distributing these files.

Hardware Requirements for Aircraft Geometry Rendering
When creating your own geometry files, keep in mind that your graphics card
can efficiently render a limited number of surfaces. Some cards can efficiently
render fewer than 1000 surfaces with bitmaps and specular reflections at

2-34

http://www.flightgear.org/Docs/fgfs-model-howto.html
http://www.flightgear.org

Working with the Flight Simulator Interface

the nominal rate of 30 frames per second. Other cards can easily render on
the order of 10,000 surfaces.

If your performance slows while using a particular geometry, gauge the effect
of geometric complexity on graphics performance by varying the number
of aircraft model surfaces. An easy way to check this is to replace the full
aircraft geometry file with a simple shape, such as a single triangle, then test
FlightGear with this simpler geometry. If a geometry file is too complex for
smooth display, use a 3-D geometry editor to simplify your model by reducing
the number of surfaces in the geometry.

Working with Aircraft Geometry Models
Once you have obtained, modified, or created an aircraft data file, you need to
put it in the correct folder for FlightGear to access it.

Importing Aircraft Models into FlightGear
To install a compatible model into FlightGear, use one of the following
procedures. Choose the one appropriate for your platform. This section
assumes that you have read “Installing and Starting FlightGear” on page 2-30.

If your platform is Windows:

1 Go to your installed FlightGear folder. Open the data folder, then the
Aircraft folder: \FlightGear\data\Aircraft\.

2 Make a subfolder model\ here for your aircraft data.

3 Put model-set.xml in that subfolder, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files
(\model\), instruments (\instruments\), and sounds (\sounds\).

If your platform is UNIX or Linux:

1 Go to your installed FlightGear directory. Open the data directory, then
the Aircraft directory: $FlightGearBaseDirectory/data/Aircraft/.

2 Make a subdirectory model/ here for your aircraft data.

2-35

2 Using the Aerospace Blockset™ Software

3 Put model-set.xml in that subdirectory, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files
(/model/), instruments (/instruments/), and sounds (/sounds/).

If your platform is Mac:

1 Open a terminal.

2 Go to your installed FlightGear folder. Open the data folder, then the
Aircraft folder:

$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/

3 Make a subfolder model/ here for your aircraft data.

4 Put model-set.xml in that subfolder, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files
(/model/), instruments (/instruments/), and sounds (/sounds/).

Example: Animating Vehicle Geometries
This example illustrates how to prepare hinge line definitions for animated
elements such as vehicle control surfaces and landing gear. To enable
animation, each element must be a named entity in a geometry file. The
resulting code forms part of the HL20 lifting body model presented in
“Running the NASA HL-20 Demo with FlightGear” on page 2-48.

1 The standard body coordinates used in FlightGear geometry models form a
right-handed system, rotated from the standard body coordinate system
in Y by -180 degrees:

• X = positive toward the back of the vehicle

• Y = positive toward the right of the vehicle

• Z = positive is up, e.g., wheels typically have the lowest Z values.

See “About Aerospace Coordinate Systems” on page 2-16 for more details.

2-36

Working with the Flight Simulator Interface

2 Find two points that lie on the desired named-object hinge line in body
coordinates and write them down as XYZ triplets or put them into a
MATLAB calculation like this:

a = [2.98, 1.89, 0.53];
b = [3.54, 2.75, 1.46];

3 Calculate the difference between the points:

pdiff = b - a
pdiff =
0.5600 0.8600 0.9300

4 The hinge point is either of the points in step 2 (or the midpoint as shown
here):

mid = a + pdiff/2
mid =
3.2600 2.3200 0.9950

5 Put the hinge point into the animation scope in model-set.xml:

<center>
<x-m>3.26</x-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>

</center>

6 Use the difference from step 3 to define the relative motion vector in the
animation axis:

<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>

</axis>

7 Put these steps together to obtain the complete hinge line animation used
in the HL20 demo model:

<animation>

2-37

2 Using the Aerospace Blockset™ Software

<type>rotate</type>

<object-name>RightAileron</object-name>

<property>/surface-positions/right-aileron-pos-norm</property>

<factor>30</factor>

<offset-deg>0</offset-deg>

<center>

<x-m>3.26</x-m>

<y-m>2.32</y-m>

<z-m>1.00</z-m>

</center>

<axis>

<x>0.56</x>

<y>0.86</y>

<z>0.93</z>

</axis>

</animation>

Running FlightGear with the Simulink Models
To run a Simulink model of your aircraft and simultaneously animate it in
FlightGear with an aircraft data file model-set.xml, you need to configure
the aircraft data file and modify your Simulink model with some new blocks.

These are the main steps to connecting and using FlightGear with the
Simulink software:

• “Setting the Flight Dynamics Model to Network in the Aircraft Data File”
on page 2-39 explains how to create the network connection you need.

• “Obtaining the Destination IP Address” on page 2-39 starts by determining
the IP address of the computer running FlightGear.

• “Adding and Connecting Interface Blocks” on page 2-40 shows how to add
and connect interface and pace blocks to your Simulink model.

• “Creating a FlightGear Run Script” on page 2-43 shows how to write a
FlightGear run script compatible with your Simulink model.

• “Starting FlightGear” on page 2-45 guides you through the final steps to
making the Simulink software work with FlightGear.

• “Improving Performance” on page 2-47 helps you speed your model up.

2-38

Working with the Flight Simulator Interface

• “Running FlightGear and Simulink Software on Different Computers” on
page 2-47 explains how to connect a simulation from the Simulink software
running on one computer to FlightGear running on another computer.

Setting the Flight Dynamics Model to Network in the Aircraft
Data File
Be sure to

• Remove any pre-existing flight dynamics model (FDM) data from the
aircraft data file.

• Indicate in the aircraft data file that its FDM is streaming from the
network by adding this line:

<flight-model>network</flight-model>

Obtaining the Destination IP Address
You need the destination IP address for your Simulink model to stream its
flight data to FlightGear.

• If you know your computer’s name, enter at the MATLAB command line:

java.net.InetAddress.getByName('www.mathworks.com')

• If you are running FlightGear and the Simulink software on the same
computer, get your computer’s name by entering at the MATLAB command
line:

java.net.InetAddress.getLocalHost

• If you are working in Windows, get your computer’s IP address by entering
at the DOS prompt:

ipconfig /all

Examine the IP address entry in the resulting output. There is one entry
per Ethernet device.

2-39

2 Using the Aerospace Blockset™ Software

Adding and Connecting Interface Blocks
The easiest way to connect your model to FlightGear with the blockset is to
use the FlightGear Preconfigured 6DoF Animation block:

�������������
�	��������������	������	���
�

The FlightGear Preconfigured 6DoF Animation block is a subsystem
containing the Pack net_fdm Packet for FlightGear and Send net_fdm Packet
to FlightGear blocks:

2-40

Working with the Flight Simulator Interface

��
��	���������
����������������

��	��	���������
����������������

These blocks transmit data to a FlightGear session. The blocks are separate
for maximum flexibility and compatibility.

• The Pack net_fdm Packet for FlightGear block formats a binary
structure compatible with FlightGear from model inputs. In the default
configuration, the block displays only the 6DoF ports, but you can configure
the full FlightGear interface supporting more than 50 distinct signals from
the block dialog box:

2-41

2 Using the Aerospace Blockset™ Software

• The Send net_fdm Packet to FlightGear block transmits this packet via
UDP to the specified IP address and port where a FlightGear session awaits
an incoming datastream. Use the IP address you found in “Obtaining the
Destination IP Address” on page 2-39.

• The Simulation Pace block, available in the “Animation Support Utilities
Sublibrary” on page 2-5, slows the simulation so that its aggregate run rate
is 1 second of simulation time per second of clock time. You can also use it
to specify other ratios of simulation time to clock time.

2-42

Working with the Flight Simulator Interface

��������	���
�

Creating a FlightGear Run Script
To start FlightGear with the desired initial conditions (location, date, time,
weather, operating modes), it is best to create a run script by “Using the
Generate Run Script Block” on page 2-43 or “Using the Interface Provided
with FlightGear” on page 2-45.

If you make separate run scripts for each model you intend to link to
FlightGear and place them in separate directories, run the appropriate script
from the MATLAB interface just before starting your Simulink model.

Using the Generate Run Script Block. The easiest way to create a run
script is by using the Generate Run Script block. Use the following procedure:

1 Open the “Flight Simulator Interfaces Sublibrary” on page 2-5.

2 Create a new Simulink model or open an existing model.

3 Drag a Generate Run Script block into the Simulink diagram.

4 Double-click the Generate Run Script block. Its dialog opens.

2-43

2 Using the Aerospace Blockset™ Software

5 In the Output file name field, type the name of the output file. This name
should be the name of the command, with the .bat extension, you want to
use to start FlightGear with these initial parameters.

For example, if your filename is runfg.bat, use the runfg command to
execute the run script and start FlightGear.

6 In the FlightGear base directory field, specify the name of your
FlightGear installation folder.

2-44

Working with the Flight Simulator Interface

7 In the FlightGear geometry model name field, specify the name of
the subfolder, in the FlightGear/data/Aircraft folder, containing the
desired model geometry.

8 Specify the initial conditions as needed.

9 Click the Generate Script button at the top of the Parameters area.

The Aerospace Blockset software generates the run script, and saves it in
your MATLAB working folder under the filename that you specified in
the Output file name field.

10 Repeat steps 5 through 9 to generate other run scripts, if needed.

11 Click OK to close the dialog box. You do not need to save the Generate Run
Script block with the Simulink model.

The Generate Run Script block saves the run script as a text file in your
working folder. This is an example of the contents of a run script file:

>> cd D:\Applications\FlightGear-1.9.1

>> SET FG_ROOT=D:\Applications\FlightGear-1.9.1\data

>> cd \bin\Win32\

>> fgfs --aircraft=HL20 --fdm=network,localhost,5501,5502,5503

--fog-fastest --disable-clouds --start-date-lat=2004:06:01:09:00:00

--disable-sound --in-air --enable-freeze --airport=KSFO --runway=10L

--altitude=7224 --heading=113 --offset-distance=4.72 --offset-azimuth=0

Using the Interface Provided with FlightGear. The FlightGear launcher
GUI (part of FlightGear, not the Aerospace Blockset product) lets you build
simple and advanced options into a visible FlightGear run command.

Starting FlightGear
If your computer has enough computational power to run both the Simulink
software and FlightGear at the same time, a simple way to start FlightGear
on a Windows system is to create a MATLAB desktop button containing the
following command to execute a run script like the one created above:

system('runfg &')

To create a desktop button:

2-45

2 Using the Aerospace Blockset™ Software

1 From the Start button on your MATLAB desktop, click Shortcuts > New
Shortcut. The Shortcut Editor dialog opens.

2 Set the Label, Callback, Category, and Icon fields as shown in the
following figure.

3 Click Save.

The FlightGear toolbar button appears in your MATLAB desktop. If you
click it, the runfg.bat file runs in the current folder.

���������� ����	

Once you have completed the setup, start FlightGear and run your model:

1 Make sure your model is in a writable folder. Open the model, and update
the diagram. This step ensures that any referenced block code is compiled
and that the block diagram is compiled before running. Once you start
FlightGear, it uses all available processor power while it is running.

2 Click the FlightGear button or run the FlightGear run script manually.

2-46

Working with the Flight Simulator Interface

3 When FlightGear starts, it displays the initial view at the initial
coordinates specified in the run script. If you are running the Simulink
software and FlightGear on different computers, arrange to view the two
displays at the same time.

4 Now begin the simulation and view the animation in FlightGear.

Improving Performance
If your Simulink model is complex and cannot run at the aggregate rate
needed for the visualization, you might need to

• Use the Accelerator mode in Simulink (“Accelerating Models” in Simulink
User’s Guide) to speed up your model execution.

• Free up processor power by running the Simulink model on one computer
and FlightGear on another computer. Use the Destination IP Address
parameter of the Send net_fdm Packet to FlightGear block to specify the
network address of the computer where FlightGear is running.

• Simulate the Simulink model first, then save the resulting translations
(x-axis, y-axis, z-axis) and positions (latitude, longitude, altitude), and use
the FlightGear Animation object in Aerospace Toolbox to visualize this
data.

Running FlightGear and Simulink Software on Different
Computers
It is possible to simulate an aerospace system in the Simulink environment
on one computer (the source) and use its simulation output to animate
FlightGear on another computer (the target). The steps are similar to those
already explained, with certain modifications.

1 Obtain the IP address of the computer running FlightGear. See “Obtaining
the Destination IP Address” on page 2-39.

2 Enter this target computer’s IP address in the Send net_fdm Packet to
FlightGear block. See “Adding and Connecting Interface Blocks” on page
2-40.

2-47

2 Using the Aerospace Blockset™ Software

3 Update the Generate Run Script block in your model with the target
computer’s FlightGear base folder. Regenerate the run script to reflect the
target computer’s separate identity.

See “Creating a FlightGear Run Script” on page 2-43.

4 Copy the generated run script to the target computer. Start FlightGear
there. See “Starting FlightGear” on page 2-45.

5 Start your Simulink model on the source computer. FlightGear running on
the target displays the simulation motion.

Running the NASA HL-20 Demo with FlightGear
The Aerospace Blockset software contains a demo model of the NASA HL-20
lifting body that uses the FlightGear interface.

You need to have FlightGear installed and configured before attempting to
simulate this model. See “Introducing the Flight Simulator Interface” on
page 2-26. This section assumes that you have read “Installing and Starting
FlightGear” on page 2-30. Before you start, perform the following, depending
on your platform.

Windows
Copy the HL20 folder from matlabroot\toolbox\aeroblks\aerodemos\
folder to FlightGear\data\Aircraft\ folder. This
folder contains the preconfigured geometries for
the HL-20 simulation and HL20-set.xml. The file
matlabroot\toolbox\aeroblks\aerodemos\HL20\models\HL20.xml
defines the geometry.

For more about this step, see “Importing Aircraft Models into
FlightGear” on page 2-35.

UNIX/Linux
Copy the HL20 directory from
matlabroot/toolbox/aeroblks/aerodemos/ directory to
$FlightGearBaseDirectory/data/Aircraft/ directory.
This directory contains the preconfigured geometries
for the HL-20 simulation and HL20-set.xml. The file

2-48

Working with the Flight Simulator Interface

matlabroot/toolbox/aeroblks/aerodemos/HL20/models/HL20.xml
defines the geometry.

For more about this step, see “Importing Aircraft Models into
FlightGear” on page 2-35.

Mac
Copy the HL20 folder from
matlabroot/toolbox/aeroblks/aerodemos/ folder to
$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/-
data/Aircraft/ folder. This folder contains the preconfigured
geometries for the HL-20 simulation and HL20-set.xml. The file
matlabroot\toolbox\aeroblks\aerodemos\HL20\models\HL20.xml
defines the geometry.

For more about this step, see “Importing Aircraft Models into
FlightGear” on page 2-35.

1 Start the MATLAB interface. Open the demo either by entering asbhl20
in the MATLAB Command Window or by finding the demo entry (NASA
HL-20 with FlightGear Interface) in Aerospace Blockset > Demos and
clicking Open this model on its demo page. The model opens.

2-49

2 Using the Aerospace Blockset™ Software

2 If this is your first time running FlightGear for this model, double-click the
Generate Run Script block to create a run script. Make sure to specify your
FlightGear installation folder in the FlightGear base directory field. For
more information, see “Creating a FlightGear Run Script” on page 2-43.

3 Execute the script you just created manually by entering the following at
the MATLAB command line:

dos('runfg &')

If you created a FlightGear desktop button, you can click it instead to
start the run script and start FlightGear. For more information, see
“Starting FlightGear” on page 2-45.

4 Now start the simulation and view the animation in FlightGear.

Note With the FlightGear window in focus, press the V key to alternate
between the different aircraft views: cockpit view, helicopter view, chase
view, and so on.

2-50

3

Case Studies

• “Ideal Airspeed Correction” on page 3-2

• “1903 Wright Flyer” on page 3-9

• “NASA HL-20 Lifting Body Airframe” on page 3-19

• “Missile Guidance System” on page 3-34

3 Case Studies

Ideal Airspeed Correction

In this section...

“Introduction” on page 3-2

“Airspeed Correction Models” on page 3-2

“Measuring Airspeed” on page 3-3

“Modeling Airspeed Correction” on page 3-5

“Simulating Airspeed Correction” on page 3-7

Introduction
This case study simulates indicated and true airspeed. It constitutes a
fragment of a complete aerodynamics problem, including only measurement
and calibration.

Airspeed Correction Models
To view the airspeed correction models, enter the following at the MATLAB
command line:

aeroblk_indicated
aeroblk_calibrated

3-2

Ideal Airspeed Correction

aeroblk_indicated Model

aeroblk_calibrated Model

Measuring Airspeed
To measure airspeed, most light aircraft designs implement pitot-static
airspeed indicators based on Bernoulli’s principle. Pitot-static airspeed
indicators measure airspeed by an expandable capsule that expands and
contracts with increasing and decreasing dynamic pressure. This is known as
calibrated airspeed (CAS). It is what a pilot sees in the cockpit of an aircraft.

3-3

3 Case Studies

To compensate for measurement errors, it helps to distinguish three types of
airspeed. These types are explained more completely in the following.

Airspeed Type Description

Calibrated Indicated airspeed corrected for calibration
error

Equivalent Calibrated airspeed corrected for
compressibility error

True Equivalent airspeed corrected for density
error

Calibration Error
An airspeed sensor features a static vent to maintain its internal pressure
equal to atmospheric pressure. Position and placement of the static vent
with respect to the angle of attack and velocity of the aircraft determines the
pressure inside the airspeed sensor and therefore the calibration error. Thus,
a calibration error is specific to an aircraft’s design.

An airspeed calibration table, which is usually included in the pilot operating
handbook or other aircraft documentation, helps pilots convert the indicated
airspeed to the calibrated airspeed.

Compressibility Error
The density of air is not constant, and the compressibility of air increases with
altitude and airspeed, or when contained in a restricted volume. A pitot-static
airspeed sensor contains a restricted volume of air. At high altitudes and high
airspeeds, calibrated airspeed is always higher than equivalent airspeed.
Equivalent airspeed can be derived by adjusting the calibrated airspeed for
compressibility error.

Density Error
At high altitudes, airspeed indicators read lower than true airspeed because
the air density is lower. True airspeed represents the compensation of
equivalent airspeed for the density error, the difference in air density at
altitude from the air density at sea level, in a standard atmosphere.

3-4

Ideal Airspeed Correction

Modeling Airspeed Correction
The aeroblk_indicated and aeroblk_calibrated models show how to take
true airspeed and correct it to indicated airspeed for instrument display in
a Cessna 150M Commuter light aircraft. The aeroblk_indicated model
implements a conversion to indicated airspeed. The aeroblk_calibrated
model implements a conversion to true airspeed.

Each model consists of two main components:

• “COESA Atmosphere Model Block” on page 3-5 calculates the change in
atmospheric conditions with changing altitude.

• “Ideal Airspeed Correction Block” on page 3-5 transforms true airspeed to
calibrated airspeed and vice versa.

COESA Atmosphere Model Block
The COESA Atmosphere Model block is a mathematical representation
of the U.S. 1976 COESA (Committee on Extension to the Standard
Atmosphere) standard lower atmospheric values for absolute temperature,
pressure, density, and speed of sound for input geopotential altitude. Below
32,000 meters (104,987 feet), the U.S. Standard Atmosphere is identical
with the Standard Atmosphere of the ICAO (International Civil Aviation
Organization).

The aeroblk_indicated and aeroblk_calibrated models use the COESA
Atmosphere Model block to supply the speed of sound and air pressure inputs
for the Ideal Airspeed Correction block in each model.

Ideal Airspeed Correction Block
The Ideal Airspeed Correction block compensates for airspeed measurement
errors to convert airspeed from one type to another type. The following table
contains the Ideal Airspeed Correction block’s inputs and outputs.

Airspeed Input Airspeed Output

Equivalent airspeedTrue Airspeed

Calibrated airspeed

3-5

3 Case Studies

Airspeed Input Airspeed Output

True airspeedEquivalent Airspeed

Calibrated airspeed

True airspeedCalibrated Airspeed

Equivalent airspeed

In the aeroblk_indicated model, the Ideal Airspeed Correction block
transforms true to calibrated airspeed. In the aeroblk_calibrated model,
the Ideal Airspeed Correction block transforms calibrated to true airspeed.

The following sections explain how the Ideal Airspeed Correction block
mathematically represents airspeed transformations:

• “True Airspeed Implementation” on page 3-6

• “Calibrated Airspeed Implementation” on page 3-6

• “Equivalent Airspeed Implementation” on page 3-7

True Airspeed Implementation. True airspeed (TAS) is implemented as an
input and as a function of equivalent airspeed (EAS), expressible as

TAS
EAS a
a

= ×

0

where

α Speed of sound at altitude in m/s

δ Relative pressure ratio at altitude

a0 Speed of sound at mean sea level in m/s

Calibrated Airspeed Implementation. Calibrated airspeed (CAS), derived
using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, can be expressed as

3-6

Ideal Airspeed Correction

where

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Ratio of specific heats

Dynamic pressure at mean sea level in N/m2

Equivalent Airspeed Implementation. Equivalent airspeed (EAS) is the
same as CAS, except static pressure at sea level is replaced by static pressure
at altitude.

The symbols are defined as follows:

Air density at mean sea level in kg/m3

Static pressure at altitude in N/m2

Ratio of specific heats

Dynamic pressure at mean sea level in N/m2

Simulating Airspeed Correction
In the aeroblk_indicated model, the aircraft is defined to be traveling at
a constant speed of 72 knots (true airspeed) and altitude of 500 feet. The
flaps are set to 40 degrees. The COESA Atmosphere Model block takes the
altitude as input and outputs the speed of sound and air pressure. Taking
the speed of sound, air pressure, and airspeed as inputs, the Ideal Airspeed
Correction block converts true airspeed to calibrated airspeed. Finally, the
Calculate IAS subsystem uses the flap setting and calibrated airspeed to
calculate indicated airspeed.

3-7

3 Case Studies

The model’s Display block shows both indicated and calibrated airspeeds.

In the aeroblk_calibrated model, the aircraft is defined to be traveling at
a constant speed of 70 knots (indicated airspeed) and altitude of 500 feet.
The flaps are set to 10 degrees. The COESA Atmosphere Model block takes
the altitude as input and outputs the speed of sound and air pressure. The
Calculate CAS subsystem uses the flap setting and indicated airspeed
to calculate the calibrated airspeed. Finally, using the speed of sound,
air pressure, and true calibrated airspeed as inputs, the Ideal Airspeed
Correction block converts calibrated airspeed back to true airspeed.

The model’s Display block shows both calibrated and true airspeeds.

3-8

1903 Wright Flyer

1903 Wright Flyer

In this section...

“Introduction” on page 3-9

“Wright Flyer Model” on page 3-10

“Airframe Subsystem” on page 3-10

“Environment Subsystem” on page 3-14

“Pilot Subsystem” on page 3-15

“Running the Simulation” on page 3-16

“References” on page 3-17

Introduction

Note The final section of this study requires the Simulink 3D Animation
software.

This case study describes a model of the 1903 Wright Flyer. Built by Orville
and Wilbur Wright, the Wright Flyer took to the skies in December 1903
and opened the age of controlled flight. The Wright brothers’ flying machine
achieved the following goals:

• Left the ground under its own power

• Moved forward and maintained its speed

• Landed at an elevation no lower than where it started

This model is based on an earlier simulation [1] that explored the longitudinal
stability of the Wright Flyer and therefore modeled only forward and vertical
motion along with the pitch angle. The Wright Flyer suffered from numerous
engineering challenges, including dynamic and static instability. Laterally,
the Flyer tended to overturn in crosswinds and gusts, and longitudinally,
its pitch angle would undulate [2].

3-9

http://www.mathworks.com/products/3d-animation/

3 Case Studies

Under these constraints, the model recreates the longitudinal flight dynamics
that pilots of the Wright Flyer would have experienced. Because they were
able to control lateral motion, Orville and Wilbur Wright were able to
maintain a relatively straight flight path.

Note, running this model generates assertion messages in the MATLAB
Command Window. This is because the model illustrates the use of the
Assertion block to indicate that the flyer is hitting the ground when landing.

Wright Flyer Model
Open the Wright Flyer model by entering aeroblk_wf_3dof at the MATLAB
command line.

Airframe Subsystem
The Airframe subsystem simulates the rigid body dynamics of the Wright
Flyer airframe, including elevator angle of attack, aerodynamic coefficients,
forces and moments, and three-degrees-of-freedom equations of motion.

3-10

1903 Wright Flyer

The Airframe subsystem consists of the following parts:

• “Elevator Angle of Attack Subsystem” on page 3-11

• “Aerodynamic Coefficients Subsystem” on page 3-12

• “Forces and Moments Subsystem” on page 3-12

• “3DoF (Body Axes) Block” on page 3-13

Elevator Angle of Attack Subsystem
The Elevator Angle of Attack subsystem calculates the effective elevator angle
for the Wright Flyer airframe and feeds its output to the Pilot subsystem.

3-11

3 Case Studies

Aerodynamic Coefficients Subsystem
The Aerodynamic Coefficients subsystem contains aerodynamic data and
equations for calculating the aerodynamic coefficients, which are summed
and passed to the Forces and Moments subsystem. Stored in data sets, the
aerodynamic coefficients are determined by interpolation using Prelookup
blocks.

Forces and Moments Subsystem
The aerodynamic forces and moments acting on the airframe are generated
from aerodynamic coefficients. The Forces and Moments subsystem calculates
the body forces and body moments acting on the airframe about the center of
gravity. These forces and moments depend on the aerodynamic coefficients,
thrust, dynamic pressure, and reference airframe parameters.

3-12

1903 Wright Flyer

3DoF (Body Axes) Block
The 3DoF (Body Axes) block use equations of motion to define the linear and
angular motion of the Wright Flyer airframe. It also performs conversions
from the original model’s axis system and the body axes.

3-13

3 Case Studies

3DoF (Body Axes) Block Parameters

Environment Subsystem
The first and final flights of the Wright Flyer occurred on December 17, 1903.
Orville and Wilbur Wright chose an area near Kitty Hawk, North Carolina,
situated near the Atlantic coast. Wind gusts of more than 25 miles per hour
were recorded that day. After the final flight on that blustery December day,
a wind gust caught and overturned the Wright Flyer, damaging it beyond
repair.

The Environment subsystem of the Wright Flyer model contains a variety of
blocks from the Environment sublibrary of the Aerospace Blockset software,
including wind, atmosphere, and gravity, and calculates airspeed and

3-14

1903 Wright Flyer

dynamic pressure. The Discrete Wind Gust Model block provides wind gusts
to the simulated environment. The other blocks are

• The Incidence & Airspeed block calculates the angle of attack and airspeed.

• The COESA Atmosphere Model block calculates the air density.

• The Dynamic Pressure block computes the dynamic pressure from the air
density and velocity.

• The WGS84 Gravity Model block produces the gravity at the Wright Flyer’s
latitude, longitude, and height.

Pilot Subsystem
The Pilot subsystem controls the aircraft by responding to both pitch angle
(attitude) and angle of attack. If the angle of attack differs from the set angle
of attack by more than one degree, the Pilot subsystem responds with a
correction of the elevator (canard) angle. When the angular velocity exceeds
+/- 0.02 rad/s, angular velocity and angular acceleration are also taken into
consideration with additional corrections to the elevator angle.

Pilot reaction time largely determined the success of the flights [1]. Without
an automatic controller, a reaction time of 0.06 seconds is optimal for
successful flight. The Delay of Pilot (Variable Time Delay) block recreates this
effect by producing a delay of no more than 0.08 second.

3-15

3 Case Studies

Running the Simulation
The default values for this simulation allow the Wright Flyer model to take off
and land successfully. The pilot reaction time (wf_B3) is set to 0.06 seconds,
the desired angle of attack (wf_alphaa) is constant, and the altitude attained
is low. The Wright Flyer model reacts similarly to the actual Wright Flyer. It
leaves the ground, moves forward, and lands on a point as high as that from
which it started. This model exhibits the longitudinal undulation in attitude
of the original aircraft.

Attitude Scope (Measured in Radians)

A pilot with quick reaction times and ideal flight conditions makes it possible
to fly the Wright Flyer successfully. The Wright Flyer model confirms that

3-16

1903 Wright Flyer

controlling its longitudinal motion was a serious challenge. The longest
recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Virtual Reality Visualization of the Wright Flyer

Note This section requires the Simulink 3D Animation.

The Wright Flyer model also provides a virtual world visualization, coded in
Virtual Reality Modeling Language (VRML) [3]. The VR Sink block in the
main model allows you to view the flight motion in three dimensions.

1903 Wright Flyer Virtual Reality World

References

[1] Hooven, Frederick J., “Longitudinal Dynamics of the Wright Brothers’
Early Flyers: A Study in Computer Simulation of Flight,” from The Wright
Flyer: An Engineering Perspective, ed. Howard S. Wolko, Smithsonian
Institution Press, 1987.

3-17

http://www.mathworks.com/products/3d-animation/

3 Case Studies

[2] Culick, F. E. C. and H. R. Jex, “Aerodynamics, Stability, and Control of
the 1903 Wright Flyer,” from The Wright Flyer: An Engineering Perspective,
ed. Howard S. Wolko, Smithsonian Institution Press, 1987.

[3] Thaddeus Beier created the initial Wright Flyer model in Inventor format,
and Timothy Rohaly converted it to VRML.

Additional Information About the 1903 Wright Flyer

• http://www.wrightexperience.com

• http://wright.nasa.gov

3-18

NASA HL-20 Lifting Body Airframe

NASA HL-20 Lifting Body Airframe

In this section...

“Introduction” on page 3-19

“NASA HL-20 Lifting Body” on page 3-19

“The HL-20 Airframe and Controller Model” on page 3-20

“References” on page 3-33

Introduction
This case study models the airframe of a NASA HL-20 lifting body, a low-cost
complement to the Space Shuttle orbiter. The HL-20 is unpowered, but the
model includes both airframe and controller.

For most flight control designs, the airframe, or plant model, needs to be
modeled, simulated, and analyzed. Ideally, this airframe should be modeled
quickly, reusing blocks or model structure to reduce validation time and leave
more time available for control design. In this study, the Aerospace Blockset
software efficiently models portions of the HL-20 airframe. The remaining
portions, including calculation of the aerodynamic coefficients, are modeled
with the Simulink software. This case study examines the HL-20 airframe
model and touches on how the aerodynamic data are used in the model.

NASA HL-20 Lifting Body
The HL-20, also known as the Personnel Launch System (PLS), is a lifting
body reentry vehicle designed to complement the Space Shuttle orbiter. It was
developed originally as a low-cost solution for getting to and from low Earth
orbit. It can carry up to 10 people and a limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically
with booster rockets or by transporting it in the payload bay of the Space
Shuttle orbiter. The HL-20 lifting body deorbits using a small onboard
propulsion system. Its reentry profile is nose first, horizontal, and unpowered.

3-19

3 Case Studies

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:

• Rapid turnaround between landing and launch reduces operating costs.

• The HL-20 has exceptional flight safety.

• It can land conventionally on aircraft runways.

Potential uses for the HL-20 include

• Orbital rescue of stranded astronauts

• International Space Station crew exchanges

• Observation missions

• Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data
from HL-20 tests are being used in current NASA projects [2].

The HL-20 Airframe and Controller Model
You can open the HL-20 airframe and controller model by entering
aeroblk_HL20 at the MATLAB command line.

3-20

NASA HL-20 Lifting Body Airframe

Modeling Assumptions and Limitations
Preliminary aerodynamic data for the HL-20 lifting body are taken from
NASA document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

• The airframe is assumed to be rigid and have constant mass, center of
gravity, and inertia, since the model represents only the unpowered reentry
portion of a mission.

• HL-20 is assumed to be a laterally symmetric vehicle.

• Compressibility (Mach) effects are assumed to be negligible.

• Control effectiveness is assumed to vary nonlinearly with angle of attack
and linearly with angle of deflection. Control effectiveness is not dependent
on sideslip angle.

• The nonlinear six-degrees-of-freedom aerodynamic model is a
representation of an early version of the HL-20. Therefore, the model is not
intended for realistic performance simulation of later versions of the HL-20.

3-21

3 Case Studies

The typical airframe model consists of a number of components, such as

• Equations of motion

• Environmental models

• Calculation of aerodynamic coefficients, forces, and moments

The airframe subsystem of the HL-20 model contains five subsystems, which
model the typical airframe components:

• “6DoF (Euler Angles) Subsystem” on page 3-23

• “Environmental Models Subsystem” on page 3-24

• “Alpha, Beta, Mach Subsystem” on page 3-26

• “Aerodynamic Coefficients Subsystem” on page 3-27

• “Forces and Moments Subsystem” on page 3-32

3-22

NASA HL-20 Lifting Body Airframe

HL-20 Airframe Subsystem

6DoF (Euler Angles) Subsystem
The 6DoF (Euler Angles) subsystem contains the six-degrees-of-freedom
equations of motion for the airframe. In the 6DoF (Euler Angles) subsystem,
the body attitude is propagated in time using an Euler angle representation.
This subsystem is one of the equations of motion blocks from the Aerospace
Blockset library. A quaternion representation is also available. See the
6DoF (Euler Angles) and 6DoF (Quaternion) block reference pages for more
information on these blocks.

3-23

3 Case Studies

Environmental Models Subsystem
The Environmental Models subsystem contains the following subsystems
and blocks:

• The WGS84 Gravity Model block implements the mathematical
representation of the geocentric equipotential ellipsoid of the World
Geodetic System (WGS84).

See the WGS84 Gravity Model block reference page for more information
on this block.

• The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) standard lower atmospheric values for absolute
temperature, pressure, density, and speed of sound, given the input
geopotential altitude.

See the COESA Atmosphere Model block reference page for more
information on this block.

• The Wind Models subsystem contains the following blocks:

- The Wind Shear Model block adds wind shear to the model.

See the Wind Shear Model block reference page for more information
on this block.

- The Discrete Wind Gust Model block implements a wind gust of the
standard “1 - cosine” shape.

See the Discrete Wind Gust Model block reference page for more
information on this block.

- The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters.

See the Dryden Wind Turbulence Model (Continuous) block reference
page for more information on this block.

The environmental models implement mathematical representations within
standard references, such as U.S. Standard Atmosphere, 1976.

3-24

NASA HL-20 Lifting Body Airframe

Environmental Models in HL-20 Airframe Model

3-25

3 Case Studies

Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem
The Alpha, Beta, Mach subsystem calculates additional parameters needed
for the aerodynamic coefficient computation and lookup. These additional
parameters include

• Mach number

• Incidence angles ()

3-26

NASA HL-20 Lifting Body Airframe

• Airspeed

• Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity
and corrects the body rates for wind angular acceleration.

Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta,
Mach Subsystem)

Aerodynamic Coefficients Subsystem
The Aerodynamic Coefficients subsystem contains aerodynamic data
and equations for calculating the six aerodynamic coefficients, which are
implemented as in reference [1]. The six aerodynamic coefficients follow.

Cx Axial-force coefficient

Cy Side-force coefficient

Cz Normal-force coefficient

Cl Rolling-moment coefficient

3-27

3 Case Studies

Cm Pitching-moment coefficient

Cn Yawing-moment coefficient

Ground and landing gear effects are not included in this model.

The contribution of each of these coefficients is calculated in the subsystems
(body rate, actuator increment, and datum), and then summed and passed to
the Forces and Moments subsystem.

Aerodynamic Coefficients in HL-20 Airframe Model

The aerodynamic data was gathered from wind tunnel tests, mainly on scaled
models of a preliminary subsonic aerodynamic model of the HL-20. The data
was curve fitted, and most of the aerodynamic coefficients are described
by polynomial functions of angle of attack and sideslip angle. In-depth
details about the aerodynamic data and the data reduction can be found in
reference [1].

The polynomial functions contained in the aeroblk_init_hl20.m file are
used to calculate lookup tables used by the model’s preload function. Lookup
tables substitute for polynomial functions. Depending on the order and

3-28

NASA HL-20 Lifting Body Airframe

implementation of the function, using lookup tables can be more efficient
than recalculating values at each time step with functions. To further
improve efficiency, most tables are implemented as PreLook-up Index Search
and Interpolation (n-D) using PreLook-up blocks. These blocks improve
performance most when the model has a number of tables with identical
breakpoints. These blocks reduce the number of times the model has to search
for a breakpoint in a given time step. Once the tables are populated by the
preload function, the aerodynamic coefficient can be computed.

The equations for calculating the six aerodynamic coefficients are divided
among three subsystems:

• “Datum Coefficients Subsystem” on page 3-29

• “Body Rate Damping Subsystem” on page 3-30

• “Actuator Increment Subsystem” on page 3-31

Summing the Datum Coefficients, Body Rate Damping, and Actuator
Increments subsystem outputs generates the six aerodynamic coefficients
used to calculate the airframe forces and moments [1].

Datum Coefficients Subsystem. The Datum Coefficients subsystem
calculates coefficients for the basic configuration without control surface
deflection. These datum coefficients depend only on the incidence angles
of the body.

3-29

3 Case Studies

Body Rate Damping Subsystem. Dynamic motion derivatives are
computed in the Body Rate Damping subsystem.

3-30

NASA HL-20 Lifting Body Airframe

Actuator Increment Subsystem. Lookup tables determine the incremental
changes to the coefficients due to the control surface deflections in the
Actuator Increment subsystem. Available control surfaces include symmetric
wing flaps (elevator), differential wing flaps (ailerons), positive body flaps,
negative body flaps, differential body flaps, and an all-movable rudder.

3-31

3 Case Studies

Forces and Moments Subsystem. The Forces and Moments subsystem
calculates the body forces and body moments acting on the airframe about
the center of gravity. These forces and moments depend on the aerodynamic
coefficients, thrust, dynamic pressure, and reference airframe parameters.

3-32

NASA HL-20 Lifting Body Airframe

Completing the Model
These subsystems that you have examined complete the HL-20 airframe. The
next step in the flight control design process is to analyze, trim, and linearize
the HL-20 airframe so that a flight control system can be designed for it. You
can see an example of an auto-land flight control for the HL-20 airframe
in the aeroblk_HL20 demo.

References

[1] Jackson, E. B., and C. L. Cruz, “Preliminary Subsonic Aerodynamic Model
for Simulation Studies of the HL-20 Lifting Body,” NASA TM4302 (August
1992).

This document is included in the HL-20 Lifting Body .zip file available from
MATLAB Central.

[2] Morring, F., Jr., “ISS ‘Lifeboat’ Study Includes ELVs,” Aviation Week
& Space Technology (May 20, 2002).

Additional Information About the HL-20 Lifting Body
http://www.astronautix.com/craft/hl20.htm

http://www.aviationnow.com/content/publication/awst/20020520/aw46.htm
(requires subscription)

3-33

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1815
http://www.mathworks.com/matlabcentral/fileexchange/

3 Case Studies

Missile Guidance System

In this section...

“Introduction” on page 3-34

“Missile Guidance System Model” on page 3-34

“Modeling Airframe Dynamics” on page 3-35

“Modeling a Classical Three-Loop Autopilot” on page 3-42

“Modeling the Homing Guidance Loop” on page 3-44

“Simulating the Missile Guidance System” on page 3-50

“Extending the Model” on page 3-52

“References” on page 3-53

Introduction
This case study explains the design and simulation of a guidance system for
a three-degrees-of-freedom missile. The model includes all aspects of the
system, from the missile airframe (plant) and environment to the controller.

Note The Stateflow module in this demo is precompiled and does not require
Stateflow to be installed.

Missile Guidance System Model
To view the missile guidance system model, enter aeroblk_guidance at the
MATLAB command line.

The missile airframe and autopilot are contained in the Airframe & Autopilot
subsystem. The Seeker/Tracker and Guidance subsystems model the homing
guidance loop.

3-34

http://www.mathworks.com/products/stateflow/

Missile Guidance System

Modeling Airframe Dynamics
The model of the missile airframe in this demo uses advanced control
methods applied to missile autopilot design [1], [2], [3]. The model represents
a tail-controlled missile traveling between Mach 2 and Mach 4, at altitudes
ranging between 3,050 meters (10,000 feet) and 18,290 meters (60,000 feet),
and with typical angles of attack in the range of ±20 degrees.

3-35

3 Case Studies

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body
dynamics of the airframe. The aerodynamic forces and moments acting on
the missile body are calculated from coefficients that are nonlinear functions
of both incidence and Mach number. You can model these dynamics easily
with the Aerospace Blockset blocks.

The model of the missile airframe consists of two main components:

• “ISA Atmosphere Model Block” on page 3-37 calculates the change in
atmospheric conditions with changing altitude.

• “Aerodynamics & Equations of Motion Subsystem” on page 3-39 calculates
the magnitude of the forces and moments acting on the missile body and
integrates the equations of motion.

To view the missile airframe model, enter aeroblk_guidance_airframe+ at
the MATLAB command line.

3-36

Missile Guidance System

ISA Atmosphere Model Block
The ISA Atmosphere Model block is an approximation of the International
Standard Atmosphere (ISA). This block implements two sets of equations.
The troposphere requires one set of equations, and the lower stratosphere
requires the other set. The troposphere lies between sea level and 11,000
meters (36,089 feet). The ISA model assumes a linear temperature drop with
increasing altitude in the troposphere. The lower stratosphere ranges between
11,000 meters (36,089 feet) and 20,000 meters (65,617 feet). The ISA models
the lower stratosphere by assuming that the temperature remains constant.

3-37

3 Case Studies

Variation of Sound Speed and Air Density with Altitude

The following equations define the troposphere.

The following equations define the lower stratosphere.

3-38

Missile Guidance System

The symbols are defined as follows:

Absolute temperature at mean sea level in kelvin (K)

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Altitude in m

Height of the troposphere in m

Absolute temperature at altitude h in kelvin (K)

ρ Air density at altitude h in kg/m3

Static pressure at altitude h in N/m2

Speed of sound at altitude h in m/s2

Temperature lapse rate in K/m

Characteristic gas constant J/kg-K

Ratio of specific heats

Acceleration due to gravity in m/s2

You can look under the mask of the ISA Atmosphere Model block to see how
these equations are implemented.

Aerodynamics & Equations of Motion Subsystem
The Aerodynamics & Equations of Motion subsystem generates the forces and
moments applied to the missile in the body axes and integrates the equations
of motion that define the linear and angular motion of the airframe. The

3-39

3 Case Studies

aerodynamic coefficients are stored in data sets. During the simulation, the
value at the current operating condition is determined by interpolation using
the Interpolation (n-D) using PreLook-Up blocks.

These are the three-degrees-of-freedom body axis equations of motion, which
are defined in the 3DoF (Body Axes) block.

These are the aerodynamic forces and moments equations, which are defined
in the Aerodynamics subsystem.

3-40

Missile Guidance System

These are the stability axes variables, which are calculated in the Incidence &
Airspeed block.

The symbols are defined as follows:

Attitude in radians

Body rotation rate in rad/s

Missile mass in kg

Acceleration due to gravity in m/s2

Moment of inertia about the y-axis in kg-m2

Acceleration in the Z body axis in m/s2

Change in body rotation rate in rad/s2

Thrust in the X body axis in N

Air density in kg/m3

Reference area in m2

Coefficient of aerodynamic force in the X body axis

Coefficient of aerodynamic force in the Z body axis

Coefficient of aerodynamic moment about the Y body axis

3-41

3 Case Studies

Reference length in m

Fin angle in rad

Aerodynamic force in the X body axis in N

Aerodynamic force in the Z body axis in N

Aerodynamic moment along the Y body axis

Dynamic pressure in Pa

Airspeed in m/s

Incidence in rad

Velocity in the X body axis in m/s

Velocity in the Z body axis in m/s

Modeling a Classical Three-Loop Autopilot
The missile autopilot controls the acceleration normal to the missile body.
The autopilot structure of this case study is a three-loop design using
measurements from an accelerometer located ahead of the missile’s center of
gravity and from a rate gyro to provide additional damping. The controller
gains are scheduled on incidence and Mach number and tuned for robust
performance at an altitude of 3,050 meters (10,000 feet).

Classical Autopilot

3-42

Missile Guidance System

Designing an autopilot requires the following:

• “Trimming and Linearizing an Airframe Model” on page 3-43 explains how
to model the airframe pitch dynamics for several trimmed flight conditions.

• “Autopilot Design” on page 3-44 summarizes the autopilot design process.

Trimming and Linearizing an Airframe Model
Designing the autopilot with classical design techniques requires linear
models of the airframe pitch dynamics for several trimmed flight conditions.
The MATLAB software can determine the trim conditions and derive linear
state-space models directly from the nonlinear Simulink model. This step
saves time and helps to validate the model. The functions provided by
Simulink Control Design or Control System Toolbox allow you to visualize the
behavior of the airframe in terms of open-loop frequency or time response.

The airframe trim demos show how to trim and linearize an airframe model.

• To run the demo based on the Control System Toolbox™ product, enter
asbguidance_trimlinearize_cst. The results of this demo are displayed
as a Bode diagram in the LTI Viewer.

• The alternative demo, asbguidance_trimlinearize, uses the Simulink®

Control Design™ product instead and produces identical results.

3-43

http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/control/

3 Case Studies

Autopilot Design
Autopilot design can begin after the missile airframe has been linearized at a
number of flight conditions. Autopilot designs are typically carried out on a
number of linear airframe models derived at varying flight conditions across
the expected flight envelope. Implementing the autopilot in the nonlinear
model involves storing the autopilot gains in two-dimensional lookup tables
and incorporating an antiwindup gain to prevent integrator windup when
the fin demands exceed the maximum limits. Testing the autopilot in the
nonlinear model is the best way to demonstrate satisfactory performance
in the presence of nonlinearities, such as actuator fin and rate limits and
dynamically changing gains.

The Autopilot subsystem is an implementation of the classical three-loop
autopilot design.

Modeling the Homing Guidance Loop
The complete homing guidance loop consists of these two subsystems:

• The “Guidance Subsystem” on page 3-45 generates the normal acceleration
demands that are passed to the autopilot and uses the Stateflow software.

• The “Seeker/Tracker Subsystem” on page 3-48 returns measurements of
the relative motion between the missile and the target.

3-44

Missile Guidance System

The autopilot is part of an inner loop within the overall homing guidance
system. Consult reference [4] for information on different types of guidance
systems and on the analysis techniques that are used to quantify guidance
loop performance.

Guidance Subsystem
Initially, the Guidance subsystem searches to locate the target’s position
and then generates demands during closed-loop tracking. A Stateflow chart
controls the transfer between the different modes of these operations. The
Stateflow product is the ideal tool for rapidly defining all the operational
modes, both during normal operation and during unusual situations.

3-45

3 Case Studies

Guidance Processor State Chart. Mode switching is triggered by events
generated in the Simulink software or in the Stateflow chart. The variable
Mode is passed to the Simulink software and is used to control the Simulink
model’s behavior and response. For example, the Guidance Processor state
chart, which is part of the Guidance subsystem, shows how the system reacts
in response to either losing the target lock or failing to acquire the target’s
position during the target search.

During the target search, this Stateflow state chart controls the tracker
directly by sending demands to the seeker gimbals (Sigma_d). Target
acquisition is flagged by the tracker once the target lies within the beam width
of the seeker (Acquire) and, after a short delay, closed-loop guidance begins.

3-46

Missile Guidance System

Proportional Navigation Guidance. Once the seeker has acquired the
target, a proportional navigation guidance (PNG) law guides the missile until
impact. This form of guidance law is the most basic, used in guided missiles
since the 1940s, and can be applied to radar-, infrared-, or television-guided
missiles. The navigation law requires measurements of the closing velocity
between the missile and target, which for a radar-guided missile can be
obtained with a Doppler tracking device, and an estimate for the rate of
change of the inertial sight line angle.

Proportional Navigation Guidance Measurements

3-47

3 Case Studies

The diagram symbols are defined as follows:

λ Navigation gain (> 2)

Vc Closing velocity

Θb Body attitude

Sight line rate

σg Gimbal angle

σL Look angle

σd Dish angle

az_dem = λVc
Demanded normal acceleration

Seeker/Tracker Subsystem
The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker
dish aligned with the target and provides the guidance law with an estimate
of the sight line rate.

Tracker and Sightline Rate Estimator. The Tracker and Sightline Rate
Estimator is the most elaborate subsystem of the Seeker/Tracker subsystem
because of its complex error modeling.

3-48

Missile Guidance System

The subsystem contains a number of feedback loops, estimated parameters,
and parasitic effects for the homing guidance.

• The tracker loop time constant tors is set to 0.05 second, a compromise
between maximizing speed of response and keeping the noise transmission
within acceptable levels.

• The stabilization loop compensates for body rotation rates. The gain Ks,
which is the loop crossover frequency, is set as high as possible subject to
the limitations of the stabilizing rate gyro’s bandwidth.

• The sight line rate estimate is a filtered value of the sum of the rate of
change of the dish angle measured by the stabilizing rate gyro and an
estimated value for the rate of change of the angular tracking error (e)
measured by the receiver. In this model, the bandwidth of the estimator
filter is set to half that of the bandwidth of the autopilot.

Radome Aberration. The Tracker and Sightline Rate Estimator subsystem
also models the radome aberration.

3-49

3 Case Studies

Radome aberration is a parasitic feedback effect commonly modeled in
radar-guided missile designs and occurs because the shape of the protective
covering over the seeker distorts the returning signal and gives a false
reading of the look angle to the target. The distortion is, in general, a
nonlinear function of the current gimbal angle. A common approximation is to
assume a linear relationship between the gimbal angle and the magnitude
of the distortion. The approximation is valid for a limited range of angle.
Other parasitic effects, such as sensitivity to normal acceleration in the rate
gyros, are often modeled as well to test the robustness of the target tracker
and estimator filters.

Simulating the Missile Guidance System
Running the guidance simulation demonstrates the performance of the overall
system. The target is defined to be traveling at a constant speed of 328 m/s on
a reciprocal course to the initial missile heading and 500 meters above the
initial missile position. The data, shown in the following figure, can be used
to determine if the missile can withstand the flight demands and complete
the mission to target.

3-50

Missile Guidance System

Target acquisition occurs 0.69 second after search initiation, with closed-loop
guidance starting after 0.89 second. Impact with the target occurs at 3.46
seconds, with the range to target at the point of closest approach calculated
to be 0.26 meter.

3-51

3 Case Studies

Extending the Model
Modeling the airframe and guidance loop in a single plane is only the start
of the design process. Extending the model to a full six-degrees-of-freedom
representation requires the implementation of the full equations of motion
for a rigid body.

Six degrees of freedom can be represented using a quaternion or Euler angles.

• The first implementation uses a quaternion to represent the angular
orientation of the body in space. The quaternion is appropriate when the
standard Euler angle definitions become singular as the pitch attitude
tends to ±90 degrees.

• The second implementation uses the standard Euler angle equations of
motion. Euler angles are appropriate when obtaining trim conditions
and modeling linear airframes. This model contains one of the
six-degrees-of-freedom equations of motion blocks.

3-52

Missile Guidance System

References

[1] Bennani, S., D. M. C. Willemsen, and C. W. Scherer, “Robust LPV control
with bounded parameter rates,” AIAA-97-3641, August 1997.

[2] Mracek, C. P. and J. R. Cloutier, “Full Envelope Missile Longitudinal
Autopilot Design Using the State-Dependent Riccati Equation Method,”
AIAA-97-3767, August 1997.

[3] Shamma, J. S. and J. R. Cloutier, “Gain-Scheduled Missile Autopilot
Design Using Linear Parameter Varying Transformations,” Journal of
Guidance, Control and Dynamics, Vol. 16, No. 2, March-April 1993.

[4] Lin, Ching-Fang, Modern Navigation, Guidance, and Control Processing,
Vol. 2, Prentice Hall, 1991.

3-53

3 Case Studies

3-54

4

Block Reference

Actuators (p. 4-2) Impose motions

Aerodynamics (p. 4-2) Aerodynamic forces and moments

Animation (p. 4-2) Display aerospace motion

Environment (p. 4-4) Flight environment

Flight Parameters (p. 4-6) Aerospace parameters

Equations of Motion (p. 4-7) Vehicle dynamics

Guidance, Navigation, and Control
(p. 4-10)

Aerospace guidance, navigation, and
control

Mass Properties (p. 4-13) Mass and moment distributions

Propulsion (p. 4-13) Engines

Utilities (p. 4-13) Miscellaneous useful blocks

4 Block Reference

Actuators

Second Order Linear Actuator Implement second-order linear
actuator

Second Order Nonlinear Actuator Implement second-order actuator
with rate and deflection limits

Aerodynamics

Aerodynamic Forces and Moments Compute aerodynamic forces
and moments using aerodynamic
coefficients, dynamic pressure,
center of gravity, center of pressure,
and velocity

Digital DATCOM Forces and
Moments

Compute aerodynamic forces and
moments using Digital DATCOM
static and dynamic stability
derivatives

Animation

MATLAB-Based Animation (p. 4-3) Display aerospace motion with
MATLAB Graphics

Flight Simulator Interfaces (p. 4-3) Display aerospace motion with flight
simulators

Animation Support Utilities (p. 4-3) Additional animation support

4-2

Animation

MATLAB-Based Animation

3DoF Animation Create 3-D MATLAB
Graphics animation of
three-degrees-of-freedom object

6DoF Animation Create 3-D MATLAB Graphics
animation of six-degrees-of-freedom
object

MATLAB Animation Create six–degrees-of-freedom
multibody custom geometry block

Flight Simulator Interfaces

FlightGear Preconfigured 6DoF
Animation

Connect model to FlightGear flight
simulator

Generate Run Script Generate FlightGear run script on
current computer

Pack net_fdm Packet for FlightGear Generate net_fdm packet for
FlightGear

Send net_fdm Packet to FlightGear Transmit net_fdm packet to
destination IP address and port for
FlightGear session

Animation Support Utilities

Pilot Joystick Provide joystick interface on
Windows platform

Pilot Joystick All Provide joystick interface on
Windows platform

Simulation Pace Set simulation rate for improved
animation viewing

4-3

4 Block Reference

Environment

Atmosphere (p. 4-4) Atmospheric profiles

Gravity & Magnetism (p. 4-5) Gravity and magnetic fields

Wind (p. 4-5) Atmospheric winds

Atmosphere

CIRA-86 Atmosphere Model Implement mathematical
representation of 1986 CIRA
atmosphere

COESA Atmosphere Model Implement 1976 COESA lower
atmosphere

ISA Atmosphere Model Implement International Standard
Atmosphere (ISA)

Lapse Rate Model Implement lapse rate model for
atmosphere

Non-Standard Day 210C Implement MIL-STD-210C climatic
data

Non-Standard Day 310 Implement MIL-HDBK-310 climatic
data

NRLMSISE-00 Atmosphere Model Implement mathematical
representation of 2001 United
States Naval Research Laboratory
Mass Spectrometer and Incoherent
Scatter Radar Exosphere

Pressure Altitude Calculate pressure altitude based on
ambient pressure

4-4

Environment

Gravity & Magnetism

Centrifugal Effect Model Implement mathematical
representation of centrifugal
effect for planetary gravity

EGM96 Geoid Calculate geoid height as determined
from EGM96 Geopotential Model

Spherical Harmonic Gravity Model Implement spherical harmonic
representation of planetary gravity

WGS84 Gravity Model Implement 1984 World Geodetic
System (WGS84) representation of
Earth’s gravity

World Magnetic Model 2000 Calculate Earth’s magnetic field
at specific location and time
using World Magnetic Model 2000
(WMM2000)

World Magnetic Model 2005 Calculate Earth’s magnetic field
at specific location and time
using World Magnetic Model 2005
(WMM2005)

World Magnetic Model 2010 Calculate Earth’s magnetic field
at specific location and time
using World Magnetic Model 2010
(WMM2010)

Zonal Harmonic Gravity Model Calculate zonal harmonic
representation of planetary gravity

Wind

Discrete Wind Gust Model Generate discrete wind gust

Dryden Wind Turbulence Model
(Continuous)

Generate continuous wind
turbulence with Dryden velocity
spectra

4-5

4 Block Reference

Dryden Wind Turbulence Model
(Discrete)

Generate discrete wind turbulence
with Dryden velocity spectra

Horizontal Wind Model Transform horizontal wind into
body-axes coordinates

Von Karman Wind Turbulence
Model (Continuous)

Generate continuous wind
turbulence with Von Kármán
velocity spectra

Wind Shear Model Calculate wind shear conditions

Flight Parameters
Dynamic Pressure Compute dynamic pressure using

velocity and air density

Ideal Airspeed Correction Calculate equivalent airspeed (EAS),
calibrated airspeed (CAS), or true
airspeed (TAS) from each other

Incidence & Airspeed Calculate incidence and airspeed

Incidence, Sideslip & Airspeed Calculate incidence, sideslip, and
airspeed

Mach Number Compute Mach number using
velocity and speed of sound

Radius at Geocentric Latitude Estimate radius of ellipsoid planet
at geocentric latitude

Relative Ratio Calculate relative atmospheric ratios

Wind Angular Rates Calculate wind angular rates from
body angular rates, angle of attack,
sideslip angle, rate of change of
angle of attack, and rate of change
of sideslip

4-6

Equations of Motion

Equations of Motion

Three DoFs (p. 4-7) Dynamics with one rotation and two
translation axes

Six DoFs (p. 4-8) Dynamics with three rotation and
three translation axes

Point Masses (p. 4-10) Dynamics of point masses

Three DoFs

3DoF (Body Axes) Implement three-degrees-of-freedom
equations of motion with respect to
body axes

3DoF (Wind Axes) Implement three-degrees-of-freedom
equations of motion with respect to
wind axes

Custom Variable Mass 3DoF (Body
Axes)

Implement three-degrees-of-freedom
equations of motion of custom
variable mass with respect to body
axes

Custom Variable Mass 3DoF (Wind
Axes)

Implement three-degrees-of-freedom
equations of motion of custom
variable mass with respect to wind
axes

Simple Variable Mass 3DoF (Body
Axes)

Implement three-degrees-of-freedom
equations of motion of simple
variable mass with respect to body
axes

Simple Variable Mass 3DoF (Wind
Axes)

Implement three-degrees-of-freedom
equations of motion of simple
variable mass with respect to wind
axes

4-7

4 Block Reference

Six DoFs

6DoF (Euler Angles) Implement Euler
angle representation of
six-degrees-of-freedom equations of
motion

6DoF (Quaternion) Implement quaternion
representation of
six-degrees-of-freedom equations of
motion with respect to body axes

6DoF ECEF (Quaternion) Implement quaternion
representation of
six-degrees-of-freedom equations
of motion in Earth-centered
Earth-fixed (ECEF) coordinates

6DoF Wind (Quaternion) Implement quaternion
representation of
six-degrees-of-freedom equations of
motion with respect to wind axes

6DoF Wind (Wind Angles) Implement wind angle
representation of
six-degrees-of-freedom equations of
motion

Custom Variable Mass 6DoF (Euler
Angles)

Implement Euler
angle representation of
six-degrees-of-freedom equations of
motion of custom variable mass

Custom Variable Mass 6DoF
(Quaternion)

Implement quaternion
representation of
six-degrees-of-freedom equations of
motion of custom variable mass with
respect to body axes

4-8

Equations of Motion

Custom Variable Mass 6DoF ECEF
(Quaternion)

Implement quaternion
representation of
six-degrees-of-freedom equations of
motion of custom variable mass in
Earth-centered Earth-fixed (ECEF)
coordinates

Custom Variable Mass 6DoF Wind
(Quaternion)

Implement quaternion
representation of
six-degrees-of-freedom equations of
motion of custom variable mass with
respect to wind axes

Custom Variable Mass 6DoF Wind
(Wind Angles)

Implement wind angle
representation of
six-degrees-of-freedom equations of
motion of custom variable mass

Simple Variable Mass 6DoF (Euler
Angles)

Implement Euler
angle representation of
six-degrees-of-freedom equations of
motion of simple variable mass

Simple Variable Mass 6DoF
(Quaternion)

Implement quaternion
representation of
six-degrees-of-freedom equations of
motion of simple variable mass with
respect to body axes

Simple Variable Mass 6DoF ECEF
(Quaternion)

Implement quaternion
representation of
six-degrees-of-freedom equations of
motion of simple variable mass in
Earth-centered Earth-fixed (ECEF)
coordinates

4-9

4 Block Reference

Simple Variable Mass 6DoF Wind
(Quaternion)

Implement quaternion
representation of
six-degrees-of-freedom equations of
motion of simple variable mass with
respect to wind axes

Simple Variable Mass 6DoF Wind
(Wind Angles)

Implement wind angle
representation of
six-degrees-of-freedom equations of
motion of simple variable mass

Point Masses

4th Order Point Mass (Longitudinal) Calculate fourth-order point mass

4th Order Point Mass Forces
(Longitudinal)

Calculate forces used by fourth-order
point mass

6th Order Point Mass (Coordinated
Flight)

Calculate sixth-order point mass in
coordinated flight

6th Order Point Mass Forces
(Coordinated Flight)

Calculate forces used by sixth-order
point mass in coordinated flight

Guidance, Navigation, and Control

Control (p. 4-11) Controlling vehicles

Guidance (p. 4-12) Guiding motion

Navigation (p. 4-12) Navigating in space

4-10

Guidance, Navigation, and Control

Control

1D Controller Blend
u=(1-L).K1.y+L.K2.y

Implement 1-D vector of state-space
controllers by linear interpolation of
their outputs

1D Controller [A(v),B(v),C(v),D(v)] Implement gain-scheduled
state-space controller depending on
one scheduling parameter

1D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement gain-scheduled
state-space controller in observer
form depending on one scheduling
parameter

1D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement gain-scheduled
state-space controller in
self-conditioned form depending on
one scheduling parameter

2D Controller Blend Implement 2-D vector of state-space
controllers by linear interpolation of
their outputs

2D Controller [A(v),B(v),C(v),D(v)] Implement gain-scheduled
state-space controller depending on
two scheduling parameters

2D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement gain-scheduled
state-space controller in observer
form depending on two scheduling
parameters

2D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement gain-scheduled
state-space controller in
self-conditioned form depending on
two scheduling parameters

3D Controller [A(v),B(v),C(v),D(v)] Implement gain-scheduled
state-space controller depending on
three scheduling parameters

4-11

4 Block Reference

3D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement gain-scheduled
state-space controller in observer
form depending on three scheduling
parameters

3D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement gain-scheduled
state-space controller in
self-conditioned form depending on
two scheduling parameters

Gain Scheduled Lead-Lag Implement first-order lead-lag with
gain-scheduled coefficients

Interpolate Matrix(x) Return interpolated matrix for given
input

Interpolate Matrix(x,y) Return interpolated matrix for given
inputs

Interpolate Matrix(x,y,z) Return interpolated matrix for given
inputs

Self-Conditioned [A,B,C,D] Implement state-space controller in
self-conditioned form

Guidance

Calculate Range Calculate range between two crafts
given their respective positions

Navigation

Three-Axis Accelerometer Implement three-axis accelerometer

Three-Axis Gyroscope Implement three-axis gyroscope

Three-Axis Inertial Measurement
Unit

Implement three-axis inertial
measurement unit (IMU)

4-12

Mass Properties

Mass Properties

Estimate Center of Gravity Calculate center of gravity location

Estimate Inertia Tensor Calculate inertia tensor

Moments About CG Due to Forces Compute moments about center of
gravity due to forces applied at a
point, not center of gravity

Symmetric Inertia Tensor Create inertia tensor from moments
and products of inertia

Propulsion

Turbofan Engine System Implement first-order representation
of turbofan engine with controller

Utilities

Axes Transformations (p. 4-13) Geometric and kinematic
transformations

Math Operations (p. 4-15) Additional mathematical functions

Unit Conversions (p. 4-16) Changing units

Axes Transformations

Besselian Epoch to Julian Epoch Transform position and velocity
components from discontinued
Standard Besselian Epoch (B1950)
to Standard Julian Epoch (J2000)

Direction Cosine Matrix Body to
Wind

Convert angle of attack and sideslip
angle to direction cosine matrix

4-13

4 Block Reference

Direction Cosine Matrix Body to
Wind to Alpha and Beta

Convert direction cosine matrix to
angle of attack and sideslip angle

Direction Cosine Matrix ECEF to
NED

Convert geodetic latitude and
longitude to direction cosine matrix

Direction Cosine Matrix ECEF to
NED to Latitude and Longitude

Convert direction cosine matrix to
geodetic latitude and longitude

Direction Cosine Matrix to
Quaternions

Convert direction cosine matrix to
quaternion vector

Direction Cosine Matrix to Rotation
Angles

Convert direction cosine matrix to
rotation angles

Direction Cosine Matrix to Wind
Angles

Convert direction cosine matrix to
wind angles

ECEF Position to LLA Calculate geodetic latitude,
longitude, and altitude above
planetary ellipsoid from
Earth-centered Earth-fixed (ECEF)
position

Flat Earth to LLA Estimate geodetic latitude,
longitude, and altitude from
flat Earth position

Geocentric to Geodetic Latitude Convert geocentric latitude to
geodetic latitude

Geodetic to Geocentric Latitude Convert geodetic latitude to
geocentric latitude

Julian Epoch to Besselian Epoch Transform position and velocity
components from Standard Julian
Epoch (J2000) to discontinued
Standard Besselian Epoch (B1950)

LLA to ECEF Position Calculate Earth-centered
Earth-fixed (ECEF) position from
geodetic latitude, longitude, and
altitude above planetary ellipsoid

Quaternions to Direction Cosine
Matrix

Convert quaternion vector to
direction cosine matrix

4-14

Utilities

Quaternions to Rotation Angles Determine rotation vector from
quaternion

Rotation Angles to Direction Cosine
Matrix

Convert rotation angles to direction
cosine matrix

Rotation Angles to Quaternions Calculate quaternion from rotation
angles

Wind Angles to Direction Cosine
Matrix

Convert wind angles to direction
cosine matrix

Math Operations

3x3 Cross Product Calculate cross product of two 3-by-1
vectors

Adjoint of 3x3 Matrix Compute adjoint of matrix

Create 3x3 Matrix Create 3-by-3 matrix from nine input
values

Determinant of 3x3 Matrix Compute determinant of matrix

Invert 3x3 Matrix Compute inverse of 3-by-3 matrix

Quaternion Division Divide quaternion by another
quaternion

Quaternion Inverse Calculate inverse of quaternion

Quaternion Modulus Calculate modulus of quaternion

Quaternion Multiplication Calculate product of two quaternions

Quaternion Norm Calculate norm of quaternion

Quaternion Normalize Normalize quaternion

Quaternion Rotation Rotate vector by quaternion

SinCos Compute sine and cosine of angle

4-15

4 Block Reference

Unit Conversions

Acceleration Conversion Convert from acceleration units to
desired acceleration units

Angle Conversion Convert from angle units to desired
angle units

Angular Acceleration Conversion Convert from angular acceleration
units to desired angular acceleration
units

Angular Velocity Conversion Convert from angular velocity units
to desired angular velocity units

Density Conversion Convert from density units to desired
density units

Force Conversion Convert from force units to desired
force units

Length Conversion Convert from length units to desired
length units

Mass Conversion Convert from mass units to desired
mass units

Pressure Conversion Convert from pressure units to
desired pressure units

Temperature Conversion Convert from temperature units to
desired temperature units

Velocity Conversion Convert from velocity units to
desired velocity units

4-16

5

Blocks — Alphabetical List

1D Controller [A(v),B(v),C(v),D(v)]

Purpose Implement gain-scheduled state-space controller depending on one
scheduling parameter

Library GNC/Controls

Description The 1D Controller [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

�x A v x B v y
u C v x D v y

= +
= +

() ()
() ()

where v is a parameter over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D
vary smoothly as a function of v, which is often the case in aerospace
applications.

Dialog
Box

5-2

1D Controller [A(v),B(v),C(v),D(v)]

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D
scheduling, the A-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for
example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. In the case of 1-D
scheduling, the B-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for
example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. In the case of 1-D
scheduling, the C-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for
example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. In the case of 1-D
scheduling, the D-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for
example, if the D-matrix corresponding to the first entry of v is
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length
of v should be same as the size of the third dimension of A, B,
C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

5-3

1D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Input Dimension Type Description

First Any Contains the measurements.

Second Contains the scheduling variable
conforming to the dimensions of the
state-space matrices.

Output Dimension Type Description

First Any Contains the actuator demands.

Assumptions
and
Limitations

If the scheduling parameter inputs to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

5-4

1D Controller Blend u=(1-L).K1.y+L.K2.y

Purpose Implement 1-D vector of state-space controllers by linear interpolation
of their outputs

Library GNC/Controls

Description The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an
array of state-space controller designs. The controllers are run in
parallel, and their outputs interpolated according to the current flight
condition or operating point. The advantage of this implementation
approach is that the state-space matrices A, B, C, and D for the
individual controller designs do not need to vary smoothly from one
design point to the next.

For example, suppose two controllers are designed at two operating
points v=vmin and v=vmax. The 1D Controller Blend block implements

�

�

x A x B y

u C x D y

x A x B y

u C x D y

u u u

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

11

= +
= +
= +
= +

= − +()λ λ 22

0

1

λ =

<
−

−
≤ ≤

>

⎧

⎨
⎪
⎪

⎩
⎪
⎪

v v
v v

v v
v v v

v v

min

min

max min
min max

max

For longer arrays of design points, the blocks only implement nearest
neighbor designs. For the 1D Controller Blend block, at any given
instant in time, three controller designs are being updated. This
reduces computational requirements.

As the value of the scheduling parameter varies and the index of the
controllers that need to be run changes, the states of the oncoming

5-5

1D Controller Blend u=(1-L).K1.y+L.K2.y

controller are initialized by using the self-conditioned form as defined
for the Self-Conditioned [A,B,C,D] block.

Dialog
Box

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D
blending, the A-matrix should have three dimensions, the last one
corresponding to scheduling variable v. Hence, for example, if
the A-matrix corresponding to the first entry of v is the identity
matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation.

5-6

1D Controller Blend u=(1-L).K1.y+L.K2.y

C-matrix(v)
C-matrix of the state-space implementation.

D-matrix(v)
D-matrix of the state-space implementation.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length
of v should be same as the size of the third dimension of A, B,
C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used
to ensure that the controller output tracks the current block
output, u. The poles of the observer are defined in this dialog box
as a vector, the number of poles being equal to the dimension
of the A-matrix. Poles that are too fast result in sensor noise
propagation, and poles that are too slow result in the failure of
the controller output to track u.

Inputs and
Outputs

Input Dimension Type Description

First Any Contains the measurements.

Second Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Output Dimension Type Description

First Any Contains the actuator demands.

5-7

1D Controller Blend u=(1-L).K1.y+L.K2.y

Assumptions
and
Limitations

Note This block requires the Control System Toolbox product.

Reference Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series,
1995. ISBN 3-540-19960-8. See Chapter 5.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller Blend

5-8

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose Implement gain-scheduled state-space controller in observer form
depending on one scheduling parameter

Library GNC/Controls

Description The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer
form:

�x A v H v C v x B v u H v y y

u F v x
meas dem

dem

= + + + −
=

(() () ()) () ()()

()

The main application of this block is to implement a controller designed
using H-infinity loop-shaping, one of the design methods supported
by Robust Control Toolbox.

5-9

http://www.mathworks.com/products/robust/

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog
Box

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix
should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the A-matrix
corresponding to the first entry of v is the identity matrix, then
A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix
should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then
B(:,:,1) = [1 0;0 1];.

5-10

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix
should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then
C(:,:,1) = [1 0;0 1];.

F-matrix(v)
State-feedback matrix. The F-matrix should have three
dimensions, the last one corresponding to the scheduling variable
v. Hence, for example, if the F-matrix corresponding to the first
entry of v is the identity matrix, then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have
three dimensions, the last one corresponding to the scheduling
variable v. Hence, for example, if the H-matrix corresponding to
the first entry of v is the identity matrix, then H(:,:,1) = [1
0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length
of v should be same as the size of the third dimension of A, B, C,
F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

Inputs and
Outputs

Input Dimension Type Description

First Contains the set-point error.

Second Contains the scheduling variable.

Third Contains the measured actuator
position.

5-11

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Output Dimension Type Description

First Contains the actuator demands.

Assumptions
and
Limitations

If the scheduling parameter inputs to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

Reference Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series,
1995. ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

5-12

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose Implement gain-scheduled state-space controller in self-conditioned
form depending on one scheduling parameter

Library GNC/Controls

Description The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

�x A v x B v y
u C v x D v y

= +
= +

() ()
() ()

in the self-conditioned form

�z A v H v C v z B v H v D V e H v u

u C v z D
meas

dem

= − + − +
= +

(() () ()) (() () ()) ()

() (()v e

For the rationale behind this self-conditioned implementation, refer to
the Self-Conditioned [A,B,C,D] block reference. This block implements
a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v
being the parameter over which A, B, C, and D are defined. This type
of controller scheduling assumes that the matrices A, B, C, and D
vary smoothly as a function of v, which is often the case in aerospace
applications.

5-13

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog
Box

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix
should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the A-matrix
corresponding to the first entry of v is the identity matrix, then
A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix
should have three dimensions, the last one corresponding to

5-14

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

the scheduling variable v. Hence, for example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then
B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix
should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then
C(:,:,1) = [1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix
should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the D-matrix
corresponding to the first entry of v is the identity matrix, then
D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The
length of v should be same as the size of the third dimension of
A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are
assigned to the same locations for all values of the scheduling
parameter v. Hence the number of pole locations defined should
be equal to the length of the first dimension of the A-matrix.

5-15

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Input Dimension Type Description

First Any Contains the measurements.

Second Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Third Contains the measured actuator
position.

Output Dimension Type Description

First Any Contains the actuator demands.

Assumptions
and
Limitations

If the scheduling parameter inputs to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

Note This block requires the Control System Toolbox product.

Reference The algorithm used to determine the matrix H is defined in Kautsky,
Nichols, and Van Dooren, “Robust Pole Assignment in Linear State
Feedback,” International Journal of Control, Vol. 41, No. 5, pages
1129-1155, 1985.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

5-16

2D Controller [A(v),B(v),C(v),D(v)]

Purpose Implement gain-scheduled state-space controller depending on two
scheduling parameters

Library GNC/Controls

Description The 2D Controller [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

�x A v x B v y
u C v x D v y

= +
= +

() ()
() ()

where v is a vector of parameters over which A, B, C, and D are defined.
This type of controller scheduling assumes that the matrices A, B,
C, and D vary smoothly as a function of v, which is often the case in
aerospace applications.

5-17

2D Controller [A(v),B(v),C(v),D(v)]

Dialog
Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D
scheduling, the A-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the A-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then A(:,:,1,1)
= [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D
scheduling, the B-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the B-matrix corresponding to the first entry of

5-18

2D Controller [A(v),B(v),C(v),D(v)]

v1 and first entry of v2 is the identity matrix, then B(:,:,1,1)
= [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D
scheduling, the C-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the C-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then C(:,:,1,1)
= [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2-D
scheduling, the D-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the D-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then D(:,:,1,1)
= [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The
length of v1 should be same as the size of the third dimension
of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The
length of v2 should be same as the size of the fourth dimension
of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

5-19

2D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Input Dimension Type Description

First Any Contains the measurements.

Second Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Third Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Output Dimension Type Description

First Any Contains the actuator demands.

Assumptions
and
Limitations

If the scheduling parameter inputs to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

5-20

2D Controller Blend

Purpose Implement 2-D vector of state-space controllers by linear interpolation
of their outputs

Library GNC/Controls

Description The 2D Controller Blend block implements an array of state-space
controller designs. The controllers are run in parallel, and their outputs
interpolated according to the current flight condition or operating point.
The advantage of this implementation approach is that the state-space
matrices A, B, C, and D for the individual controller designs do not need
to vary smoothly from one design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine
controller designs are updated.

As the value of the scheduling parameter varies and the index of the
controllers that need to be run changes, the states of the oncoming
controller are initialized by using the self-conditioned form as defined
for the Self-Conditioned [A,B,C,D] block.

5-21

2D Controller Blend

Dialog
Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D
blending, the A-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the A-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then A(:,:,1,1)
= [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation.

5-22

2D Controller Blend

C-matrix(v1,v2)
C-matrix of the state-space implementation.

D-matrix(v1,v2)
D-matrix of the state-space implementation.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The
length of v1 should be same as the size of the third dimension
of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The
length of v2 should be same as the size of the fourth dimension
of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used
to ensure that the controller output tracks the current block
output, u. The poles of the observer are defined in this dialog box
as a vector, the number of poles being equal to the dimension
of the A-matrix. Poles that are too fast result in sensor noise
propagation, and poles that are too slow result in the failure of
the controller output to track u.

5-23

2D Controller Blend

Inputs and
Outputs

Input Dimension Type Description

First Any Contains the measurements.

Second Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Third Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Output Dimension Type Description

First Any Contains the actuator demands.

Assumptions
and
Limitations

Note This block requires the Control System Toolbox product.

Reference Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series,
1995. ISBN 3-540-19960-8. See Chapter 5.

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y

2D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

5-24

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose Implement gain-scheduled state-space controller in observer form
depending on two scheduling parameters

Library GNC/Controls

Description The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer
form:

�x A v H v C v x B v u H v y y

u F v x
meas dem

dem

= + + + −()
=

(() () ()) () ()

()

The main application of these blocks is to implement a controller
designed using H-infinity loop-shaping, one of the design methods
supported by Robust Control Toolbox.

5-25

http://www.mathworks.com/products/robust/

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog
Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D
scheduling, the A-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the A-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then A(:,:,1,1)
= [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D
scheduling, the B-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,

5-26

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

for example, if the B-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then B(:,:,1,1)
= [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D
scheduling, the C-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the C-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then C(:,:,1,1)
= [1 0;0 1];.

F-matrix(v1,v2)
State-feedback matrix. In the case of 2-D scheduling, the
F-matrix should have four dimensions, the last two corresponding
to scheduling variables v1 and v2. Hence, for example, if the
F-matrix corresponding to the first entry of v1 and first entry of
v2 is the identity matrix, then F(:,:,1,1) = [1 0;0 1];.

H-matrix(v1,v2)
Observer (output injection) matrix. In the case of 2-D scheduling,
the H-matrix should have four dimensions, the last two
corresponding to scheduling variables v1 and v2. Hence, for
example, if the H-matrix corresponding to the first entry of v1
and first entry of v2 is the identity matrix, then H(:,:,1,1) =
[1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The
length of v1 should be same as the size of the third dimension of
A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The
length of v2 should be same as the size of the fourth dimension of
A, B, C, F, and H.

5-27

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

Inputs and
Outputs

Input Dimension Type Description

First Contains the set-point error.

Second Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Third Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Fourth Contains the measured actuator
position.

Output Dimension Type Description

First Contains the actuator demands.

Assumptions
and
Limitations

If the scheduling parameter inputs to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

Reference Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series,
1995. ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

5-28

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

5-29

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose Implement gain-scheduled state-space controller in self-conditioned
form depending on two scheduling parameters

Library GNC/Controls

Description The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

�x A v x B v y
u C v x D v y

= +
= +

() ()
() ()

in the self-conditioned form

�z A v H v C v z B v H v D v e H v u

u C v z D
meas

dem

= −() + −() +
= +
() () () () () () ()

() (()v e

For the rationale behind this self-conditioned implementation, refer to
the Self-Conditioned [A,B,C,D] block reference. This block implements
a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v
being the vector of parameters over which A, B, C, and D are defined.
This type of controller scheduling assumes that the matrices A, B,
C, and D vary smoothly as a function of v, which is often the case in
aerospace applications.

5-30

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog
Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D
scheduling, the A-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the A-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then A(:,:,1,1)
= [1 0;0 1];.

5-31

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D
scheduling, the B-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the B-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then B(:,:,1,1)
= [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D
scheduling, the C-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the C-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then C(:,:,1,1)
= [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2-D
scheduling, the D-matrix should have four dimensions, the last
two corresponding to scheduling variables v1 and v2. Hence,
for example, if the D-matrix corresponding to the first entry of
v1 and first entry of v2 is the identity matrix, then D(:,:,1,1)
= [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The
length of v1 should be same as the size of the third dimension
of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The
length of v2 should be same as the size of the fourth dimension
of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

5-32

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are
assigned to the same locations for all values of the scheduling
parameter, v. Hence, the number of pole locations defined should
be equal to the length of the first dimension of the A-matrix.

Inputs and
Outputs

Input Dimension Type Description

First Contains the measurements.

Second Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Third Contains the scheduling variable,
conforming to the dimensions of the
state-space matrices.

Fourth Contains the measured actuator
position.

Output Dimension Type Description

First Contains the actuator demands.

Assumptions
and
Limitations

If the scheduling parameter inputs to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

Note This block requires the Control System Toolbox product.

Reference The algorithm used to determine the matrix H is defined in Kautsky,
Nichols, and Van Dooren, “Robust Pole Assignment in Linear State
Feedback,” International Journal of Control, Vol. 41, No. 5, pages
1129-1155, 1985.

5-33

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

5-34

3D Controller [A(v),B(v),C(v),D(v)]

Purpose Implement gain-scheduled state-space controller depending on three
scheduling parameters

Library GNC/Controls

Description The 3D Controller [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

�x A v x B v y
u C v x D v y

= +
= +

() ()
() ()

where v is a vector of parameters over which A, B, C, and D are defined.
This type of controller scheduling assumes that the matrices A, B,
C, and D vary smoothly as a function of v, which is often the case in
aerospace applications.

5-35

3D Controller [A(v),B(v),C(v),D(v)]

Dialog
Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D
scheduling, the A-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the A-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D
scheduling, the B-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,

5-36

3D Controller [A(v),B(v),C(v),D(v)]

for example, if the B-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D
scheduling, the C-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the C-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D
scheduling, the D-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the D-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The
length of v1 should be same as the size of the third dimension
of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The
length of v2 should be same as the size of the fourth dimension
of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The
length of v3 should be same as the size of the fifth dimension of
A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

5-37

3D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Input Dimension Type Description

First Contains the measurements.

Second Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Third Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Fourth Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Output Dimension Type Description

First Contains the actuator demands.

Assumptions
and
Limitations

If the scheduling parameter input to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

5-38

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose Implement gain-scheduled state-space controller in observer form
depending on three scheduling parameters

Library GNC/Controls

Description The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer
form:

�x A v H v C v x B v u H v y y

u F v x
meas dem

dem

= + + + −
=

(() () ()) () ()()

()

The main application of this block is to implement a controller designed
using H-infinity loop-shaping, one of the design methods supported
by Robust Control Toolbox.

5-39

http://www.mathworks.com/products/robust/

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog
Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D
scheduling, the A-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the A-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then A(:,:,1,1,1) = [1 0;0 1];.

5-40

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D
scheduling, the B-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the B-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D
scheduling, the C-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the C-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(v1,v2,v3)
State-feedback matrix. In the case of 3-D scheduling, the F-matrix
should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if
the F-matrix corresponding to the first entry of v1, the first
entry of v2, and the first entry of v3 is the identity matrix, then
F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(v1,v2,v3)
Observer (output injection) matrix. In the case of 3-D scheduling,
the H-matrix should have five dimensions, the last three
corresponding to scheduling variables v1, v2, and v3. Hence, for
example, if the H-matrix corresponding to the first entry of v1, the
first entry of v2, and the first entry of v3 is the identity matrix,
then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The
length of v1 should be same as the size of the third dimension of
A, B, C, F, and H.

5-41

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The
length of v2 should be same as the size of the fourth dimension of
A, B, C, F, and H.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The
length of v3 should be same as the size of the fifth dimension of
A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

Inputs and
Outputs

Input Dimension Type Description

First Contains the set-point error.

Second Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Third Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Fourth Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Fifth Contains the measured actuator
position.

Output Dimension Type Description

First Contains the actuator demands.

5-42

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Assumptions
and
Limitations

If the scheduling parameter inputs to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

Reference Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series,
1995. ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

5-43

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose Implement gain-scheduled state-space controller in self-conditioned
form depending on two scheduling parameters

Library GNC/Controls

Description The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

�x A v x B v y
u C v x D v y

= +
= +

() ()
() ()

in the self-conditioned form

�z A v H v C v z B v H v D v e H v u

u C v z D
meas

dem

= −() + −() +
= +
() () () () () () ()

() (()v e

For the rationale behind this self-conditioned implementation, refer to
the Self-Conditioned [A,B,C,D] block reference. These blocks implement
a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v
being the vector of parameters over which A, B, C, and D are defined.
This type of controller scheduling assumes that the matrices A, B,
C, and D vary smoothly as a function of v, which is often the case in
aerospace applications.

5-44

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog
Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D
scheduling, the A-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the A-matrix corresponding to the first entry of

5-45

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D
scheduling, the B-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the B-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D
scheduling, the C-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the C-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D
scheduling, the D-matrix should have five dimensions, the last
three corresponding to scheduling variables v1, v2, and v3. Hence,
for example, if the D-matrix corresponding to the first entry of
v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The
length of v1 should be same as the size of the third dimension
of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The
length of v2 should be same as the size of the fourth dimension
of A, B, C, and D.

5-46

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The
length of v3 should be same as the size of the fifth dimension of
A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for
the state vector, x. It should have length equal to the size of the
first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are
assigned to the same locations for all values of the scheduling
parameter v. Hence the number of pole locations defined should
be equal to the length of the first dimension of the A-matrix.

Inputs and
Outputs

Input Dimension Type Description

First Contains the measurements.

Second Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Third Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Fourth Contains the scheduling variable,
ordered conforming to the dimensions
of the state-space matrices.

Fifth Contains the measured actuator
position.

5-47

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Output Dimension Type Description

First Contains the measured actuator
position.

The first input is the measurements.

The second, third, and fourth inputs are the scheduling variables
ordered conforming to the dimensions of the state-space matrices.

The fifth input is the measured actuator position.

The output is the actuator demands.

Assumptions
and
Limitations

If the scheduling parameter inputs to the block go out of range, then
they are clipped; i.e., the state-space matrices are not interpolated out
of range.

Note This block requires the Control System Toolbox product.

Reference The algorithm used to determine the matrix H is defined in Kautsky,
Nichols, and Van Dooren, “Robust Pole Assignment in Linear State
Feedback,” International Journal of Control, Vol. 41, No. 5, pages
1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

5-48

3DoF Animation

Purpose Create 3-D MATLAB Graphics animation of three-degrees-of-freedom
object

Library Animation

Description The 3DoF Animation block displays a 3-D animated view of a
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target
using MATLAB Graphics.

The 3DoF Animation block uses the input values and the dialog
parameters to create and display the animation.

This block does not produce deployable code, but can be used with
Real-Time Workshop external mode as a SimViewingDevice.

5-49

3DoF Animation

Dialog
Box

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Enter view
Selects preset MATLAB Graphics parameters CameraTarget
and CameraUpVector for the figure axes. The dialog parameters
Position of camera and View angle are used to customize the
position and field of view for the selected view. Possible views are

5-50

3DoF Animation

• Fixed position

• Cockpit

• Fly alongside

Position of camera [xc yc zc]
Specifies the MATLAB Graphics parameter CameraPosition for
the figure axes. Used in all cases except for the Cockpit view.

View angle
Specifies the MATLAB Graphics parameter CameraViewAngle
for the figure axes in degrees.

Enable animation
When selected, the animation is displayed during the simulation.
If not selected, the animation is not displayed.

Inputs Input Dimension
Type

Description

First Vector Contains the altitude and the downrange
position of the target in Earth coordinates.

Second Vector Contains the altitude and the downrange
position of the craft in Earth coordinates.

Third Contains the attitude of the craft.

Examples See the aero_guidance demo for an example of this block.

See Also 6DoF Animation

FlightGear Preconfigured 6DoF Animation

The figure axes properties CameraPosition and CameraViewAngle

5-51

../../techdoc/ref/axes_props.html#CameraPosition
../../techdoc/ref/axes_props.html#CameraViewAngle
../../techdoc/ref/axes_props.html#CameraPosition
../../techdoc/ref/axes_props.html#CameraViewAngle

3DoF (Body Axes)

Purpose Implement three-degrees-of-freedom equations of motion with respect
to body axes

Library Equations of Motion/3DoF

Description The 3DoF (Body Axes) block considers the rotation in the vertical plane
of a body-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

�

�

�

�

u
F
m

qw g

w
F
m

qu g

q
M
I

q

x

z

yy

= − −

= + +

=

=

sin

cos

θ

θ

θ

5-52

3DoF (Body Axes)

where the applied forces are assumed to act at the center of gravity
of the body.

Dialog
Box

Units
Specifies the input and output units:

5-53

3DoF (Body Axes)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton-
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot-
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Fixed selection conforms to the previously described
equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, (θ0).

Initial incidence
A scalar value for the initial angle between the velocity vector
and the body, (α0).

5-54

3DoF (Body Axes)

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in
the Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal
gravity source is selected. If gravity is to be neglected in the
simulation, this value can be set to 0.

Inputs and
Outputs

Input Dimension Type Description

First Contains the force acting along the
body x-axis, (Fx).

Second Contains the force acting along the
body z-axis, (Fz).

Third Contains the applied pitch
moment, (M).

Fourth
(Optional)

Contains the block is gravity in the
selected units.

5-55

3DoF (Body Axes)

Output Dimension Type Description

First Contains the pitch attitude, in
radians (θ).

Second Contains the pitch angular rate, in
radians per second (q).

Third Contains the pitch angular
acceleration, in radians per second

squared �q() .
Fourth Two-element

vector
Contains the location of the body,
in the Earth-fixed reference frame,
(Xe, Ze).

Fifth Two-element
vector

Contains the velocity of the
body resolved into the body-fixed
coordinate frame, (u, w).

Sixth Two-element
vector

Contains the acceleration of the
body resolved into the body-fixed
coordinate frame, (Ax, Az).

Examples See the aero_guidance demo for an example of this block.

See Also 3DoF (Wind Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

5-56

3DoF (Wind Axes)

Purpose Implement three-degrees-of-freedom equations of motion with respect
to wind axes

Library Equations of Motion/3DoF

Description The 3DoF (Wind Axes) block considers the rotation in the vertical plane
of a wind-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

�

�

� �

V
F

m
g

F

mV
q

g
V

q
M

I

x

z

y

y

wind

wind

body

= −

= + +

= =

sin

cos cos
cos

γ

α
β β

γ

θ
yy

q� �γ α= −

5-57

3DoF (Wind Axes)

where the applied forces are assumed to act at the center of gravity
of the body.

Dialog
Box

Units
Specifies the input and output units:

5-58

3DoF (Wind Axes)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple
Variable

Mass and inertia vary linearly as a function
of mass rate.

Custom
Variable

Mass and inertia variations are
customizable.

The Fixed selection conforms to the previously described
equations of motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial flight path angle of the body, (γ0).

Initial incidence
A scalar value for the initial angle between the velocity vector
and the body, (α0).

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

5-59

3DoF (Wind Axes)

Initial position (x,z)
A two-element vector containing the initial location of the body in
the Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia body axes
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal
gravity source is selected. If gravity is to be neglected in the
simulation, this value can be set to 0.

Inputs and
Outputs

Input Dimension Type Description

First Contains the force acting along the
wind x-axis, (Fx).

Second Contains the force acting along the
wind z-axis, (Fz).

Third Contains the applied pitch moment
in body axes, (M).

Fourth
(Optional)

Contains the block is gravity in the
selected units.

5-60

3DoF (Wind Axes)

Output Dimension Type Description

First Contains the flight path angle, in
radians (γ).

Second Contains the pitch angular rate, in
radians per second (ω y).

Third Contains the pitch angular
acceleration, in radians per second
squared (dωy/dt).

Fourth Two-element
vector

Contains the location of the body,
in the Earth-fixed reference frame,
(Xe, Ze).

Fifth Two-element
vector

Contains the velocity of the body
resolved into the wind-fixed
coordinate frame, (V, 0).

Sixth Two-element
vector

Contains the acceleration of the
body resolved into the body-fixed
coordinate frame, (Ax, Az).

Seventh Scalar Contains the angle of attack, (α).

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body, and that the mass and inertia are constant.

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 3DoF (Body Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

5-61

3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

5-62

3x3 Cross Product

Purpose Calculate cross product of two 3-by-1 vectors

Library Utilities/Math Operations

Description The 3x3 Cross Product block computes cross (or vector) product of two
vectors, A and B, by generating a third vector, C, in a direction normal
to the plane containing A and B, and with magnitude equal to the
product of the lengths of A and B multiplied by the sine of the angle
between them. The direction of C is that in which a right-handed screw
would move in turning from A to B.

A a a a

B b b b

C A B a a a
b b b

a b a b

= + +
= + +

= × =

= −

1 2 3

1 2 3

1 2 3

1 2 3

2 3 3 2

i j k
i j k

i j k

()) () ()i j k+ − + −a b a b a b a b3 1 1 3 1 2 2 1

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 3-by-1 vector

Second 3-by-1 vector

Output Dimension Type Description

First 3-by-1 vector

5-63

4th Order Point Mass (Longitudinal)

Purpose Calculate fourth-order point mass

Library Equations of Motion/Point Mass

Description The 4th Order Point Mass (Longitudinal) block performs the
calculations for the translational motion of a single point mass or
multiple point masses.

The translational motions of the point mass [XEast XUp]
T are functions of

airspeed (V) and flight path angle (γ),

F mV

F mV

X V

X V

x

z

East

Up

=
=

=

=

�

�
�

�

γ

γ

γ

cos

sin

5-64

4th Order Point Mass (Longitudinal)

where the applied forces [Fx Fz]
T are in a system defined as follows:

x-axis is in the direction of vehicle velocity relative to air, z-axis is
upward, and y-axis completes the right-handed frame. The mass of
the body m is assumed constant.

Dialog
Box

Units
Specifies the input and output units:

Units Forces Velocity Position

Metric (MKS) Newton Meters per
second

Meters

English (Velocity
in ft/s)

Pound Feet per second Feet

English (Velocity
in kts)

Pound Knots Feet

5-65

4th Order Point Mass (Longitudinal)

Initial flight path angle
The scalar or vector containing the initial flight path angle of
the point mass(es).

Initial airspeed
The scalar or vector containing the initial airspeed of the point
mass(es).

Initial downrange
The scalar or vector containing the initial downrange of the point
mass(es).

Initial altitude
The scalar or vector containing the initial altitude of the point
mass(es).

Initial mass
The scalar or vector containing the mass of the point mass(es).

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the force in x-axis in selected units.

Second Contains the force in z-axis in selected units.

Output Dimension
Type

Description

First Contains the flight path angle in radians.

Second Contains the airspeed in selected units.

Third Contains the downrange or amount traveled
East in selected units.

Fourth Contains the altitude or amount traveled Up
in selected units.

5-66

4th Order Point Mass (Longitudinal)

Assumptions
and
Limitations

The flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth’s motion relative
to the “fixed stars” to be neglected.

See Also 4th Order Point Mass Forces (Longitudinal)

3DoF (Body Axes)

3DoF (Wind Axes)

6th Order Point Mass (Coordinated Flight)

6th Order Point Mass Forces (Coordinated Flight)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

5-67

4th Order Point Mass Forces (Longitudinal)

Purpose Calculate forces used by fourth-order point mass

Library Equations of Motion/Point Mass

Description The 4th Order Point Mass Forces (Longitudinal) block calculates the
applied forces for a single point mass or multiple point masses.

The applied forces [Fx Fz]
T are in a system defined as follows: x-axis is

in the direction of vehicle velocity relative to air, z-axis is upward, and
y-axis completes the right-handed frame. They are functions of lift (L),
drag (D), thrust (T), weight (W), flight path angle (γ), angle of attack (α),
and bank angle (μ).

F L T W

F T D W
z

x

= + −
= − −

(sin)cos cos

cos sin

5-68

4th Order Point Mass Forces (Longitudinal)

Dialog
Box

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the lift in units of force.

Second Contains the drag in units of force.

Third Contains the weight in units of force.

Fourth Contains the thrust in units of force.

Fifth Contains the flight path angle in radians.

Sixth Contains the bank angle in radians.

Seventh Contains the angle of attack in radians.

Output Dimension
Type

Description

First Contains the force in x-axis in units of force.

Second Contains the force in z-axis in units of force.

Assumptions
and
Limitations

The flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth’s motion relative
to the “fixed stars” to be neglected.

See Also 4th Order Point Mass (Longitudinal)

6th Order Point Mass (Coordinated Flight)

6th Order Point Mass Forces (Coordinated Flight)

5-69

6DoF Animation

Purpose Create 3-D MATLAB Graphics animation of six-degrees-of-freedom
object

Library Animation

Description The 6DoF Animation block displays a 3-D animated view of a
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using
MATLAB Graphics.

The 6DoF Animation block uses the input values and the dialog
parameters to create and display the animation.

This block does not produce deployable code, but can be used with
Real-Time Workshop external mode as a SimViewingDevice.

5-70

6DoF Animation

Dialog
Box

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Static object position
Specifies the altitude, the crossrange position, and the downrange
position of the target.

5-71

6DoF Animation

Enter view
Selects preset MATLAB Graphics parameters CameraTarget
and CameraUpVector for the figure axes. The dialog parameters
Position of camera and View angle are used to customize the
position and field of view for the selected view. Possible views are

• Fixed position

• Cockpit

• Fly alongside

Position of camera [xc yc zc]
Specifies the MATLAB Graphics parameter CameraPosition for
the figure axes. Used in all cases except for the Cockpit view.

View angle
Specifies the MATLAB Graphics parameter CameraViewAngle
for the figure axes in degrees.

Enable animation
When selected, the animation is displayed during the simulation.
If not selected, the animation is not displayed.

Inputs Input Dimension Type Description

First Vector Contains the altitude, the crossrange
position, and the downrange position
of the craft in Earth coordinates.

Second Vector Contains the Euler angles of the
craft.

Examples See the aeroblk_vmm demo for an example of this block.

See Also 3DoF Animation

FlightGear Preconfigured 6DoF Animation

The figure axes properties CameraPosition and CameraViewAngle

5-72

../../techdoc/ref/axes_props.html#CameraPosition
../../techdoc/ref/axes_props.html#CameraViewAngle
../../techdoc/ref/axes_props.html#CameraPosition
../../techdoc/ref/axes_props.html#CameraViewAngle

6DoF (Euler Angles)

Purpose Implement Euler angle representation of six-degrees-of-freedom
equations of motion

Library Equations of Motion/6DoF

Description The 6DoF (Euler Angles) block considers the rotation of a body-fixed
coordinate frame (Xb, Yb, Zb) about a flat Earth reference frame (Xe, Ye,
Ze). The origin of the body-fixed coordinate frame is the center of gravity
of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual
elements of mass. The flat Earth reference frame is considered inertial,
an excellent approximation that allows the forces due to the Earth’s
motion relative to the “fixed stars” to be neglected.

!�

"�

#� !
$ "

%

�

&�	������
���$���

����'�����������	
�������

(

The translational motion of the body-fixed coordinate frame is given
below, where the applied forces [Fx Fy Fz]

T are in the body-fixed frame,
and the mass of the body m is assumed constant.

5-73

6DoF (Euler Angles)

F
F
F

F

m V V

V
u
v
w

p
q
r

b

x

y

z

b b

b

b

b

b

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + ×()

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

� ω

ω, ⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The rotational dynamics of the body-fixed frame are given below, where
the applied moments are [L M N]T, and the inertia tensor I is with
respect to the origin O.

M
L
M
N

I I

I

I I I

I I I

I I

B

xx xy xz

yx yy yz

zx z

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + ×

=

− −

− −

− −

�ω ω ω()

yy zzI

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The relationship between the body-fixed angular velocity vector, [p q r]T,

and the rate of change of the Euler angles, []� � �φ θ ψ T , can be determined
by resolving the Euler rates into the body-fixed coordinate frame.

p
q
r

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

�φ
φ φ
φ φ

0
0

1 0 0
0
0

cos sin
sin cos

⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−0

0

1 0 0
0
0

0
�θ φ φ

φ φ

θ
cos sin
sin cos

cos siin

sin cos

θ

θ θ ψ

φ
θ
ψ

0 1 0
0

0
0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥−

�

�
�

�
J ⎥⎥

⎥

5-74

6DoF (Euler Angles)

Inverting J then gives the required relationship to determine the Euler
rate vector.

�
�

�

φ
θ
ψ

φ θ φ θ
φ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p
q
r

1
0

(sin tan) (cos tan)
cos −−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

sin
sin
cos

cos
cos

φ
φ
θ

φ
θ

0

p
q
r

Dialog
Box

Units
Specifies the input and output units:

5-75

6DoF (Euler Angles)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple
Variable

Mass and inertia vary linearly as a function
of mass rate.

Custom
Variable

Mass and inertia variations are
customizable.

The Fixed selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

Euler
Angles

Use Euler angles within equations of motion.

Quaternion Use quaternions within equations of motion.

The Euler Angles selection conforms to the previously described
equations of motion.

5-76

6DoF (Euler Angles)

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll,
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Initial Mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix I.

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the three applied forces in
body-fixed coordinate frame.

Second Vector Contains the three applied moments
in body-fixed coordinate frame.

Output Dimension Type Description

First Three-element
vector

Contains the velocity in the flat
Earth reference frame.

Second Three-element
vector

Contains the position in the flat
Earth reference frame.

Third Three-element
vector

Contains the Euler rotation angles
[roll, pitch, yaw], in radians.

5-77

6DoF (Euler Angles)

Output Dimension Type Description

Fourth 3-by-3 matrix Contains the coordinate
transformation from flat Earth
axes to body-fixed axes.

Fifth Three-element
vector

Contains the velocity in the
body-fixed frame.

Sixth Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

Seventh Three-element
vector

Contains the angular accelerations
in body-fixed axes, in radians per
second.

Eighth Three-element
vector

Contains the accelerations in
body-fixed axes.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body, and that the mass and inertia are constant.

Examples See the aeroblk_six_dof airframe in the aeroblk_HL20 demo and the
asbhl20 demo for examples of this block.

Reference Mangiacasale, L., Flight Mechanics of a μ-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

See Also 6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

5-78

6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-79

6DoF (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system and the translational
dynamics, see the block description for the 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given
below. The gain K drives the norm of the quaternion state vector to
1.0 should ε become nonzero. You must choose the value of this gain
with care, because a large value improves the decay rate of the error
in the norm, but also slows the simulation because fast dynamics are
introduced. An error in the magnitude in one element of the quaternion
vector is spread equally among all the elements, potentially increasing
the error in the state vector.

�
�
�
�

q
q
q
q

p q r
p r q
q r p
r q p

0

1

2

3

1
2

0
0

0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

− − −
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= − +

q
q
q
q

K

q
q
q
q

q q

0

1

2

3

0

1

2

3

0
2

11

ε

ε (22
2

2
3

2+ +q q)

5-80

6DoF (Quaternion)

Dialog
Box

Units
Specifies the input and output units:

5-81

6DoF (Quaternion)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a function
of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Fixed selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

Euler Angles Use Euler angles within equations of
motion.

Quaternion Use quaternions within equations of
motion.

5-82

6DoF (Quaternion)

The Quaternion selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll,
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Initial Mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal
to 1.0.

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the three applied forces.

Second Vector Contains the three applied moments.

5-83

6DoF (Quaternion)

Output Dimension Type Description

First Three-element
vector

Contains the velocity in the flat
Earth reference frame.

Second Three-element
vector

Contains the position in the flat
Earth reference frame.

Third Three-element
vector

Contains the Euler rotation angles
[roll, pitch, yaw], in radians.

Fourth 3-by-3 matrix Contains the coordinate
transformation from flat Earth
axes to body-fixed axes.

Fifth Three-element
vector

Contains the velocity in the
body-fixed frame.

Sixth Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

Seventh Three-element
vector

Contains the angular accelerations
in body-fixed axes, in radians per
second.

Eight Three-element
vector

Contains the accelerations in
body-fixed axes.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body, and that the mass and inertia are constant.

Reference Mangiacasale, L., Flight Mechanics of a μ-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

See Also 6DoF (Euler Angles)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

5-84

6DoF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-85

6DoF ECEF (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion in Earth-centered Earth-fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The 6DoF ECEF (Quaternion) block considers the rotation of a
Earth-centered Earth-fixed (ECEF) coordinate frame (XECEF, YECEF,
ZECEF) about an Earth-centered inertial (ECI) reference frame (XECI,
YECI, ZECI). The origin of the ECEF coordinate frame is the center of
the Earth, additionally the body of interest is assumed to be rigid,
an assumption that eliminates the need to consider the forces acting
between individual elements of mass. The representation of the rotation
of ECEF frame from ECI frame is simplified to consider only the
constant rotation of the ellipsoid Earth (ωe) including an initial celestial
longitude (LG(0)). This excellent approximation allows the forces due to
the Earth’s complex motion relative to the “fixed stars” to be neglected.

5-86

6DoF ECEF (Quaternion)

The translational motion of the ECEF coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body frame, and the mass
of the body m is assumed constant.

F
F
F

F

m V V DCM V DCM Xb

x

y

z

b b b bf e b bf e e=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × + × + × ×() ((� ω ω ω ω ff))

where the change of position in ECEF �xf is calculated by

�x DCM Vf fb b=

and the velocity of the body with respect to ECEF frame, expressed in

body frame ()Vb , angular rates of the body with respect to ECI frame,

5-87

6DoF ECEF (Quaternion)

expressed in body frame ()ωb . Earth rotation rate ()ω e , and relative
angular rates of the body with respect to north-east-down (NED) frame,

expressed in body frame ()ω rel are defined as

V
u
v
w

p
q
r

b rel e

e

b=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=, , ,ω ω
ω

ω ω
0
0 rrel bf e be ned

ned

E

DCM DCM

l

l

V N

+ +

= −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

+

ω ω

ω
μ

μ

μ

�

�
�

cos

sin

hh
V M h

V N h
N

E

()
− +()
• +()

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥tan μ

The rotational dynamics of the body defined in body-fixed frame are
given below, where the applied moments are [L M N]T, and the inertia
tensor I is with respect to the origin O.

M
L
M
N

I I

I

I I I

I I I

I

b b b b

xx xy xz

yx yy yz

zx

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + ×

=

− −

− −

−

�ω ω ω()

−−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥I Izy zz

The integration of the rate of change of the quaternion vector is given
below.

�
�
�
�

q
q
q
q

b b b

b b

0

1

2

3

1
2

0 1 2 3
1 0 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
= −

() () ()
− () − ()

ω ω ω
ω ω ωbb

b b b

b b b

q
q2

2 3 0 1
3 2 1 0

0

()
− () () − ()
− () − () ()

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ω ω ω
ω ω ω

11

2

3

q
q

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

5-88

6DoF ECEF (Quaternion)

Dialog
Box

5-89

6DoF ECEF (Quaternion)

Units
Specifies the input and output units:

5-90

6DoF ECEF (Quaternion)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate (see Simple Variable
Mass 6DoF ECEF (Quaternion)).

Custom Variable Mass and inertia variations are
customizable (see Simple Variable Mass
6DoF (Quaternion)).

The Fixed selection conforms to the previously described
equations of motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in
the geodetic reference frame.

Initial velocity in body axes
The three-element vector containing the initial velocity of the
body with respect to ECEF frame, expressed in body frame..

5-91

6DoF ECEF (Quaternion)

Initial Euler orientation
The three-element vector containing the initial Euler rotation
angles [roll, pitch, yaw], in radians. Euler rotation angles are
those between the body and north-east-down (NED) coordinate
systems.

Initial body rotation rates
The three-element vector for the initial angular rates of the body
with respect to NED frame, expressed in body frame, in radians
per second.

Initial mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Planet model
Specifies the planet model to use: Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet. This option is only available
when Planet model is set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the
equatorial radius parameter should be the same as the units for
ECEF position. This option is only available when Planet model
is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/s. This
option is only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial
longitude:

5-92

6DoF ECEF (Quaternion)

Internal Use celestial longitude value from mask
dialog.

External Use external input for celestial longitude
value.

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of
the ECI frame.

Inputs and
Outputs

Input Dimension
Type

Description

First Vector Contains the three applied forces in
body-fixed axes.

Second Vector Contains the three applied moments in
body-fixed axes.

Output Dimension
Type

Description

First Vector Contains the velocity of the body with
respect to ECEF frame, expressed in
ECEF frame.

Second Three-element
vector

Contains the position in ECEF reference
frame.

Third Three-element
vector

Contains the position in geodetic latitude,
longitude and altitude, in degrees,
degrees and selected units of length
respectively.

5-93

6DoF ECEF (Quaternion)

Output Dimension
Type

Description

Fourth Three-element
vector

Contains the body rotation angles [roll,
pitch, yaw], in radians. Euler rotation
angles are those between the body
and north-east-down (NED) coordinate
systems.

Fifth 3-by-3 matrix Applies to the coordinate transformation
from ECI axes to body-fixed axes

Sixth 3-by-3 matrix Applies to the coordinate transformation
from NED axes to body-fixed axes.

Seventh 3-by-3 matrix Applies to the coordinate transformation
from ECEF axes to NED axes.

Eighth Three-element
vector

Contains the velocity of the body with
respect to ECEF frame, expressed in the
body frame.

Ninth Three-element
vector

Contains the relative angular rates of
the body with respect to NED frame,
expressed in the body frame, in radians
per second.

Tenth Three-element
vector

Contains the angular rates of the body
with respect to the ECI frame, expressed
in body frame, in radians per second.

Eleventh Three-element
vector

Contains the angular accelerations of the
body with respect to ECI frame, expressed
in the body frame, in radians per second.

Twelfth Three-element
vector

Contains the accelerations in body-fixed
axes.

5-94

6DoF ECEF (Quaternion)

Assumptions
and
Limitations

This implementation assumes that the applied forces are acting at the
center of gravity of the body, and that the mass and inertia are constant.

This implementation generates a geodetic latitude that lies between ±90
degrees, and longitude that lies between ±180 degrees. Additionally,
the MSL altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a
spherical planet can be achieved. The Earth’s precession, nutation,
and polar motion are neglected. The celestial longitude of Greenwich
is Greenwich Mean Sidereal Time (GMST) and provides a rough
approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the
origin is at the center of the planet, the x-axis intersects the Greenwich
meridian and the equator, the z-axis is the mean spin axis of the planet,
positive to the north, and the y-axis completes the right-handed system.

The implementation of the ECI coordinate system assumes that the
origin is at the center of the planet, the x-axis is the continuation of
the line from the center of the Earth through the center of the Sun
toward the vernal equinox, the z-axis points in the direction of the
mean equatorial plane’s north pole, positive to the north, and the y-axis
completes the right-handed system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second
Edition, John Wiley & Sons, New York, 2003.

McFarland, Richard E., A Standard Kinematic Model for Flight
simulation at NASA-Ames, NASA CR-2497.

“Supplement to Department of Defense World Geodetic System 1984
Technical Report: Part I - Methods, Techniques and Data Used in
WGS84 Development,” DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF Wind (Quaternion)

5-95

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-96

6DoF Wind (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion with respect to wind axes

Library Equations of Motion/6DoF

Description The 6DoF Wind (Quaternion) block considers the rotation of a
wind-fixed coordinate frame (Xw, Yw, Zw) about an flat Earth reference
frame (Xe, Ye , Ze). The origin of the wind-fixed coordinate frame is
the center of gravity of the body, and the body is assumed to be rigid,
an assumption that eliminates the need to consider the forces acting
between individual elements of mass. The flat Earth reference frame is
considered inertial, an excellent approximation that allows the forces
due to the Earth’s motion relative to the “fixed stars” to be neglected.

!�

"�

#� !%
"%

#%)�*
&�	������
���$���

����'�����������	
�������

(

+�	�,��-��
������	
�������

The translational motion of the wind-fixed coordinate frame is given
below, where the applied forces [Fx Fy Fz]

T are in the wind-fixed frame,
and the mass of the body m is assumed constant.

5-97

6DoF Wind (Quaternion)

F
F
F

F

m V V

V
V p

q
r

w

x

y

z

w w w

w w

w

w

w

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + ×

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

()

,

� ω

ω0
0

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−
−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=DMC
p

q
r

p
qwb

b

b

b

b

b

b

�

�
�

β α
α

β α
ω

sin

cos
,

rrb

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The rotational dynamics of the body-fixed frame are given below, where
the applied moments are [L M N]T, and the inertia tensor I is with
respect to the origin O. Inertia tensor I is much easier to define in
body-fixed frame.

M
L
M
N

I I

I

I I I

I I I

I

b b b b

xx xy xz

yx yy yz

zx

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × ()

=

− −

− −

−

�ω ω ω

−−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥I Izy zz

The integration of the rate of change of the quaternion vector is given
below.

�
�
�
�

q
q
q
q

p q r
p r q
q r p
r q p

0

1

2

3

1
2

0
0

0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
= −

− −
− −
− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

q
q
q
q

0

1

2

3

5-98

6DoF Wind (Quaternion)

Dialog
Box

Units
Specifies the input and output units:

5-99

6DoF Wind (Quaternion)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Fixed selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

Wind Angles Use wind angles within equations of
motion.

Quaternion Use quaternions within equations of
motion.

5-100

6DoF Wind (Quaternion)

The Quaternion selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial airspeed, angle of attack, and sideslip angle
The three-element vector containing the initial airspeed, initial
angle of attack and initial sideslip angle.

Initial wind orientation
The three-element vector containing the initial wind angles [bank,
flight path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Initial mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the three applied forces in
wind-fixed axes.

Second Vector Contains the three applied moments
in body-fixed axes.

Output Dimension Type Description

First Three-element
vector

Contains the velocity in the flat
Earth reference frame.

Second Three-element
vector

Contains the position in the flat
Earth reference frame.

5-101

6DoF Wind (Quaternion)

Output Dimension Type Description

Third Three-element
vector

Contains the wind rotation angles
[bank, flight path, heading], in
radians.

Fourth 3-by-3 matrix Contains the coordinate
transformation from flat Earth
axes to wind-fixed axes.

Fifth Three-element
vector

Contains the velocity in the
wind-fixed frame.

Sixth Two-element
vector

Contains the angle of attack and
sideslip angle, in radians.

Seventh Two-element
vector

Contains the rate of change of angle
of attack and rate of change of
sideslip angle, in radians per second.

Eight Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

Ninth Three-element
vector

Contains the angular accelerations
in body-fixed axes, in radians per
second.

Tenth Three-element
vector

Contains the accelerations in
body-fixed axes.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body, and that the mass and inertia are constant.

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

5-102

6DoF Wind (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-103

6DoF Wind (Wind Angles)

Purpose Implement wind angle representation of six-degrees-of-freedom
equations of motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the
translational dynamics, see the block description for the 6DoF Wind
(Quaternion) block.

The relationship between the wind angles, []μ γ χ T , can be determined
by resolving the wind rates into the wind-fixed coordinate frame.

p
q
r

w

w

w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢

�μ
μ μ
μ μ

0
0

1 0 0
0
0

cos sin
sin cos⎢⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0

1 0 0
0
0

�γ μ μ
μ μ

γ
cos sin
sin cos

cos 00
0 1 0

0

0
0 1

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡

⎡

⎣

⎢
⎢
⎢

−
sin

sin cos

γ

γ γ χ

μ
γ
χ�

�
�
�

J
⎤⎤

⎦

⎥
⎥
⎥

Inverting J then gives the required relationship to determine the wind
rate vector.

�
�
�

μ
γ
χ

μ γ μ γ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p
q
r

w

w

w

1
0

(sin tan) (cos tan)
coos sin
sin
cos

cos
cos

μ μ
μ
γ

μ
γ

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

p
q
r

w

w

w

The body-fixed angular rates are related to the wind-fixed angular rate
by the following equation.

p
q
r

DMC
p

q
r

w

w

w

wb

b

b

b

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−
−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

�
�

β α
α

β α

sin

cos

5-104

6DoF Wind (Wind Angles)

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular
rates.

�
�
�

μ
γ
χ

μ γ μ γ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p
q
r

w

w

w

1
0

(sin tan) (cos tan)
coos sin
sin
cos

cos
cos

sin
μ μ
μ
γ

μ
γ

β α
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

0

DMC
p

qwb

b

b

�

−−
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�
�

α
β αrb cos

Dialog
Box

5-105

6DoF Wind (Wind Angles)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per second
squared

Feet
per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per second
squared

Knots Feet Slug Slug
foot
squared

Mass type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Fixed selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

5-106

6DoF Wind (Wind Angles)

Wind Angles Use wind angles within equations of
motion.

Quaternion Use quaternions within equations of
motion.

The Wind Angles selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial airspeed, angle of attack, and sideslip angle
The three-element vector containing the initial airspeed, initial
angle of attack and initial sideslip angle.

Initial wind orientation
The three-element vector containing the initial wind angles [bank,
flight path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Initial mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the three applied forces in
wind-fixed axes.

Second Vector Contains the three applied moments
in body-fixed axes.

5-107

6DoF Wind (Wind Angles)

Output Dimension Type Description

First Three-element
vector

Contains the velocity in the flat
Earth reference frame.

Second Three-element
vector

Contains the position in the flat
Earth reference frame.

Third Three-element
vector

Contains the wind rotation angles
[bank, flight path, heading], in
radians.

Fourth 3-by-3 matrix Contains the coordinate
transformation from flat Earth
axes to wind-fixed axes.

Fifth Three-element
vector

Contains the velocity in the
wind-fixed frame.

Sixth Two-element
vector

Contains the angle of attack and
sideslip angle, in radians.

Seventh Two-element
vector

Contains the rate of change of angle
of attack and rate of change of
sideslip angle, in radians per second.

Eighth Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

Ninth Three-element
vector

Contains the angular accelerations
in body-fixed axes, in radians per
second.

Tenth Three-element
vector

Contains the accelerations in
body-fixed axes.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body, and that the mass and inertia are constant.

5-108

6DoF Wind (Wind Angles)

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-109

6th Order Point Mass (Coordinated Flight)

Purpose Calculate sixth-order point mass in coordinated flight

Library Equations of Motion/Point Mass

Description The 6th Order Point Mass (Coordinated Flight) block performs the
calculations for the translational motion of a single point mass or
multiple point masses.

The translational motion of the point mass [XEast XNorth XUp]
T are

functions of airspeed (V), flight path angle (γ), and heading angle (χ),

F mV

F mV

F mV

X V

X V

x

y

z

East

North

=
=

=

=

=

(cos)

cos cos

sin cos

�

�
�

�

��X VUp = sin

where the applied forces [Fx Fy Fh]
T are in a system is defined by x-axis

in the direction of vehicle velocity relative to air, z-axis is upward, and

5-110

6th Order Point Mass (Coordinated Flight)

y-axis completes the right-handed frame, and the mass of the body m is
assumed constant.

Dialog
Box

Units
Specifies the input and output units:

Units Forces Velocity Position

Metric (MKS) Newton Meters per second Meters

English (Velocity
in ft/s)

Pound Feet per second Feet

English (Velocity
in kts)

Pound Knots Feet

5-111

6th Order Point Mass (Coordinated Flight)

Initial flight path angle
The scalar or vector containing initial flight path angle of the
point mass(es).

Initial heading angle
The scalar or vector containing initial heading angle of the point
mass(es).

Initial airspeed
The scalar or vector containing initial airspeed of the point
mass(es).

Initial downrange [East]
The scalar or vector containing initial downrange of the point
mass(es).

Initial crossrange [North]
The scalar or vector containing initial crossrange of the point
mass(es).

Initial altitude [Up]
The scalar or vector containing initial altitude of the point
mass(es).

Initial mass
The scalar or vector containing mass of the point mass(es).

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the force in x-axis in selected units.

Second Contains the force in y-axis in selected units.

Third Contains the force in z-axis in selected units.

5-112

6th Order Point Mass (Coordinated Flight)

Output Dimension
Type

Description

First Contains the flight path angle in radians.

Second Contains the heading angle in radians.

Third Contains the airspeed in selected units.

Fourth Contains the downrange or amount traveled
East in selected units.

Fifth Contains the crossrange or amount traveled
North in selected units.

Sixth Contains the altitude or amount traveled Up
in selected units.

Assumptions
and
Limitations

The block assumes that there is fully coordinated flight, i.e., there is no
side force (wind axes) and sideslip is always zero.

The flat flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth’s motion relative
to the “fixed stars” to be neglected.

See Also 4th Order Point Mass (Longitudinal)

4th Order Point Mass Forces (Longitudinal)

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass Forces (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

5-113

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-114

6th Order Point Mass Forces (Coordinated Flight)

Purpose Calculate forces used by sixth-order point mass in coordinated flight

Library Equations of Motion/Point Mass

Description The 6th Order Point Mass Forces (Coordinated Flight) block calculates
the applied forces for a single point mass or multiple point masses.

The applied forces [Fx Fy Fh]
T are in a system is defined by x-axis in the

direction of vehicle velocity relative to air, z-axis is upwards and y-axis
completes the right-handed frame and are functions of lift (L), drag
(D), thrust (T), weight (W), flight path angle (γ), angle of attack (α),
and bank angle (μ).

F T D W

F L T
F L T W

x

z

= − −
= +
= + −

cos sin

(sin)sin
(sin)cos cos

5-115

6th Order Point Mass Forces (Coordinated Flight)

Dialog
Box

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the lift in units of force.

Second Contains the drag in units of force.

Third Contains the weight in units of force.

Fourth Contains the thrust in units of force.

Fifth Contains the flight path angle in radians.

Sixth Contains the bank angle in radians.

Seventh Contains the angle of attack in radians.

Output Dimension
Type

Description

First Contains the force in x-axis in units of force.

Second Contains the force in y-axis in units of force.

Third Contains the force in z-axis in units of force.

Assumptions
and
Limitations

The block assumes that there is fully coordinated flight, i.e., there is no
side force (wind axes) and sideslip is always zero.

The flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth’s motion relative
to the “fixed stars” to be neglected.

See Also 4th Order Point Mass (Longitudinal)

5-116

6th Order Point Mass Forces (Coordinated Flight)

4th Order Point Mass Forces (Longitudinal)

6th Order Point Mass (Coordinated Flight)

5-117

Acceleration Conversion

Purpose Convert from acceleration units to desired acceleration units

Library Utilities/Unit Conversions

Description The Acceleration Conversion block computes the conversion factor from
specified input acceleration units to specified output acceleration units
and applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output
units selected from the Initial units and Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s2 Meters per second squared

ft/s2 Feet per second squared

km/s2 Kilometers per second squared

in/s2 Inches per second squared

km/h-s Kilometers per hour per second

5-118

Acceleration Conversion

mph-s Miles per hour per second

G's g-units

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the acceleration in initial
acceleration units.

Output Dimension
Type

Description

First Contains the acceleration in final acceleration
units.

See Also Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

5-119

Adjoint of 3x3 Matrix

Purpose Compute adjoint of matrix

Library Utilities/Math Operations

Description The Adjoint of 3x3 Matrix block computes the adjoint matrix for the
input matrix.

The input matrix has the form of

A
A A A
A A A
A A A

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 12 13

21 22 23

31 32 33

The adjoint of the matrix has the form of

adj A
M M M
M M M
M M M

() =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 12 13

21 22 23

31 32 33

where

Mij
i j= − +()1

Dialog
Box

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the acceleration in initial
acceleration units.

5-120

Adjoint of 3x3 Matrix

Output Dimension
Type

Description

First Contains the acceleration in final acceleration
units.

See Also Create 3x3 Matrix

Determinant of 3x3 Matrix

Invert 3x3 Matrix

5-121

Aerodynamic Forces and Moments

Purpose Compute aerodynamic forces and moments using aerodynamic
coefficients, dynamic pressure, center of gravity, center of pressure,
and velocity

Library Aerodynamics

Description The Aerodynamic Forces and Moments block computes the aerodynamic
forces and moments about the center of gravity. By default, the inputs
and outputs are represented in the body axes.

Let α be the angle of attack and β the sideslip. The rotation from body
to stability axes:

Cs b← =
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cos() sin()

sin() cos()

α α

α α

0
0 1 0

0

can be combined with the rotation from stability to wind axes:

Cw s← = −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cos() sin()
sin() cos()

β β
β β

0
0

0 0 1

to yield the net rotation from body to wind axes:

Cw b← = − −
cos()cos() sin() sin()cos()
cos()sin() cos() sin

α β β α β
α β β (()sin()

sin() cos()
α β

α α−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0

Moment coefficients have the same notation in all systems. Force
coefficients are given below. Note there are no specific symbols for
stability-axes force components. However, the stability axes have two
components that are unchanged from the other axes.

5-122

Aerodynamic Forces and Moments

F FA
w

w b

A

A

A

w b A
b

D
C
L

C
X
Y
Z

C≡
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= ⋅

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡ ⋅← ←

Components/Axes x y z

Wind CD CC CL
Stability — CY CL
Body CX CY CZ (–CN)

Given these definitions, to account for the standard definitions of D,
C, Y (where Y = -C), and L, force coefficients in the wind axes are
multiplied by the negative identity diag(-1, -1, -1). Forces coefficients
in the stability axes are multiplied by diag(-1, 1, -1). CN and CX are,
respectively, the normal and axial force coefficients (CN = -CZ).

Dialog
Box

Input Axes
Specifies coordinate system for input coefficients: Body (default),
Stability, or Wind.

5-123

Aerodynamic Forces and Moments

Force Axes
Specifies coordinate system for aerodynamic force: Body (default),
Stability, or Wind.

Moment Axes
Specifies coordinate system for aerodynamic moment: Body
(default), Stability, or Wind.

Reference area
Specifies the reference area for calculating aerodynamic forces
and moments.

Reference span
Specifies the reference span for calculating aerodynamic moments
in x-axes and z-axes.

Reference length
Specifies the reference length for calculating aerodynamic
moment in the y-axes.

Inputs and
Outputs

The first input consists of aerodynamic coefficients (in the chosen input
axes) for forces and moments. These coefficients are ordered into a
vector depending on the choice of axes:

Input
Axes

Input Vector

Body (axial force Cx, side force Cy, normal force Cz, rolling
moment Cl, pitching moment Cm, yawing moment Cn)

Stability (drag force CD(β=0), side force Cy, lift force CL, rolling
moment Cl, pitching moment Cm, yawing moment Cn)

Wind (drag force CD, cross-wind force Cc, lift force CL, rolling
moment Cl, pitching moment Cm, yawing moment Cn)

5-124

Aerodynamic Forces and Moments

Input Dimension
Type

Description

Second Contains the dynamic pressure.

Third Contains the center of gravity.

Fourth Contains the center of pressure. This can also
be taken as any general moment reference
point as long as the rest of the model reflects
the use of the moment reference point.

Fifth
(For
inputs
or
outputs
in
stability
or
wind
axes)

Three-element
vector

Contains the velocity in the body axes.

Output Dimension
Type

Description

First Contains the aerodynamic forces (in the
chosen output axes) at the center of gravity
in x-, y-, and z-axes.

Second Contains the aerodynamic moments (in the
chosen output axes) at the center of gravity
in x-, y-, and z-axes.

Assumptions
and
Limitations

The default state of the block hides the Vb input port and assumes that
the transformation is body-body.

The center of gravity and the center of pressure are assumed to be in
body axes.

5-125

Aerodynamic Forces and Moments

While this block has the ability to output forces and/or moments in
the stability axes, the blocks in the Equations of Motion library are
currently designed to accept forces and moments in either the body or
wind axes only.

Examples See Airframe in the aeroblk_HL20 demo for an example of this block.

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992

See Also Digital DATCOM Forces and Moments

Dynamic Pressure

Estimate Center of Gravity

Moments About CG Due to Forces

5-126

Angle Conversion

Purpose Convert from angle units to desired angle units

Library Utilities/Unit Conversions

Description The Angle Conversion block computes the conversion factor from
specified input angle units to specified output angle units and applies
the conversion factor to the input signal.

The Angle Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg Degrees

rad Radians

rev Revolutions

5-127

Angle Conversion

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the angle in initial angle units.

Output Dimension
Type

Description

First Contains the angle in final angle units.

See Also Acceleration Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

5-128

Angular Acceleration Conversion

Purpose Convert from angular acceleration units to desired angular acceleration
units

Library Utilities/Unit Conversions

Description The Angular Acceleration Conversion block computes the conversion
factor from specified input angular acceleration units to specified
output angular acceleration units and applies the conversion factor
to the input signal.

The Angular Acceleration Conversion block icon displays the input and
output units selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg/s2 Degrees per second squared

rad/s2 Radians per second squared

rpm/s Revolutions per minute per second

5-129

Angular Acceleration Conversion

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the angular acceleration in initial
angular acceleration units.

Output Dimension
Type

Description

First Contains the angular acceleration in final
angular acceleration units.

See Also Acceleration Conversion

Angle Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

5-130

Angular Velocity Conversion

Purpose Convert from angular velocity units to desired angular velocity units

Library Utilities/Unit Conversions

Description The Angular Velocity Conversion block computes the conversion factor
from specified input angular velocity units to specified output angular
velocity units and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and
output units selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg/s Degrees per second

rad/s Radians per second

rpm Revolutions per minute

5-131

Angular Velocity Conversion

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the angular acceleration in initial
angular acceleration units.

Output Dimension
Type

Description

First Contains the angular acceleration in final
angular acceleration units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

5-132

Besselian Epoch to Julian Epoch

Purpose Transform position and velocity components from discontinued
Standard Besselian Epoch (B1950) to Standard Julian Epoch (J2000)

Library Utilities/Axes Transformations

Description The Besselian Epoch to Julian Epoch block transforms two 3-by-1

vectors of Besselian Epoch position ()rB1950 , and Besselian Epoch

velocity ()vB1950 into Julian Epoch position ()rJ2000 , and Julian Epoch

velocity ()vJ2000 . The transformation is calculated using:

r

v
M M
M M

r

v
J

J

rr vr

rv vv

B

B

2000

2000

1950

1950

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

where (, , ,)M M M Mrr vr rv vv are defined as:

Mrr

0 9999256782 0 0111820611 0 0048579477
0 0111820610 0 999

. . .

. .
− −

99374784
0 0048579479 0 9999881997

−
−

0.0000271765
0.0000271474. .

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Mvr =
− −0 00000242395018 0 00000001177656

0 00
. .
.

0.00000002710663
0000002710663 0 00000242397878 0 00000000006587

0 0000000117
. .

.
−

77656 0 00000000006582 0 00000242410173−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥. .

Mrv =
− −

− −
−

0 000551 0 238565 0 435739
0 238514 0 002667 0 008541
0

. . .
. . .
.. . .435623 0 012254 0 002117

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Mvv =
− −

−
0 99994704 0 01118251 0 00485767
0 01118251 0 99995883 0
. . .
. . ..
. . .

00002718
0 00485767 0 00002714 1 00000956−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

5-133

Besselian Epoch to Julian Epoch

Dialog
Box

Inputs and
Outputs

Input Dimension
Type

Description

First 3-by-1 vector Contains the position in Standard Besselian
Epoch (B1950).

Second 3-by-1 vector Contains the velocity in Standard Besselian
Epoch (B1950).

Output Dimension
Type

Description

First 3-by-1 vector Contains the position in Standard Julian
Epoch (J2000).

Second 3-by-1 vector Contains the velocity in Standard Julian
Epoch (J2000).

Reference “Supplement to Department of Defense World Geodetic System 1984
Technical Report: Part I - Methods, Techniques and Data Used in
WGS84 Development,” DMA TR8350.2-A.

See Also Julian Epoch to Besselian Epoch

5-134

Calculate Range

Purpose Calculate range between two crafts given their respective positions

Library GNC/Guidance

Description The Calculate Range block computes the range between two crafts. The
equation used for the range calculation is

Range x x y y z z= − + − + −() () ()1 2
2

1 2
2

1 2
2

Dialog
Box

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the (x, y and z) position of craft 1.

Second Contains the (x, y and z) position of craft 2.

Output Dimension
Type

Description

First Contains the range from craft 2 and craft 1.

Limitation The calculated range is the magnitude of the distance, but not the
direction. Therefore it is always positive or zero.

Craft positions are real values.

5-135

Centrifugal Effect Model

Purpose Implement mathematical representation of centrifugal effect for
planetary gravity

Library Environment/Gravity

Description

The Centrifugal Effect Model block implements the mathematical
representation of centrifugal effect for planetary gravity. The gravity
centrifugal effect is the acceleration portion of centrifugal force
effects due to the rotation of a planet. This block implements this
representation using planetary rotation rates. You use centrifugal force
values in rotating or non-inertial coordinate systems.

Dialog
Box

Planet model
Specify the planetary model. From the list, select Mercury, Venus,
Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, or Custom.
The block uses the rotation of the selected planet to implement
the mathematical representation of the centrifugal effect.

5-136

Centrifugal Effect Model

Selecting Custom enables you to specify your own planetary
model. This option enables the Planetary rotational rate
(rad/sec) and Input planetary rotation rate parameters.

Planetary rotational rate (rad/sec)
Specify the planetary rotational rate in radians per second.

If you want to specify the planetary rotational rate as an input to
the block, see the Input planetary rotation rate parameter.

Selecting the Input planetary rotation rate check box disables
the Planetary rotational rate (rad/sec) parameter.

Input planetary rotation rate
Select this check box to enable a block input. You can then input
a planetary rotation rate as a block input. When you select this
check box, the block mask updates to display an input port for
the rotation rate.

Selecting the Input planetary rotation rate check box disables
the Planetary rotational rate (rad/sec) parameter.

References Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

NIMA TR8350.2: Department of Defense World Geodetic System 1984,
Its Definition and Relationship with Local Geodetic Systems.

5-137

CIRA-86 Atmosphere Model

Purpose Implement mathematical representation of 1986 CIRA atmosphere

Library Environment/Atmosphere

Description The CIRA-86 Atmosphere Model block implements the mathematical
representation of the 1986 Committee on Space Research (COSPAR)
International Reference Atmosphere (CIRA). The block provides values
for absolute temperature, pressure, density, and speed of sound for the
input geopotential altitude.

The CIRA-86 Atmosphere Model block icon displays the input and
output units selected from the Units list.

5-138

CIRA-86 Atmosphere Model

Dialog
Box

Units
Specifies the input and output units:

5-139

CIRA-86 Atmosphere Model

Units Height Temperature
Speed of
Sound

Air
Pressure Air Density

Metric
(MKS)

Meters Kelvin Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per
second

Pound-force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound-force
per square
inch

Slug per
cubic foot

Coordinate type
Specify the representation of the coordinate type. The default is
GPHeight.

• Pressure

Indicates pressure in pascal.

• GPHeight

Indicates geopotential height in meters.

Mean value type
Specify mean value types. The default is Monthly.

• Monthly

Indicates monthly values. If you select Monthly, you must also
set the Month parameter.

• Annual

Indicates annual values. Valid when Coordinate type has a
value of Pressure.

5-140

CIRA-86 Atmosphere Model

Month
Indicates the month in which the mean values are taken. From
the list, select the desired month. This parameter applies only
when Mean value type has a value of Monthly.

Action for out or range input
Specify if out-of-range input invokes a warning, error, or no action.

Inputs and
Outputs

Input Dimension Type Description

First Array Contains the latitude in degrees
(limited to +/-80 degrees).

Second Array Contains an m array of either:

• Geopotential heights in selected
length units (Coordinate type is
GPHeight)

• Pressures in selected pressure
units (Coordinate type is
Pressure)

Output Dimension Type Description

First Array Contains mean temperature in
selected units.

Second Array Contains geopotential heights in
selected units.

Third Array Contains mean zonal windows in
selected units.

Assumptions
and
Limitations

This function uses a corrected version of the CIRA data files provided
by J. Barnett in July 1990 in ASCII format.

This function has the limitations of the CIRA 1986 model. The values
for the CIRA 1986 model are limited to the regions of 80 degrees S

5-141

CIRA-86 Atmosphere Model

to 80 degrees N on the Earth and geopotential heights of 0 to 120
kilometers. In each monthly mean data set, values at 80 degrees S
for 101,300 pascal or 0 meters were omitted because these levels are
within the Antarctic land mass. For zonal mean pressure in constant
altitude coordinates, pressure data is not available below 20 kilometers.
Therefore, this is the bottom level of the CIRA climatology.

Reference Fleming, E. L., Chandra, S., Shoeberl, M. R., Barnett, J. J., Monthly
Mean Global Climatology of Temperature, Wind, Geopotential Height
and Pressure for 0-120 km, NASA TM100697, February 1988

http://modelweb.gsfc.nasa.gov/atmos/cospar1.html

See Also COESA Atmosphere Model

ISA Atmosphere Model

5-142

http://modelweb.gsfc.nasa.gov/atmos/cospar1.html

COESA Atmosphere Model

Purpose Implement 1976 COESA lower atmosphere

Library Environment/Atmosphere

Description The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) United States standard lower atmospheric values
for absolute temperature, pressure, density, and speed of sound for the
input geopotential altitude.

Below 32,000 meters (approximately 104,987 feet), the U.S. Standard
Atmosphere is identical with the Standard Atmosphere of the
International Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output
units selected from the Units list.

Dialog
Box

5-143

COESA Atmosphere Model

Units
Specifies the input and output units:

Units Height Temperature
Speed of
Sound

Air
Pressure Air Density

Metric
(MKS)

Meters Kelvin Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per
second

Pound-force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound-force
per square
inch

Slug per
cubic foot

Specification
Specify the atmosphere model type from one of the following
atmosphere models. The default is 1976 COESA-extended U.S.
Standard Atmosphere.

MIL-HDBK-310

This selection is linked to the Non-Standard Day 310 block. See
the block reference for more information.

MIL-STD-210C

This selection is linked to the Non-Standard Day 210C block.
See the block reference for more information.

Action for out of range input
Specify if out-of-range input invokes a warning, error, or no action.

5-144

COESA Atmosphere Model

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the geopotential height.

Output Dimension
Type

Description

First Contains the temperature.

Second Contains the speed of sound.

Third Contains the air pressure.

Fourth Contains the air density.

Assumptions
and
Limitations

Below the geopotential altitude of 0 m (0 feet) and above the geopotential
altitude of 84,852 m (approximately 278,386 feet), temperature
values are extrapolated linearly and pressure values are extrapolated
logarithmically. Density and speed of sound are calculated using a
perfect gas relationship.

Examples See the aeroblk_calibrated model, the aeroblk_indicated model,
and the airframe in the aeroblk_HL20 demo for examples of this block.

Reference U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also CIRA-86 Atmosphere Model, ISA Atmosphere Model

Non-Standard Day 210C

Non-Standard Day 310

5-145

Create 3x3 Matrix

Purpose Create 3-by-3 matrix from nine input values

Library Utilities/Math Operations

Description The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input
values where each input corresponds to an element of the matrix.

The output matrix has the form of

A
A A A
A A A
A A A

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 12 13

21 22 23

31 32 33

Dialog
Box

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the first row and first column of the
matrix.

Second Contains the first row and second column of
the matrix.

Third Contains the first row and third column of
the matrix.

Fourth Contains the second row and first column of
the matrix.

5-146

Create 3x3 Matrix

Input Dimension
Type

Description

Fifth Contains the second row and second column
of the matrix.

Sixth Contains the second row and third column
of the matrix.

Seventh Contains the third row and first column of
the matrix.

Eight Contains the third row and second column
of the matrix.

Ninth Contains the third row and third column of
the matrix.

Output Dimension
Type

Description

First 3-by-3matrix Contains the matrix.

See Also Adjoint of 3x3 Matrix

Determinant of 3x3 Matrix

Invert 3x3 Matrix

Symmetric Inertia Tensor

5-147

Custom Variable Mass 3DoF (Body Axes)

Purpose Implement three-degrees-of-freedom equations of motion of custom
variable mass with respect to body axes

Library Equations of Motion/3DoF

Description The Custom Variable Mass 3DoF (Body Axes) block considers the
rotation in the vertical plane of a body-fixed coordinate frame about
an Earth-fixed reference frame.

The equations of motion are

�
�

�
�

�
�

�

u
F
m

mU
m

qw g

w
F
m

mw
m

qu g

q
M I q

I

q

x

z

yy

yy

= − − −

= − + +

=
−

=

sin

cos

θ

θ

θ

5-148

Custom Variable Mass 3DoF (Body Axes)

where the applied forces are assumed to act at the center of gravity
of the body.

Dialog
Box

Units
Specifies the input and output units:

5-149

Custom Variable Mass 3DoF (Body Axes)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second squared

Meters
per
second

Meters KilogramKilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per second
squared

Feet
per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Custom Variable selection conforms to the previously
described equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, (θ0).

Initial incidence
A scalar value for the initial angle between the velocity vector
and the body, (α0).

5-150

Custom Variable Mass 3DoF (Body Axes)

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in
the Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal
gravity source is selected. If gravity is to be neglected in the
simulation, this value can be set to 0.

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the force acting along the body
x-axis, (Fx).

Second Contains the force acting along the body
z-axis, (Fz).

Third Contains the applied pitch moment, (M).

Fourth Contains the rate of change of mass, (�m)

Fifth Contains the mass, (m).

Sixth Contains the rate of change of inertia tensor

matrix, ()�Iyy .

Seventh Contains the inertia tensor matrix, (Iyy).

Eighth
(Optional)

Contains the gravity in the selected units.

5-151

Custom Variable Mass 3DoF (Body Axes)

Output Dimension
Type

Description

First Contains the pitch attitude, in radians (θ).

Second Contains the pitch angular rate, in radians
per second (q).

Third Contains the pitch angular acceleration, in

radians per second squared ()�q .

Fourth Two-element
vector

Contains the location of the body, in the
Earth-fixed reference frame, (Xe, Ze).

Fifth Two-element
vector

Contains the velocity of the body resolved into
the body-fixed coordinate frame, (u, w).

Sixth Contains the acceleration of the body resolved
into the body-fixed coordinate frame, (Ax, Az).

See Also 3DoF (Body Axes)

Incidence & Airspeed

Simple Variable Mass 3DoF (Body Axes)

5-152

Custom Variable Mass 3DoF (Wind Axes)

Purpose Implement three-degrees-of-freedom equations of motion of custom
variable mass with respect to wind axes

Library Equations of Motion/3DoF

Description The Custom Variable Mass 3DoF (Wind Axes) block considers the
rotation in the vertical plane of a wind-fixed coordinate frame about
an Earth-fixed reference frame.

The equations of motion are

� �

�

� �
�

V
F

m
mV
m

g

F

mV
q

g
V

q
M I

x

z

y yy

wind

wind

body

= − −

= + +

= =
−

sin

cos

γ

α γ

θ
qq

I

q
yy

� �γ α= −

5-153

Custom Variable Mass 3DoF (Wind Axes)

where the applied forces are assumed to act at the center of gravity
of the body.

Dialog
Box

Units
Specifies the input and output units:

5-154

Custom Variable Mass 3DoF (Wind Axes)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Custom Variable selection conforms to the previously
described equations of motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial pitch attitude of the body, (γ0).

5-155

Custom Variable Mass 3DoF (Wind Axes)

Initial incidence
A scalar value for the initial angle between the velocity vector
and the body, (α0).

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in
the Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal
gravity source is selected. If gravity is to be neglected in the
simulation, this value can be set to 0.

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the force acting along the wind
x-axis, (Fx).

Second Contains the force acting along the wind
z-axis, (Fz).

Third Contains the applied pitch moment in body
axes, (M).

Fourth
Contains the rate of change of mass, ()�m .

Fifth Contains the mass, (m).

5-156

Custom Variable Mass 3DoF (Wind Axes)

Input Dimension
Type

Description

Sixth Contains the rate of change of inertia tensor

matrix, ()�Iyy .

Seventh Contains the inertia tensor matrix, (Iyy).

Eighth
(Optional)

Contains the gravity in the selected units.

Output Dimension
Type

Description

First Contains the flight path angle, in radians (γ).

Second Contains the pitch angular rate, in radians
per second (ω y).

Third Contains the pitch angular acceleration, in
radians per second squared (dωy/dt).

Fourth Two-element
vector

Contains the location of the body, in the
Earth-fixed reference frame, (Xe, Ze).

Fifth Two-element
vector

Contains the velocity of the body resolved into
the wind-fixed coordinate frame, (V, 0).

Sixth Two-element
vector

Contains the acceleration of the body resolved
into the body-fixed coordinate frame, (Ax, Az).

SeventhScalar Contains the angle of attack, (α).

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

4th Order Point Mass (Longitudinal)

5-157

Custom Variable Mass 3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

5-158

Custom Variable Mass 6DoF (Euler Angles)

Purpose Implement Euler angle representation of six-degrees-of-freedom
equations of motion of custom variable mass

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF (Euler Angles) block considers the
rotation of a body-fixed coordinate frame (Xb, Yb, Zb) about a flat Earth
reference frame (Xe, Ye , Ze). The origin of the body-fixed coordinate
frame is the center of gravity of the body, and the body is assumed to
be rigid, an assumption that eliminates the need to consider the forces
acting between individual elements of mass. The flat Earth reference
frame is considered inertial, an excellent approximation that allows
the forces due to the Earth’s motion relative to the “fixed stars” to be
neglected.

!�

"�

#� !
$ "

%

�

&�	������
���$���

����'�����������	
�������

(

The translational motion of the body-fixed coordinate frame is given
below, where the applied forces [Fx Fy Fz]

T are in the body-fixed frame.

5-159

Custom Variable Mass 6DoF (Euler Angles)

F
F
F

F

m V V mV

V
u
v
w

b

x

y

z

b b b

b

b

b

b

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

()

,

� �ω

ω
pp
q
r

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The rotational dynamics of the body-fixed frame are given below, where
the applied moments are [L M N]T, and the inertia tensor I is with
respect to the origin O.

M
L
M
N

I I I

I

I I I

I I I

I

B

xx xy xz

yx yy yz

z

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=

− −

− −

−

� �ω ω ω ω()

xx zy zz

xx xy xz

yx yy yz

zx

I I

I

I I I

I I I

I

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

− −

− −

− −

�

� � �

� � �

� �� �I Izy zz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The relationship between the body-fixed angular velocity vector, [p q r]T,

and the rate of change of the Euler angles, []� � �φ θ ψ T , can be determined
by resolving the Euler rates into the body-fixed coordinate frame.

5-160

Custom Variable Mass 6DoF (Euler Angles)

p
q
r

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

�

0
0

1 0 0
0
0

cos sin
sin cos

⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−0

0

1 0 0
0
0

0
�

cos sin
sin cos

cos siin

sin cos

0 1 0
0

0
0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥−

�

�
�

�
J ⎥⎥

⎥

Inverting J then gives the required relationship to determine the Euler
rate vector.

�
�

�

φ
θ
ψ

φ θ φ θ
φ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p
q
r

1
0

(sin tan) (cos tan)
cos −−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

sin
sin
cos

cos
cos

φ
φ
θ

φ
θ

0

p
q
r

Dialog
Box

5-161

Custom Variable Mass 6DoF (Euler Angles)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Custom Variable selection conforms to the previously
described equations of motion.

Representation
Select the representation to use:

5-162

Custom Variable Mass 6DoF (Euler Angles)

Euler Angles Use Euler angles within equations of
motion.

Quaternion Use quaternions within equations of
motion.

The Euler Angles selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll,
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Inputs and
Outputs

Input Dimension
Type

Description

First Vector Contains the three applied forces.

Second Vector Contains the three applied moments.

Third Scalar Contains the rate of change of mass.

Fourth Scalar Contains the mass.

Fifth 3–by-3
matrix

Contains the rate of change of inertia tensor
matrix.

Sixth 3–by-3
matrix

Contains the inertia tensor matrix.

5-163

Custom Variable Mass 6DoF (Euler Angles)

Output Dimension
Type

Description

First Three-element
vector

Contains the velocity in the flat Earth
reference frame.

Second Three-element
vector

Contains the position in the flat Earth
reference frame.

Third Three-element
vector

Contains the Euler rotation angles [roll,
pitch, yaw], in radians.

Fourth 3–by-3
matrix

Contains the coordinate transformation from
flat Earth axes to body-fixed axes.

Fifth Three-element
vector

Contains the velocity in the body-fixed frame.

Sixth Three-element
vector

Contains the angular rates in body-fixed axes,
in radians per second.

SeventhThree-element
vector

Contains the angular accelerations in
body-fixed axes, in radians per second.

Eight Three-element
vector

Contains the accelerations in body-fixed axes.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body.

Reference Mangiacasale, L., Flight Mechanics of a μ-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

5-164

Custom Variable Mass 6DoF (Euler Angles)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-165

Custom Variable Mass 6DoF (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion of custom variable mass with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system and the translational
dynamics, see the block description for the Custom Variable Mass 6DoF
(Euler Angles) block.

The integration of the rate of change of the quaternion vector is given
below. The gain K drives the norm of the quaternion state vector to
1.0 should ε become nonzero. You must choose the value of this gain
with care, because a large value improves the decay rate of the error
in the norm, but also slows the simulation because fast dynamics are
introduced. An error in the magnitude in one element of the quaternion
vector is spread equally among all the elements, potentially increasing
the error in the state vector.

�
�
�
�

q
q
q
q

p q r
p r q
q r p
r q p

0

1

2

3

1
2

0
0

0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

− − −
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= − +

q
q
q
q

K

q
q
q
q

q q

0

1

2

3

0

1

2

3

0
2

11

ε

ε (22
2

2
3

2+ +q q)

5-166

Custom Variable Mass 6DoF (Quaternion)

Dialog
Box

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per second
squared

Feet
per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per second
squared

Knots Feet Slug Slug
foot
squared

5-167

Custom Variable Mass 6DoF (Quaternion)

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a function
of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Custom Variable selection conforms to the previously
described equations of motion.

Representation
Select the representation to use:

Euler Angles Use Euler angles within equations of
motion.

Quaternion Use quaternions within equations of
motion.

The Quaternion selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll,
pitch, yaw], in radians.

5-168

Custom Variable Mass 6DoF (Quaternion)

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal
to 1.0.

Inputs and
Outputs

Input Dimension
Type

Description

First Vector Contains the three applied forces.

Second Vector Contains the three applied moments.

Third Scalar Contains the rate of change of mass.

Fourth Scalar Contains the mass.

Fifth 3–by-3
matrix

Contains the rate of change of inertia tensor
matrix.

Sixth 3–by-3
matrix

Contains the inertia tensor matrix.

Output Dimension
Type

Description

First Three-element
vector

Contains the velocity in the flat Earth
reference frame.

Second Three-element
vector

Contains the position in the flat Earth
reference frame.

Third Three-element
vector

Contains the Euler rotation angles [roll,
pitch, yaw], in radians.

Fourth 3–by-3
matrix

Contains the coordinate transformation from
flat Earth axes to body-fixed axes.

5-169

Custom Variable Mass 6DoF (Quaternion)

Output Dimension
Type

Description

Fifth Three-element
vector

Contains the velocity in the body-fixed frame.

Sixth Three-element
vector

Contains the angular rates in body-fixed axes,
in radians per second.

SeventhThree-element
vector

Contains the angular accelerations in
body-fixed axes, in radians per second.

Eight Three-element
vector

Contains the accelerations in body-fixed axes.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body.

Reference Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

5-170

Custom Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-171

Custom Variable Mass 6DoF ECEF (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion of custom variable mass in Earth-centered
Earth-fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF ECEF (Quaternion) block considers
the rotation of a Earth-centered Earth-fixed (ECEF) coordinate frame
(XECEF, YECEF, ZECEF) about an Earth-centered inertial (ECI) reference
frame (XECI, YECI, ZECI). The origin of the ECEF coordinate frame is the
center of the Earth, additionally the body of interest is assumed to be
rigid, an assumption that eliminates the need to consider the forces
acting between individual elements of mass. The representation of the
rotation of ECEF frame from ECI frame is simplified to consider only the
constant rotation of the ellipsoid Earth (ωe) including an initial celestial
longitude (LG(0)). This excellent approximation allows the forces due to
the Earth’s complex motion relative to the “fixed stars” to be neglected.

5-172

Custom Variable Mass 6DoF ECEF (Quaternion)

The translational motion of the ECEF coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body frame.

F
F
F

F

m V V DCM V DCM Xb

x

y

z

b b b bf e b bf e e f=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × + ×() + × ×� ω ω ω ω())

()

()

+ + ×()�m V DCM Xb bf e fω

where the change of position in ECEF �xf is calculated by

�x DCM Vf fb b=

5-173

Custom Variable Mass 6DoF ECEF (Quaternion)

and the velocity of the body with respect to ECEF frame, expressed in

body frame ()Vb , angular rates of the body with respect to ECI frame,

expressed in body frame ()ωb . Earth rotation rate ()ω e , and relative
angular rates of the body with respect to north-east-down (NED) frame,

expressed in body frame ()ωrel are defined as

V
u
v
w

p
q
r

b rel e

e

b=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=, , ,ω ω
ω

ω ω
0
0 rrel bf e be ned

ned

E

DCM DCM

l

l

V N

+ +

= −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

+

ω ω

ω
μ

μ

μ

�

�
�

cos

sin

hh
V M h

V N h
N

E

()
− +()
• +()

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥tan μ

The rotational dynamics of the body defined in body-fixed frame are
given below, where the applied moments are [L M N]T, and the inertia
tensor I is with respect to the origin O.

M
L
M
N

I I I

I

I I I

I I I

b b b b b

xx xy xz

yx yy y

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=

− −

− −

� �ω ω ω ω()

zz

zx zy zzI I I− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The rate of change of the inertia tensor is defined by the following
equation.

5-174

Custom Variable Mass 6DoF ECEF (Quaternion)

�

� � �

� � �

� � �
I

I I I

I I I

I I I

xx xy xz

yx yy yz

zx zy zz

=

− −

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The integration of the rate of change of the quaternion vector is given
below.

�
�
�
�

q
q
q
q

b b b

b b

0

1

2

3

1
2

0 1 2 3
1 0 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
= −

() () ()
− () − ()

ω ω ω
ω ω ωbb

b b b

b b b

q
q2

2 3 0 1
3 2 1 0

0

()
− () () − ()
− () − () ()

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ω ω ω
ω ω ω

11

2

3

q
q

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Dialog
Box

5-175

Custom Variable Mass 6DoF ECEF (Quaternion)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

5-176

Custom Variable Mass 6DoF ECEF (Quaternion)

Mass type
Select the type of mass to use:

Fixed Mass is constant throughout
the simulation (see 6DoF ECEF
(Quaternion)).

Simple Variable Mass and inertia vary linearly
as a function of mass rate (see
Simple Variable Mass 6DoF ECEF
(Quaternion)).

Custom Variable Mass and inertia variations are
customizable.

The Simple Variable selection conforms to the previously
described equations of motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in
the geodetic reference frame.

Initial velocity in body-axis
The three-element vector containing the initial velocity of the
body with respect to ECEF frame, expressed in body frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation
angles [roll, pitch, yaw], in radians. Euler rotation angles are
those between the body and north-east-down (NED) coordinate
systems.

Initial body rotation rates
The three-element vector for the initial angular rates of the body
with respect to NED frame, expressed in body frame, in radians
per second.

Planet model
Specifies the planet model to use, Custom or Earth (WGS84).

5-177

Custom Variable Mass 6DoF ECEF (Quaternion)

Flattening
Specifies the flattening of the planet. This option is only available
when Planet model is set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the
equatorial radius parameter should be the same as the units for
ECEF position. This option is only available when Planet model
is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/s. This
option is only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial
longitude:

Internal Use celestial longitude value from
mask dialog.

External Use external input for celestial
longitude value.

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of
the ECI frame.

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the three applied forces in
body-fixed axes.

Second Vector Contains the three applied moments
in body-fixed axes.

Third Scalar Contains the rate of change of mass.

Fourth Scalar Contains the mass.

5-178

Custom Variable Mass 6DoF ECEF (Quaternion)

Input Dimension Type Description

Fifth 3-by-3 matrix Applies to the rate of change of
inertia tensor matrix.

Sixth 3-by-3 matrix Applies to the inertia tensor matrix.

Output Dimension Type Description

First Three-element
vector

Contains the velocity of the body with
respect to ECEF frame, expressed in
ECEF frame.

Second Three-element
vector

Contains the position in the ECEF
reference frame.

Third Three-element
vector

Contains the position in geodetic
latitude, longitude and altitude, in
degrees, degrees and selected units
of length respectively.

Fourth Three-element
vector

Contains the body rotation angles
[roll, pitch, yaw], in radians. Euler
rotation angles are those between the
body and NED coordinate systems.

Fifth 3-by-3 matrix Applies to the coordinate
transformation from ECI axes
to body-fixed axes.

Sixth 3-by-3 matrix Applies to the coordinate
transformation from NED axes
to body-fixed axes.

Seventh 3-by-3 matrix Applies to the coordinate
transformation from ECEF axes to
NED axes.

Eighth Three-element
vector

Contains the velocity of the body with
respect to ECEF frame, expressed in
body frame.

5-179

Custom Variable Mass 6DoF ECEF (Quaternion)

Output Dimension Type Description

Ninth Three-element
vector

Contains the relative angular rates
of the body with respect to NED
frame, expressed in body frame, in
radians per second.

Tenth Three-element
vector

Contains the angular rates of the
body with respect to ECI frame,
expressed in body frame, in radians
per second.

Eleventh Three-element
vector

Contains the angular accelerations of
the body with respect to ECI frame,
expressed in body frame, in radians
per second.

Twelfth Three-element
vector

Contains the accelerations in
body-fixed axes.

Assumptions
and
Limitations

This implementation assumes that the applied forces are acting at the
center of gravity of the body.

This implementation generates a geodetic latitude that lies between ±90
degrees, and longitude that lies between ±180 degrees. Additionally,
the MSL altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a
spherical planet can be achieved. The Earth’s precession, nutation,
and polar motion are neglected. The celestial longitude of Greenwich
is Greenwich Mean Sidereal Time (GMST) and provides a rough
approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the
origin is at the center of the planet, the x-axis intersects the Greenwich
meridian and the equator, the z-axis is the mean spin axis of the planet,
positive to the north, and the y-axis completes the right-handed system.

The implementation of the ECI coordinate system assumes that the
origin is at the center of the planet, the x-axis is the continuation of
the line from the center of the Earth through the center of the Sun

5-180

Custom Variable Mass 6DoF ECEF (Quaternion)

toward the vernal equinox, the z-axis points in the direction of the
mean equatorial plane’s north pole, positive to the north, and the y-axis
completes the right-handed system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second
Edition, John Wiley & Sons, New York, 2003.

McFarland, Richard E., A Standard Kinematic Model for Flight
simulation at NASA-Ames, NASA CR-2497.

“Supplement to Department of Defense World Geodetic System 1984
Technical Report: Part I - Methods, Techniques and Data Used in
WGS84 Development,” DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-181

Custom Variable Mass 6DoF Wind (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion of custom variable mass with respect to wind axes

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF Wind (Quaternion) block considers the
rotation of a wind-fixed coordinate frame (Xw,Yw, Zw) about an flat Earth
reference frame (Xe,Ye, Ze). The origin of the wind-fixed coordinate frame
is the center of gravity of the body, and the body is assumed to be rigid,
an assumption that eliminates the need to consider the forces acting
between individual elements of mass. The flat Earth reference frame is
considered inertial, an excellent approximation that allows the forces
due to the Earth’s motion relative to the “fixed stars” to be neglected.

!�

"�

#� !%
"%

#%)�*
&�	������
���$���

����'�����������	
�������

(

+�	�,��-��
������	
�������

The translational motion of the wind-fixed coordinate frame is given
below, where the applied forces [Fx, Fy, Fz]

T are in the wind-fixed frame.

5-182

Custom Variable Mass 6DoF Wind (Quaternion)

F

F

F

F

m V V mV

V
V p

w

x

y

z

w w w w

w w

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

()

,

� �

0
0

ww

w

w

wb

b

b

b

bq

r

DMC

p

q

r

w
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−
−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

�
�

sin

cos

, ==
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

p

q

r

b

b

b

The rotational dynamics of the body-fixed frame are given below, where
the applied moments are [L M N]T, and the inertia tensor I is with
respect to the origin O. Inertia tensor I is much easier to define in
body-fixed frame.

M
L
M
N

I I I

I

I I I

I I I

b b b b b

xx xy xz

yx yy y

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=

− −

− −

� � ()

zz

zx zy zzI I I− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The integration of the rate of change of the quaternion vector is given
below.

�
�
�
�

q

q

q

q

p q r
p r q
q r p
r q p

0

1

2

3

1
2

0
0

0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −
− −
− −
− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

q

q

q

q

0

1

2

3

5-183

Custom Variable Mass 6DoF Wind (Quaternion)

Dialog
Box

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

5-184

Custom Variable Mass 6DoF Wind (Quaternion)

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Custom Variable selection conforms to the previously
described equations of motion.

Representation
Select the representation to use:

Wind Angles Use wind angles within equations of
motion.

Quaternion Use quaternions within equations of
motion.

The Quaternion selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial
sideslip angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank,
flight path, and heading], in radians.

5-185

Custom Variable Mass 6DoF Wind (Quaternion)

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the three applied forces in
wind-fixed axes.

Second Vector Contains the three applied moments
in body-fixed axes.

Third Scalar Contains the rate of change of mass.

Fourth Scalar Contains the mass.

Fifth 3-by-3 matrix Applies to the rate of change of
inertia tensor matrix in body-fixed
axes.

Sixth 3-by-3 matrix Applies to the inertia tensor matrix
in body-fixed axes.

Output Dimension Type Description

First Three-element
vector

Contains the velocity in the flat
Earth reference frame

Second Three-element
vector

Contains the position in the flat
Earth reference frame.

Third Three-element
vector

Contains the wind rotation angles
[bank, flight path, heading], in
radians.

Fourth 3-by-3 matrix Applies to the coordinate
transformation from flat Earth
axes to wind-fixed axes.

Fifth Three-element
vector

Contains to the velocity in the
wind-fixed frame.

5-186

Custom Variable Mass 6DoF Wind (Quaternion)

Output Dimension Type Description

Sixth Two-element
vector

Contains the angle of attack and
sideslip angle, in radians.

Seventh Two-element
vector

Contains the rate of change of angle
of attack and rate of change of
sideslip angle, in radians per second.

Eighth Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

Ninth Three-element
vector

Contains the angular accelerations
in body-fixed axes, in radians per
second.

Tenth Three-element
vector

Contains the accelerations in
body-fixed axes.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

5-187

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-188

Custom Variable Mass 6DoF Wind (Wind Angles)

Purpose Implement wind angle representation of six-degrees-of-freedom
equations of motion of custom variable mass

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the
translational dynamics, see the block description for the Custom
Variable Mass 6DoF Wind (Quaternion) block.

The relationship between the wind angles, [μγχ]T, can be determined by
resolving the wind rates into the wind-fixed coordinate frame.

p

q

r

w

w

w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢

�

0
0

1 0 0
0
0

cos sin
sin cos⎢⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0

1 0 0
0
0

�

cos sin

sin cos

cos 00
0 1 0

0

0
0 1

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡

⎡

⎣

⎢
⎢
⎢

−
sin

sin cos

�

�
�
�

J
⎤⎤

⎦

⎥
⎥
⎥

Inverting J then gives the required relationship to determine the wind
rate vector.

�
�
�

 ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p

q

r

w

w

w

1
0

(sin tan) (cos tan)
coos sin
sin
cos

cos
cos

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

p

q

r

w

w

w

The body-fixed angular rates are related to the wind-fixed angular rate
by the following equation.

p

q

r

DMC

p

q

r

w

w

w

wb

b

b

b

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−
−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

�
�

sin

cos

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular
rates.

5-189

Custom Variable Mass 6DoF Wind (Wind Angles)

�
�
�

 ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p

q

r

w

w

w

1
0

(sin tan) (cos tan)
coos sin
sin
cos

cos
cos

sin

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

0

DMC

p

qwb

b

b

�

−−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�
�

 rb cos

Dialog
Box

Units
Specifies the input and output units:

5-190

Custom Variable Mass 6DoF Wind (Wind Angles)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the
simulation.

Simple Variable Mass and inertia vary linearly as a
function of mass rate.

Custom Variable Mass and inertia variations are
customizable.

The Custom Variable selection conforms to the previously
described equations of motion.

Representation
Select the representation to use:

Wind Angles Use wind angles within equations of
motion.

Quaternion Use quaternions within equations of
motion.

5-191

Custom Variable Mass 6DoF Wind (Wind Angles)

The Wind Angles selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial
sideslip angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank,
flight path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the three applied forces in
wind-fixed axes.

Second Vector Contains the three applied moments
in body-fixed axes.

Third Scalar Contains the rate of change of mass.

Fourth Scalar Contains the mass.

Fifth 3-by-3 matrix Applies to the rate of change of
inertia tensor matrix in body-fixed
axes.

Sixth 3-by-3 matrix Applies to the inertia tensor matrix
in body-fixed axes.

5-192

Custom Variable Mass 6DoF Wind (Wind Angles)

Output Dimension Type Description

First Three-element
vector

Contains the velocity in the flat
Earth reference frame.

Second Three-element
vector

Contains the position in the flat
Earth reference frame.

Third Three-element
vector

Contains the wind rotation angles
[bank, flight path, heading], in
radians.

Fourth 3-by-3 matrix Applies to the coordinate
transformation from flat Earth
axes to wind-fixed axes.

Fifth Three-element
vector

Contains the velocity in the
wind-fixed frame.

Sixth Two-element
vector

Contains the angle of attack and
sideslip angle, in radians.

Seventh Two-element
vector

Contains the rate of change of angle
of attack and rate of change of
sideslip angle, in radians per second.

Eighth Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

Ninth Three-element
vector

Contains the angular accelerations
in body-fixed axes, in radians per
second.

Tenth Three-element
vector

Contains the accelerations in
body-fixed axes.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body.

5-193

Custom Variable Mass 6DoF Wind (Wind Angles)

References Mangiacasale, L., Flight Mechanics of a μ-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-194

Density Conversion

Purpose Convert from density units to desired density units

Library Utilities/Unit Conversions

Description The Density Conversion block computes the conversion factor from
specified input density units to specified output density units and
applies the conversion factor to the input signal.

The Density Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbm/ft3 Pound mass per cubic foot

kg/m3 Kilograms per cubic meter

slug/ft3 Slugs per cubic foot

lbm/in3 Pound mass per cubic inch

5-195

Density Conversion

Inputs and
Outputs

Input Dimension Type Description

First Contains the density, in initial
density units.

Output Dimension Type Description

First Contains the density, in final density
units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

5-196

Determinant of 3x3 Matrix

Purpose Compute determinant of matrix

Library Utilities/Math Operations

Description The Determinant of 3x3 Matrix block computes the determinant for
the input matrix.

The input matrix has the form of

A
A A A
A A A
A A A

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 12 13

21 22 23

31 32 33

The determinant of the matrix has the form of

det A A A A A A A A A A A A A A A() () () (= − − − + −11 22 33 23 32 12 21 33 23 31 13 21 32 222 31A)

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 3-by-3 matrix

Output Dimension Type Description

First Contains the determinant of input
matrix.

See Also Adjoint of 3x3 Matrix

Create 3x3 Matrix

5-197

Determinant of 3x3 Matrix

Invert 3x3 Matrix

5-198

Digital DATCOM Forces and Moments

Purpose Compute aerodynamic forces and moments using Digital DATCOM
static and dynamic stability derivatives

Library Aerodynamics

Description The Digital DATCOM Forces and Moments block computes the
aerodynamic forces and moments about the center of gravity using
aerodynamic coefficients from Digital DATCOM.

Algorithms for calculating forces and moments build up the overall
aerodynamic forces and moments (F and M) from data contained in the
Digital DATCOM structure parameter:

F = Fstatic + Fdyn

M = Mstatic + Mdyn

Fstatic and Mstatic are the static contribution, and Fdyn and Mdyn the
dynamic contribution, to the aerodynamic coefficients. If the dynamic
characteristics are not contained in the Digital DATCOM structure
parameter, their contribution is set to zero.

Static Stability Characteristics

Static stability characteristics include the following.

Coefficient Meaning

CD Matrix of drag coefficients. These coefficients are
defined positive for an aft-acting load.

CL Matrix of lift coefficients. These coefficients are defined
positive for an up-acting load.

Cm Matrix of pitching-moment coefficients. These
coefficients are defined positive for a nose-up rotation.

CYβ Matrix of derivatives of side-force coefficients with
respect to sideslip angle

5-199

Digital DATCOM Forces and Moments

Coefficient Meaning

Cnβ Matrix of derivatives of yawing-moment coefficients
with respect to sideslip angle

Clβ Matrix of derivatives of rolling-moment coefficients
with respect to sideslip angle

These are the static contributions to the aerodynamic coefficients in
stability axes.

CD static = CD

Cy static = CYββ

CL static = CL

Cl static = Clββ

Cm static = CM

Cn static = Cnββ

Dynamic Stability Characteristics

Dynamic stability characteristics include the following.

Coefficient Meaning

Clq Matrix of rolling-moment derivatives due to pitch rate

Cmq Matrix of pitching-moment derivatives due to pitch
rate

CLdα/dt Matrix of lift force derivatives due to rate of angle of
attack

Cmdα/dt Matrix of pitching-moment derivatives due to rate of
angle of attack

Clp Matrix of rolling-moment derivatives due to roll rate

5-200

Digital DATCOM Forces and Moments

Coefficient Meaning

CYp Matrix of lateral force derivatives due to roll rate

Cnp Matrix of yawing-moment derivatives due to roll rate

Cnr Matrix of yawing-moment derivatives due to yaw rate

Clr Matrix of rolling-moment derivatives due to yaw rate

These are the dynamic contributions to the aerodynamic coefficients
in stability axes.

C

C C p b V

C C a c V

C
a

D dyn

y dyn yp ref

L dyn L bar

l dyn

=

=

=

=

0

2

2

(/)

(/)

(
� �

CC p C q C r b V

C C q C a c V

C
a

lp lq lr ref

m dyn mq m bar

n d

+ +

= +

)(/)

()(/)

2

2� �

yyn np nr ref= +()(/)C p C r b V2

5-201

Digital DATCOM Forces and Moments

Dialog
Box

Units
Specifies the input and output units:

Units Force Moment Length Velocity Pressure

Metric (MKS) Newton Newton-
meter

Meters Meters per
second

Pascal

English
(Velocity in
ft/s)

Pound Foot-pound Feet Feet per second Pound per
square inch

English
(Velocity in
kts)

Pound Foot-pound Feet Knots Pound per
square inch

Digital DATCOM structure
Specifies the MATLAB structure containing the digital DATCOM
data. This structure is generated by the Aerospace Toolbox
function datcomimport.

5-202

Digital DATCOM Forces and Moments

Force axes
Specifies coordinate system for aerodynamic force: Body or Wind.

Interpolation method
None (flat) or Linear

Extrapolation method
None (clip) or Linear

Process out of range input
Specifies how to handle out-of-range input: Linear
Extrapolation or Clip to Range.

Action for out of range input
Specifies if out-of-range input invokes a warning, an error, or
no action.

Inputs and
Outputs

Input Dimension Type Description

First 3-by-3 matrix Contains the angle of attack.

Second Contains the sideslip angle, in
radians.

Third Contains the Mach number.

Fourth Contains the altitude, in selected
length units.

Fifth Contains the dynamic pressure, in
selected pressure units.

Sixth Contains the velocity, selected
velocity units and selected force axes.

Seventh
(Optional)

Contains the angle of attack rate, in
radians per second.

Eight
(Optional)

Contains the body angular rates, in
radians per second.

5-203

Digital DATCOM Forces and Moments

Input Dimension Type Description

Ninth
(Optional)

Contains the ground height, in select
units of length

Tenth
(Optional)

Contains the control surface
deflections, radians.

Output Dimension Type Description

First Contains the aerodynamic forces
at the center of gravity in selected
coordinate system: Body (Fx, Fy, and
Fz), or Wind (FD, Fy, and FL).

Second Contains the aerodynamic moments
at the center of gravity in body
coordinates (Mx, My, and Mz).

Assumptions
and
Limitations

The operational limitations of Digital DATCOM apply to the data
contained in the Digital DATCOM structure parameter. For more
information on Digital DATCOM limitations, see Section 2.4.5 of
reference [1].

The Digital DATCOM structure parameters alpha, mach, alt,
grndht, and delta must be strictly monotonically increasing to be used
with the Digital DATCOM Forces and Moments block.

The Digital DATCOM structure coefficients must correspond to the
dimensions of the breakpoints (alpha, mach, alt, grndht, and delta) to
be used with the Digital DATCOM Forces and Moments block.

References [1] The USAF Stability and Control Digital Datcom,
AFFDL-TR-79-3032, 1979.

[2] Etkin, B., and L. D. Reid, Dynamics of Flight Stability and Control,
John Wiley & Sons, New York, 1996.

5-204

Digital DATCOM Forces and Moments

[3] Roskam, J., “Airplane Design Part VI: Preliminary Calculation of
Aerodynamic, Thrust and Power Characteristics,” Roskam Aviation and
Engineering Corporation, Ottawa, Kansas, 1987.

[4] Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation,
John Wiley & Sons, New York, 1992.

See Also Aerodynamic Forces and Moments

5-205

Direction Cosine Matrix Body to Wind

Purpose Convert angle of attack and sideslip angle to direction cosine matrix

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix Body to Wind block converts angle of
attack and sideslip angle into a 3-by-3 direction cosine matrix (DCM).
The DCM matrix performs the coordinate transformation of a vector in
body axes (ox0, oy0, oz0) into a vector in wind axes (ox2, oy2, oz2). The
order of the axis rotations required to bring this about is:

1 A rotation about oy0 through the angle of attack (α) to axes (ox1, oy1,
oz1)

2 A rotation about oz1 through the sideslip angle (β) to axes (ox2, oy2,
oz2)

ox
oy
oz

DCM
ox
oy
oz

ox
oy
oz

wb

2

2

2

0

0

0

2

2

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
= −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ −

cos sin
sin cos

cos sin

sin c

β β
β β

α α

α

0
0

0 0 1

0
0 1 0

0 oos α

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ox
oy
oz

0

0

0

Combining the two axis transformation matrices defines the following
DCM.

DCMwb = − −
−

cos cos sin sin cos
cos sin cos sin sin

sin cos

α β β α β
α β β α β

α α0

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

5-206

Direction Cosine Matrix Body to Wind

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 2-by-1 vector Contains the angle of attack and
sideslip angle, in radians.

Output Dimension Type Description

First 3-by-3 direction
cosine matrix

Transforms body-fixed vectors to
wind-fixed vectors.

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also Direction Cosine Matrix Body to Wind to Alpha and Beta

Direction Cosine Matrix to Rotation Angles

Direction Cosine Matrix to Wind Angles

Rotation Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

5-207

Direction Cosine Matrix Body to Wind to Alpha and Beta

Purpose Convert direction cosine matrix to angle of attack and sideslip angle

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix Body to Wind to Alpha and Beta block
converts a 3-by-3 direction cosine matrix (DCM) into angle of attack and
sideslip angle. The DCM matrix performs the coordinate transformation
of a vector in body axes (ox0, oy0, oz0) into a vector in wind axes (ox2, oy2,
oz2). The order of the axis rotations required to bring this about is:

1 A rotation about oy0 through the angle of attack (α) to axes (ox1, oy1,
oz1)

2 A rotation about oz1 through the sideslip angle (β) to axes (ox2, oy2,
oz2)

ox
oy
oz

DCM
ox
oy
oz

ox
oy
oz

wb

2

2

2

0

0

0

2

2

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
= −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ −

cos sin
sin cos

cos sin

sin c

β β
β β

α α

α

0
0

0 0 1

0
0 1 0

0 oosα

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ox
oy
oz

0

0

0

Combining the two axis transformation matrices defines the following
DCM.

DCMwb = − −
−

cos cos sin sin cos
cos sin cos sin sin

sin cos

α β β α β
α β β α β

α α0

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

To determine angles from the DCM, the following equations are used:

5-208

Direction Cosine Matrix Body to Wind to Alpha and
Beta

α

β

= −

=

asin

asin

((,))

((,))

DCM

DCM

3 1

1 2

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 3-by-3 direction
cosine matrix

Transforms body-fixed vectors to
wind-fixed vectors.

Output Dimension Type Description

First 2-by-1 vector Contains angle of attack and sideslip
angle, in radians.

Assumptions
and
Limitations

This implementation generates angles that lie between ±90 degrees.

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix to Rotation Angles

Direction Cosine Matrix to Wind Angles

5-209

Direction Cosine Matrix Body to Wind to Alpha and Beta

Rotation Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

5-210

Direction Cosine Matrix ECEF to NED

Purpose Convert geodetic latitude and longitude to direction cosine matrix

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix ECEF to NED block converts geodetic
latitude and longitude into a 3-by-3 direction cosine matrix (DCM).
The DCM matrix performs the coordinate transformation of a vector in
Earth-centered Earth-fixed (ECEF) axes (ox0, oy0, oz0) into a vector
in north-east-down (NED) axes (ox2, oy2, oz2). The order of the axis
rotations required to bring this about is:

1 A rotation about oz0 through the longitude (ι) to axes (ox1, oy1, oz1)

2 A rotation about oy1 through the geodetic latitude (μ) to axes (ox2,
oy2, oz2)

ox
oy
oz

DCM
ox
oy
oz

ox
oy
oz

ef

2

2

2

0

0

0

2

2

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
=

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
sin cos

cos sin

cos sin
sin cos

μ μ

μ μ

ι ι
ι

0
0 1 0

0

0
ιι 0

0 0 1

0

0

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ox
oy
oz

Combining the two axis transformation matrices defines the following
DCM.

DCMef =
− −

−
− − −

sin cos sin sin cos
sin cos

cos cos cos sin s

μ ι μ ι μ
ι ι

μ ι μ ι
0
iin μ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

5-211

Direction Cosine Matrix ECEF to NED

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 2-by-1 vector Contains the geodetic latitude and
longitude, in degrees.

Output Dimension Type Description

First 3-by-3 direction
cosine matrix

Transforms ECEF vectors to NED
vectors.

Assumptions The implementation of the ECEF coordinate system assumes that the
origin is at the center of the planet, the x-axis intersects the Greenwich
meridian and the equator, the z-axis is the mean spin axis of the planet,
positive to the north, and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics,
AIAA Education Series, Reston, Virginia, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,”
ANSI/AIAA R-004-1992.

See Also Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Direction Cosine Matrix to Rotation Angles

5-212

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix to Wind Angles

ECEF Position to LLA

Rotation Angles to Direction Cosine Matrix

LLA to ECEF Position

Wind Angles to Direction Cosine Matrix

5-213

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

Purpose Convert direction cosine matrix to geodetic latitude and longitude

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix ECEF to NED to Latitude and Longitude
block converts a 3-by-3 direction cosine matrix (DCM) into geodetic
latitude and longitude. The DCM matrix performs the coordinate
transformation of a vector in Earth-centered Earth-fixed (ECEF) axes
(ox0, oy0, oz0) into a vector in north-east-down (NED) axes (ox2, oy2, oz2).
The order of the axis rotations required to bring this about is:

1 A rotation about oz0 through the longitude (ι) to axes (ox1, oy1, oz1)

2 A rotation about oy1 through the geodetic latitude (μ) to axes (ox2,
oy2, oz2)

ox
oy
oz

DCM
ox
oy
oz

ox
oy
oz

ef

2

2

2

0

0

0

2

2

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
=

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
sin cos

cos sin

cos sin
sin cos

μ μ

μ μ

ι ι
ι

0
0 1 0

0

0
ιι 0

0 0 1

0

0

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ox
oy
oz

Combining the two axis transformation matrices defines the following
DCM.

DCMef =
− −

−
− − −

sin cos sin sin cos
sin cos

cos cos cos sin s

μ ι μ ι μ
ι ι

μ ι μ ι
0
iin μ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

To determine geodetic latitude and longitude from the DCM, the
following equations are used:

5-214

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

μ

ι

= −()

= −⎛
⎝
⎜

⎞
⎠
⎟

asin

atan

DCM

DCM
DCM

(,)

(,)
(,)

3 3

2 1
2 2

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 3-by-3 direction
cosine matrix

Transforms ECEF vectors to NED
vectors.

Output Dimension Type Description

First 2-by-1 vector Contains the geodetic latitude and
longitude, in degrees.

Assumptions
and
Limitations

This implementation generates a geodetic latitude that lies between ±90
degrees, and longitude that lies between ±180 degrees.

The implementation of the ECEF coordinate system assumes that the
origin is at the center of the planet, the x-axis intersects the Greenwich
meridian and the equator, the z-axis is the mean spin axis of the planet,
positive to the north, and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

5-215

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics,
AIAA Education Series, Reston, Virginia, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,”
ANSI/AIAA R-004-1992.

See Also Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix to Rotation Angles

Direction Cosine Matrix to Wind Angles

ECEF Position to LLA

Rotation Angles to Direction Cosine Matrix

LLA to ECEF Position

Wind Angles to Direction Cosine Matrix

5-216

Direction Cosine Matrix to Quaternions

Purpose Convert direction cosine matrix to quaternion vector

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Quaternions block transforms a 3-by-3
direction cosine matrix (DCM) into a four-element unit quaternion
vector (q0, q1, q2, q3). The DCM performs the coordinate transformation
of a vector in inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the
following:

DCM

q q q q q q q q q q q q

q q q q=

+ − − + −

−

() () ()

() (
0
2

1
2

2
2

3
2

1 2 0 3 1 3 0 2

1 2 0 3

2 2

2 qq q q q q q q q

q q q q q q q q q

0
2

1
2

2
2

3
2

2 3 0 1

1 3 0 2 2 3 0 1 0
2

2

2 2

− + − +

+ − −

) ()

() () (qq q q1
2

2
2

3
2− +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥)

Using this representation of the DCM, there are a number of
calculations to arrive at the correct quaternion. The first of these is to
calculate the trace of the DCM to determine which algorithms are used.
If the trace is greater that zero, the quaternion can be automatically
calculated. When the trace is less than or equal to zero, the major
diagonal element of the DCM with the greatest value must be identified
to determine the final algorithm used to calculate the quaternion. Once
the major diagonal element is identified, the quaternion is calculated.
For a detailed view of these algorithms, look under the mask of this
block.

Dialog
Box

5-217

Direction Cosine Matrix to Quaternions

Inputs and
Outputs

Input Dimension Type Description

First 3-by-3 direction
cosine matrix

Output Dimension Type Description

First 4-by-1 quaternion
vector

See Also Direction Cosine Matrix to Rotation Angles

Rotation Angles to Direction Cosine Matrix

Rotation Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Rotation Angles

5-218

Direction Cosine Matrix to Rotation Angles

Purpose Convert direction cosine matrix to rotation angles

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Rotation Angles block converts a 3-by-3
direction cosine matrix (DCM) into three rotation angles R1, R2, and
R3, respectively the first, second, and third rotation angles. The DCM
matrix performs the coordinate transformation of a vector in inertial
axes into a vector in body axes. The block Rotation Order parameter
specifies the order of the block output rotations. For example, if
Rotation Order has a value of ZYX, the block outputs are in the
rotation order z-y-x (psi theta phi).

5-219

Direction Cosine Matrix to Rotation Angles

Dialog
Box

Rotation Order
Specifies the output rotation order for three rotation angles. From
the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX,
XZY, or XZX. The default is ZYX.

5-220

Direction Cosine Matrix to Rotation Angles

Limitation
The 'Default' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX',
'XYZ', and 'XZY' implementations generate an R2 angle that
lies between ±90 degrees, and R1 and R3 angles that lie between
±180 degrees.

The 'Default' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY',
'XYX', and 'XZX' implementations generate an R2 angle that
lies between 0 and 180 degrees, and R1 and R3 angles that lie
between ±180 degrees.

The 'ZeroR3' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX',
'XYZ', and 'XZY' implementations generate an R2 angle that lies
between ±90 degrees, and R1 and R3 angles that lie between ±180
degrees. However, when R2 is ±90 degrees, R3 is set to 0 degrees.

The 'ZeroR3' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY',
'XYX', and 'XZX' implementations generate an R2 angle that
lies between 0 and 180 degrees, and R1 and R3 angles that lie
between ±180 degrees. However, when R2 is 0 or ±180 degrees, R3
is set to 0 degrees.

Inputs and
Outputs

Input Dimension Type Description

First 3-by-3 matrix Contains the direction cosine matrix.

Output Dimension Type Description

First 3-by-1 vector Contains the rotation angles, in
radians.

See Also Direction Cosine Matrix to Quaternions

Quaternions to Direction Cosine Matrix

Rotation Angles to Direction Cosine Matrix

5-221

Direction Cosine Matrix to Wind Angles

Purpose Convert direction cosine matrix to wind angles

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Wind Angles block converts a 3-by-3
direction cosine matrix (DCM) into three wind rotation angles. The
DCM matrix performs the coordinate transformation of a vector in earth
axes (ox0, oy0, oz0) into a vector in wind axes (ox3, oy3, oz3). The order of
the axis rotations required to bring this about is:

1 A rotation about oz0 through the heading angle (χ) to axes (ox1, oy1,
oz1)

2 A rotation about oy1 through the flight path angle (γ) to axes (ox2,
oy2, oz2)

3 A rotation about ox2 through the bank angle (μ) to axes (ox3, oy3, oz3)

ox
oy
oz

DCM
ox
oy
oz

ox
oy
oz

we

3

3

3

0

0

0

3

3

3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
=

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1 0 0
0
0

0
0 1 0

0
cos sin
sin cos

cos sin

sin c
μ μ
μ μ

γ γ

γ oos

cos sin
sin cos

γ

χ χ
χ χ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
0
0

0 0 1

0

0

0

ox
oy
oz

⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

Combining the three axis transformation matrices defines the following
DCM.

DCMwe =
−

−
cos cos cos sin sin

(sin sin cos cos sin) (sin sin
γ χ γ χ γ

μ γ χ μ χ μ γγ χ μ χ μ γ
μ γ χ μ χ μ γ

sin cos cos) sin cos
(cos sin cos sin sin) (cos sin si

+
+ nn sin cos) cos cosχ μ χ μ γ−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

To determine wind angles from the DCM, the following equations are
used:

5-222

Direction Cosine Matrix to Wind Angles

μ

γ

χ

= ⎛
⎝
⎜

⎞
⎠
⎟

= −()

=

atan

asin

atan

DCM
DCM

DCM

DCM

(,)
(,)

(,)

(,

2 3
3 3

1 3

1 2))
(,)DCM 1 1

⎛
⎝
⎜

⎞
⎠
⎟

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 3-by-3 direction
cosine matrix

Transforms earth vectors to wind
vectors.

Output Dimension Type Description

First 3-by-1 vector Contains the wind angles, in radians.

Assumptions
and
Limitations

This implementation generates a flight path angle that lies between ±90
degrees, and bank and heading angles that lie between ±180 degrees.

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix Body to Wind to Alpha and Beta

5-223

Direction Cosine Matrix to Wind Angles

Direction Cosine Matrix to Rotation Angles

Rotation Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

5-224

Discrete Wind Gust Model

Purpose Generate discrete wind gust

Library Environment/Wind

Description

The Discrete Wind Gust Model block implements a wind gust of the
standard “1-cosine” shape. This block implements the mathematical
representation in the Military Specification MIL-F-8785C [1]. The gust
is applied to each axis individually, or to all three axes at once. You
specify the gust amplitude (the increase in wind speed generated by the
gust), the gust length (length, in meters, over which the gust builds
up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in
units of feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of
zero. The parameters that govern the gust shape are indicated on the
diagram.

5-225

Discrete Wind Gust Model

The discrete gust can be used singly or in multiples to assess airplane
response to large wind disturbances.

The mathematical representation of the discrete gust is

V

x

V x
d

x d

V x d

wind
m

m
m

m m

=

<

−
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≤ ≤

>

⎧

⎨
⎪
⎪

⎩
⎪
⎪

0 0

2
1 0cos

where Vm is the gust amplitude, dm is the gust length, x is the distance
traveled, and Vwind is the resultant wind velocity in the body axis frame.

5-226

Discrete Wind Gust Model

Dialog
Box

Units
Define the units of wind gust.

Units Wind Altitude

Metric (MKS) Meters/second Meters

English (Velocity in
ft/s)

Feet/second Feet

English (Velocity in
kts)

Knots Feet

Gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

5-227

Discrete Wind Gust Model

Gust start time (sec)
The model time, in seconds, at which the gust begins.

Gust length [dx dy dz] (m or f)
The length, in meters or feet (depending on the choice of units),
over which the gust builds up in each axis. These values must
be positive.

Gust amplitude [ug vg wg] (m/s, f/s, or knots)
The magnitude of the increase in wind speed caused by the gust
in each axis. These values may be positive or negative.

Inputs and
Outputs

Input Dimension Type Description

First Contains the airspeed in units
selected.

Output Dimension Type Description

First Contains the wind speed in units
selected.

Examples See Airframe in the aeroblk_HL20 demo for an example of this block.

Reference U.S. Military Specification MIL-F-8785C, 5 November 1980.

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Von Karman Wind Turbulence Model (Continuous)

Wind Shear Model

5-228

Dryden Wind Turbulence Model (Continuous)

Purpose Generate continuous wind turbulence with Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters.
This block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process
defined by velocity spectra. For an aircraft flying at a speed V through
a frozen turbulence field with a spatial frequency of Ω radians per
meter, the circular frequency ω is calculated by multiplying V by Ω . The
following table displays the component spectra functions:

MIL-F-8785C MIL-HDBK-1797

Longitudinal

Φu ω() 2 1

1

2

2
σ
π ω

u u

uV

L
V L

⋅
+ ()

2 1

1

2

2
σ
π ω

u u

uV

L
V L

⋅
+ ()

Φ p g
ω()

σ
π

ω
π

w

w

w

VL

L
b

b
V

2

1
3

2

0 8
4

1
4

⋅

⎛
⎝
⎜

⎞
⎠
⎟

+ ⎛
⎝⎜

⎞
⎠⎟

.
σ

π

ω
π

w

w

w

VL

L
b

b
V

2

1
3

22

0 8
2

4

1
4

⋅

⎛
⎝
⎜

⎞
⎠
⎟

+ ⎛
⎝⎜

⎞
⎠⎟

.

Lateral

5-229

Dryden Wind Turbulence Model (Continuous)

MIL-F-8785C MIL-HDBK-1797

Φv ω()
σ
π

ω

ω

v v
v

v

L
V

L
V

L
V

2

2

2 2

1 3

1

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
1 12

1 4

2

2

2 2
σ
π

ω

ω

v v
v

v

L
V

L
V

L
V

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Φr ω()
∓

ω

ω
π

ωV

b
V

v

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()

2

2
1

3
Φ

∓
ω

ω
π

ωV

b
V

v

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()

2

2
1

3
Φ

Vertical

Φw ω()
σ
π

ω

ω

w w
w

w

L
V

L
V

L
V

2

2

2 2

1 3

1

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
1 12

1 4

2

2

2 2
σ
π

ω

ω

w w
w

w

L
V

L
V

L
V

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Φq ω()
±⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()
ω

ω
π

ωV

b
V

w

2

2
1

4
Φ

±⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()
ω

ω
π

ωV

b
V

w

2

2
1

4
Φ

The variable b represents the aircraft wingspan. The variables Lu,
Lv, Lw represent the turbulence scale lengths. The variables σu , σv , σw
represent the turbulence intensities.

5-230

Dryden Wind Turbulence Model (Continuous)

The spectral density definitions of turbulence angular rates are defined
in the specifications as three variations, which are displayed in the
following table:

p
w

yg
g=

∂
∂

p
w

yg
g=

∂
∂

p
w

yg
g= −

∂
∂

q
w

xg
g=

∂
∂

q
w

xg
g=

∂
∂

q
w

xg
g= −

∂
∂

r
v

xg
g= −

∂
∂

r
v

xg
g=

∂
∂

r
v

xg
g=

∂
∂

The variations affect only the vertical (qg) and lateral (rg) turbulence
angular rates.

Keep in mind that the longitudinal turbulence angular rate spectrum

Φ pg
()ω

is a rational function. The rational function is derived from curve-fitting
a complex algebraic function, not the vertical turbulence velocity
spectrum, Φw(ω), multiplied by a scale factor. Because the turbulence
angular rate spectra contribute less to the aircraft gust response than
the turbulence velocity spectra, it may explain the variations in their
definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

5-231

Dryden Wind Turbulence Model (Continuous)

Vertical Lateral

Φq(ω)

Φq(ω)

−Φq(ω)

−Φr(ω)

Φr(ω)

Φr(ω)

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is passed through forming filters.
The forming filters are derived from the spectral square roots of the
spectrum equations.

The following table displays the transfer functions:

MIL-F-8785C MIL-HDBK-1797

Longitudinal

H su()
σ

πu
u

u

L
V L

V
s

2 1

1
⋅

+
σ

πu
u

u

L
V L

V
s

2 1

1
⋅

+

H sp()

σ

π

π

w

w
V

b

L
b
V

s

0 8 4

1
4

1
6

1
3

. ⋅

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

σ

π

π

w

w
V

b

L
b
V

s

0 8 4

2 1
4

1
6

1
3

. ⋅

⎛
⎝⎜

⎞
⎠⎟

() + ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

Lateral

5-232

Dryden Wind Turbulence Model (Continuous)

MIL-F-8785C MIL-HDBK-1797

H sv()

σ
πv

v
v

v

L
V

L
V

s

L
V

s

⋅
+

+⎛
⎝
⎜

⎞
⎠
⎟

1
3

1
2

σ
πv

v
v

v

L
V

L
V

s

L
V

s

2 1
2 3

1
2 2

⋅
+

+⎛
⎝
⎜

⎞
⎠
⎟

H sr () ∓
s
V
b
V

s
H sv

1
3+ ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⋅

π

()
∓

s
V
b
V

s
H sv

1
3+ ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⋅

π

()

Vertical

H sw()

σ
πw

w
w

w

L
V

L
V

s

L
V

s

⋅
+

+⎛
⎝
⎜

⎞
⎠
⎟

1
3

1
2

σ
πw

w
w

w

L
V

L
V

s

L
V

s

2 1
2 3

1
2 2

⋅
+

+⎛
⎝
⎜

⎞
⎠
⎟

H sq() ±

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⋅

s
V
b
V

s
H sw

1
4
π

()
±

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⋅

s
V
b
V

s
H sw

1
4
π

()

Divided into two distinct regions, the turbulence scale lengths and
intensities are functions of altitude.

5-233

Dryden Wind Turbulence Model (Continuous)

Note The military specifications result in the same transfer function
after evaluating the turbulence scale lengths. The differences in
turbulence scale lengths and turbulence transfer functions balance
offset.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at
low altitudes, where h is the altitude in feet, are represented in the
following table:

MIL-F-8785C MIL-HDBK-1797

L h

L L
h

h

w

u v

=

= =
+()0 177 0 000823 1 2. . .

2

2
0 177 0 000823 1 2

L h

L L
h

h

w

u v

=

= =
+(). . .

The turbulence intensities are given below, whereW20 is the wind speed
at 20 feet (6 m). Typically for light turbulence, the wind speed at 20 feet
is 15 knots; for moderate turbulence, the wind speed is 30 knots; and for
severe turbulence, the wind speed is 45 knots.

σ
σ
σ

σ
σ

w

u

w

u

w

W

h

=

= =
+()

0 1

1

0 177 0 000823

20

0 4

.

. . .

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug , aligned along the horizontal
relative mean wind vector

• Vertical turbulence velocity, wg , aligned with vertical

5-234

Dryden Wind Turbulence Model (Continuous)

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and
intensities are based on the assumption that the turbulence is isotropic.
In the military references, the scale lengths are represented by the
following equations:

MIL-F-8785C MIL-HDBK-1797

Lu = Lv = Lw = 1750 ft Lu = 2Lv = 2Lw = 1750 ft

The turbulence intensities are determined from a lookup table that
provides the turbulence intensity as a function of altitude and the
probability of the turbulence intensity being exceeded. The relationship
of the turbulence intensities is represented in the following equation:
σu = σv = σw .

The turbulence axes orientation in this region is defined as being
aligned with the body coordinates.

5-235

Dryden Wind Turbulence Model (Continuous)

Between Low and Medium/High Altitudes (1000 feet <
Altitude < 2000 feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities
and turbulence angular rates are determined by linearly interpolating
between the value from the low altitude model at 1000 feet transformed
from mean horizontal wind coordinates to body coordinates and the
value from the high altitude model at 2000 feet in body coordinates.

5-236

Dryden Wind Turbulence Model (Continuous)

Dialog
Box

Units
Define the units of wind speed due to the turbulence.

Units Wind Velocity Altitude Airspeed

Metric (MKS) Meters/second Meters Meters/second

English (Velocity in
ft/s)

Feet/second Feet Feet/second

English (Velocity in
kts)

Knots Feet Knots

5-237

Dryden Wind Turbulence Model (Continuous)

Specification
Define which military reference to use. This affects the application
of turbulence scale lengths in the lateral and vertical directions.

Model type
Select the wind turbulence model to use.

Continuous Von Karman (+q
-r)

Use continuous representation
of Von Kármán velocity
spectra with positive vertical
and negative lateral angular
rates spectra.

Continuous Von Karman (+q
+r)

Use continuous representation
of Von Kármán velocity
spectra with positive vertical
and lateral angular rates
spectra.

Continuous Von Karman (-q
+r)

Use continuous representation
of Von Kármán velocity
spectra with negative vertical
and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation
of Dryden velocity spectra with
positive vertical and negative
lateral angular rates spectra.

Continuous Dryden (+q +r) Use continuous representation
of Dryden velocity spectra with
positive vertical and lateral
angular rates spectra.

Continuous Dryden (-q +r) Use continuous representation
of Dryden velocity spectra with
negative vertical and positive
lateral angular rates spectra.

5-238

Dryden Wind Turbulence Model (Continuous)

Discrete Dryden (+q -r) Use discrete representation of
Dryden velocity spectra with
positive vertical and negative
lateral angular rates spectra.

Discrete Dryden (+q +r) Use discrete representation of
Dryden velocity spectra with
positive vertical and lateral
angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of
Dryden velocity spectra with
negative vertical and positive
lateral angular rates spectra.

The Continuous Dryden selections conform to the transfer
function descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 6 meters (20 feet)
provides the intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 6 meters (20 feet) is
an angle to aid in transforming the low-altitude turbulence model
into a body coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a
lookup table that gives the turbulence intensity as a function of
altitude and the probability of the turbulence intensity’s being
exceeded.

Scale length at medium/high altitudes (m)
The turbulence scale length above 2000 feet is assumed constant,
and from the military references, a figure of 1750 feet is
recommended for the longitudinal turbulence scale length of the
Dryden spectra.

5-239

Dryden Wind Turbulence Model (Continuous)

Note An alternate scale length value changes the power spectral
density asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on
the angular rates.

Band-limited noise sample time (sec)
The sample time at which the unit variance white noise signal is
generated.

Noise seeds
There are four random numbers required to generate the
turbulence signals, one for each of the three velocity components
and one for the roll rate. The turbulences on the pitch and yaw
angular rates are based on further shaping of the outputs from
the shaping filters for the vertical and lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

Input Dimension Type Description

First Contains the altitude, in units
selected.

Second Contains the aircraft speed, in units
selected.

Third Contains the direction cosine matrix.

Output Dimension Type Description

First Three-element
signal

Contains the turbulence velocities,
in the selected units.

Second Three-element
signal

Contains the turbulence angular
rates, in radians per second.

5-240

Dryden Wind Turbulence Model (Continuous)

Assumptions
and
Limitations

The frozen turbulence field assumption is valid for the cases of
mean-wind velocity and the root-mean-square turbulence velocity, or
intensity, is small relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear
air turbulence because the following factors are not incorporated into
the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

Examples See the Airframe subsystem in the aeroblk_HL20 demo for an example
of this block.

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA
Education Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust
Covariance Matrices,” AIAA Paper 80-1615, Atmospheric Flight
Mechanics Conference, Danvers, Massachusetts, August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and
Automatic Control, Princeton University Press, July 1990.

5-241

Dryden Wind Turbulence Model (Continuous)

Moorhouse, D., Woodcock, R., “Background Information and User Guide
for MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted
Airplanes’,” ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation
at NASA-Ames,” NASA CR-2497, Computer Sciences Corporation,
January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent
Gusts and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences
Meeting, St. Louis, Missouri, January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

Von Karman Wind Turbulence Model (Continuous)

5-242

Dryden Wind Turbulence Model (Discrete)

Purpose Generate discrete wind turbulence with Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model (Discrete) block uses the Dryden
spectral representation to add turbulence to the aerospace model
by using band-limited white noise with appropriate digital filter
finite difference equations. This block implements the mathematical
representation in the Military Specification MIL-F-8785C and Military
Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process
defined by velocity spectra. For an aircraft flying at a speed V through
a frozen turbulence field with a spatial frequency of Ω radians per
meter, the circular frequency ω is calculated by multiplying V by Ω . The
following table displays the component spectra functions:

MIL-F-8785C MIL-HDBK-1797

Longitudinal

Φu ω() 2 1

1

2

2
σ
π ω

u u

u

L
V

L
V

⋅

+ ⎛
⎝⎜

⎞
⎠⎟

2 1

1

2

2
σ
π ω

u u

u

L
V

L
V

⋅

+ ⎛
⎝⎜

⎞
⎠⎟

Φ p()ω

σ
π

ω
π

w

w

w

VL

L
b

b
V

2

1
3

2

0 8
4

1
4

⋅

⎛
⎝
⎜

⎞
⎠
⎟

+ ⎛
⎝⎜

⎞
⎠⎟

.
σ

π

ω
π

w

w

w

VL

L
b

b
V

2

1
3

22

0 8
2

4

1
4

⋅

⎛
⎝
⎜

⎞
⎠
⎟

+ ⎛
⎝⎜

⎞
⎠⎟

.

5-243

Dryden Wind Turbulence Model (Discrete)

MIL-F-8785C MIL-HDBK-1797

Lateral

Φv()ω

σ
π

ω

ω

v v
v

v

L
V

L
V

L
V

2

2

2 2

1 3

1

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
1 12

1 4

2

2

2 2
σ
π

ω

ω

v v
v

v

L
V

L
V

L
V

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Φr ()ω
∓

ω

ω
π

ωV

b
V

v

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()

2

2
1

3
Φ

∓
ω

ω
π

ωV

b
V

v

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()

2

2
1

3
Φ

Vertical

Φw()ω

σ
π

ω

ω

w w
w

w

L
V

L
V

L
V

2

2

2 2

1 3

1

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
1 12

1 4

2

2

2 2
σ
π

ω

ω

w w
w

w

L
V

L
V

L
V

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Φq()ω
±⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()
ω

ω
π

ωV

b
V

w

2

2
1

4
Φ

±⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()
ω

ω
π

ωV

b
V

w

2

2
1

4
Φ

5-244

Dryden Wind Turbulence Model (Discrete)

The variable b represents the aircraft wingspan. The variables Lu ,
Lv , Lw represent the turbulence scale lengths. The variables σu , σv , σw
represent the turbulence intensities.

The spectral density definitions of turbulence angular rates are defined
in the references as three variations, which are displayed in the
following table:

p
w

yg
g=

∂
∂

p
w

yg
g=

∂
∂

p
w

yg
g= −

∂
∂

q
w

xg
g=

∂
∂

q
w

xg
g=

∂
∂

q
w

xg
g= −

∂
∂

r
v

xg
g= −

∂
∂

r
v

xg
g=

∂
∂

r
v

xg
g=

∂
∂

The variations affect only the vertical (qg) and lateral (rg) turbulence
angular rates.

Keep in mind that the longitudinal turbulence angular rate spectrum,
Φp(ω) , is a rational function. The rational function is derived from
curve-fitting a complex algebraic function, not the vertical turbulence
velocity spectrum, Φw(ω) , multiplied by a scale factor. Because the
turbulence angular rate spectra contribute less to the aircraft gust
response than the turbulence velocity spectra, it may explain the
variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

5-245

Dryden Wind Turbulence Model (Discrete)

Vertical Lateral

Φq(ω)

Φq(ω)

−Φq(ω)

−Φr(ω)

Φr(ω)

Φr(ω)

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is used in the digital filter finite
difference equations.

The following table displays the digital filter finite difference equations:

MIL-F-8785C MIL-HDBK-1797

Longitudinal

ug
1 2 1−

⎛

⎝
⎜

⎞

⎠
⎟ +V

L
T u

V
L

T
u

g
u

uσ
σ

η
η

1 2 1−
⎛

⎝
⎜

⎞

⎠
⎟ +V

L
T u

V
L

T
u

g
u

uσ
σ

η
η

pg
1

2 6

2
2 6

0 95

2 23

4

−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +.

.

.

L b
T p

L b
T

L b

w
g

w

w
w

σ
η

σ

η

1
2 6

2

2
2 6

2

1 9

2
4

−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +.

.

.

L b
T p

L b
T

L b

w
g

w

w
w

σ
η

σ

η

Lateral

vg
1 2 2−

⎛

⎝
⎜

⎞

⎠
⎟ +V

L
T v

V
L

T
u

g
u

vσ
σ

η
η

1 2 2−
⎛

⎝
⎜

⎞

⎠
⎟ +V

L
T v

V
L

T
u

g
u

vσ
σ

η
η

5-246

Dryden Wind Turbulence Model (Discrete)

MIL-F-8785C MIL-HDBK-1797

rg 1
3 3

−⎛
⎝⎜

⎞
⎠⎟

−()π πV
b

T r
b

v vg g g past
∓ 1

3 3
−⎛

⎝⎜
⎞
⎠⎟

−()π πV
b

T r
b

v vg g g past
∓

Vertical

wg
1 2 3−

⎛

⎝
⎜

⎞

⎠
⎟ +V

L
T w

V
L

T
u

g
u

wσ
σ

η
η

1 2 3−
⎛

⎝
⎜

⎞

⎠
⎟ +V

L
T w

V
L

T
u

g
u

wσ
σ

η
η

qg 1
4 4

−⎛
⎝⎜

⎞
⎠⎟

± −()π πV
b

T q
b

w wg g g past
1

4 4
−⎛

⎝⎜
⎞
⎠⎟

± −()π πV
b

T q
b

w wg g g past

Divided into two distinct regions, the turbulence scale lengths and
intensities are functions of altitude.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at
low altitudes, where h is the altitude in feet, are represented in the
following table:

MIL-F-8785C MIL-HDBK-1797

L h

L L
h

h

w

u v

=

= =
+()0 177 0 000823 1 2. . .

2

2
0 177 0 000823 1 2

L h

L L
h

h

w

u v

=

= =
+(). . .

The turbulence intensities are given below, whereW20 is the wind speed
at 20 feet (6 m). Typically for light turbulence, the wind speed at 20 feet
is 15 knots; for moderate turbulence, the wind speed is 30 knots, and for
severe turbulence, the wind speed is 45 knots.

5-247

Dryden Wind Turbulence Model (Discrete)

σ
σ
σ

σ
σ

w

u

w

v

w

W

h

=

= =
+()

0 1

1

0 177 0 000823

20

0 4

.

. . .

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug , aligned along the horizontal
relative mean wind vector

• Vertical turbulence velocity, wg , aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and
intensities are based on the assumption that the turbulence is isotropic.
In the military references, the scale lengths are represented by the
following equations:

MIL-F-8785C MIL-HDBK-1797

Lu = Lv = Lw = 1750 ft Lu = 2Lv = 2Lw = 1750 ft

The turbulence intensities are determined from a lookup table that
provides the turbulence intensity as a function of altitude and the
probability of the turbulence intensity being exceeded. The relationship
of the turbulence intensities is represented in the following equation:
σu = σv = σw .

The turbulence axes orientation in this region is defined as being
aligned with the body coordinates.

5-248

Dryden Wind Turbulence Model (Discrete)

Between Low and Medium/High Altitudes (1000 feet <
Altitude < 2000 feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities
and turbulence angular rates are determined by linearly interpolating
between the value from the low altitude model at 1000 feet transformed
from mean horizontal wind coordinates to body coordinates and the
value from the high altitude model at 2000 feet in body coordinates.

5-249

Dryden Wind Turbulence Model (Discrete)

Dialog
Box

Units
Define the units of wind speed due to the turbulence.

Units Wind Velocity Altitude Airspeed

Metric (MKS) Meters/second Meters Meters/second

English
(Velocity in
ft/s)

Feet/second Feet Feet/second

English
(Velocity in
kts)

Knots Feet Knots

5-250

Dryden Wind Turbulence Model (Discrete)

Specification
Define which military reference to use. This affects the application
of turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Continuous Von Karman
(+q -r)

Use continuous representation
of Von Kármán velocity spectra
with positive vertical and
negative lateral angular rates
spectra.

Continuous Von Karman
(+q +r)

Use continuous representation
of Von Kármán velocity spectra
with positive vertical and
lateral angular rates spectra.

Continuous Von Karman
(-q +r)

Use continuous representation
of Von Kármán velocity spectra
with negative vertical and
positive lateral angular rates
spectra.

Continuous Dryden (+q
-r)

Use continuous representation
of Dryden velocity spectra with
positive vertical and negative
lateral angular rates spectra.

Continuous Dryden (+q
+r)

Use continuous representation
of Dryden velocity spectra with
positive vertical and lateral
angular rates spectra.

Continuous Dryden (-q
+r)

Use continuous representation
of Dryden velocity spectra with
negative vertical and positive
lateral angular rates spectra.

5-251

Dryden Wind Turbulence Model (Discrete)

Discrete Dryden (+q -r) Use discrete representation of
Dryden velocity spectra with
positive vertical and negative
lateral angular rates spectra.

Discrete Dryden (+q +r) Use discrete representation of
Dryden velocity spectra with
positive vertical and lateral
angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of
Dryden velocity spectra with
negative vertical and positive
lateral angular rates spectra.

The Discrete Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 6 meters (20 feet)
provides the intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 6 meters (20 feet) is
an angle to aid in transforming the low-altitude turbulence model
into a body coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a
lookup table that gives the turbulence intensity as a function of
altitude and the probability of the turbulence intensity’s being
exceeded.

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant,
and from the military references, a figure of 1750 feet is
recommended for the longitudinal turbulence scale length of the
Dryden spectra.

5-252

Dryden Wind Turbulence Model (Discrete)

Note An alternate scale length value changes the power spectral
density asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on
the angular rates.

Band-limited noise and discrete filter sample time (sec)
The sample time at which the unit variance white noise signal is
generated and at which the discrete filters are updated.

Noise seeds
There are four random numbers required to generate the
turbulence signals, one for each of the three velocity components
and one for the roll rate. The turbulences on the pitch and yaw
angular rates are based on further shaping of the outputs from
the shaping filters for the vertical and lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

Input Dimension Type Description

First Contains the altitude, in units
selected.

Second Contains the aircraft speed, in units
selected.

Third Contains the NED direction cosine
matrix.

5-253

Dryden Wind Turbulence Model (Discrete)

Output Dimension Type Description

First Three-element
signal

Contains the turbulence velocities,
in the selected units.

Second Three-element
signal

Contains the turbulence angular
rates, in radians per second.

Assumptions
and
Limitations

The “frozen turbulence field” assumption is valid for the cases of
mean-wind velocity and the root-mean-square turbulence velocity, or
intensity, is small relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear
air turbulence because the following factors are not incorporated into
the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA
Education Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust
Covariance Matrices,” AIAA Paper 80-1615, Atmospheric Flight
Mechanics Conference, Danvers, Massachusetts, August 11-13, 1980.

5-254

Dryden Wind Turbulence Model (Discrete)

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and
Automatic Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide
for MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted
Airplanes’,” ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation
at NASA-Ames,” NASA CR-2497, Computer Sciences Corporation,
January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent
Gusts and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences
Meeting, St. Louis, Missouri, January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Continuous)

Von Karman Wind Turbulence Model (Continuous)

Discrete Wind Gust Model

Wind Shear Model

5-255

Dynamic Pressure

Purpose Compute dynamic pressure using velocity and air density

Library Flight Parameters

Description The Dynamic Pressure block computes dynamic pressure.

Dynamic pressure is defined as

where is air density and V is velocity.

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the velocity.

Second Contains the air density.

Output Dimension Type Description

First Contains the dynamic pressure.

Examples See the Airframe subsystem in the aeroblk_HL20 demo for an example
of this block.

See Also Aerodynamic Forces and Moments

Mach Number

5-256

ECEF Position to LLA

Purpose Calculate geodetic latitude, longitude, and altitude above planetary
ellipsoid from Earth-centered Earth-fixed (ECEF) position

Library Utilities/Axes Transformations

Description The ECEF Position to LLA block converts a 3-by-1 vector of ECEF

position p() into geodetic latitude μ() , longitude ι() , and altitude

h() above the planetary ellipsoid.
The ECEF position is defined as

p
p
p

p

x

y

z

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Longitude is calculated from the ECEF position by

ι =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟atan

p

p
y

x

Geodetic latitude μ() is calculated from the ECEF position using
Bowring’s method, which typically converges after two or three
iterations. The method begins with an initial guess for geodetic latitude

μ() and reduced latitude β() . An initial guess takes the form:

5-257

ECEF Position to LLA

β

μ
β

=
−

⎛

⎝
⎜

⎞

⎠
⎟

=
+ −

−
−

atan

atan

p
f s

p
e f

e
R

s e R

z

z

()

()

()
(sin)

(co

1

1

1

2

2
3

2 ss)β 3

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

where R is the equatorial radius, f the flattening of the planet, e2 =
1−(1−f)2, the square of first eccentricity, and

s p px y= +2 2

After the initial guesses are calculated, the reduced latitude β() is
recalculated using

β μ
μ

= −⎛

⎝
⎜

⎞

⎠
⎟atan

()sin
cos

1 f

and geodetic latitude μ() is reevaluated. This last step is repeated
until μ converges.

The altitude h() above the planetary ellipsoid is calculated with

h s p e N Nz= + +() −cos sin sinμ μ μ2

where the radius of curvature in the vertical prime N() is given by

N
R

e
=

−1 2 2(sin)μ

5-258

ECEF Position to LLA

Dialog
Box

Units
Specifies the parameter and output units:

Units Position
Equatorial
Radius Altitude

Metric (MKS) Meters Meters Meters

English Feet Feet Feet

5-259

ECEF Position to LLA

This option is only available when Planet model is set to Earth
(WGS84).

Planet model
Specifies the planet model to use, Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet.

This option is available only with Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The equatorial
radius units should be the same as the desired units for ECEF
position.

This option is available only with Planet model set to Custom.

Inputs and
Outputs

Input Dimension Type Description

First 3-by-1 vector Contains the position in ECEF
frame.

Output Dimension Type Description

First 2-by-1 vector Contains the geodetic latitude and
longitude, in degrees.

Second Scalar Contains the altitude above the
planetary ellipsoid, in the same units
as the ECEF position.

Assumptions
and
Limitations

This implementation generates a geodetic latitude that lies between
±90 degrees, and longitude that lies between ±180 degrees. The planet
is assumed to be ellipsoidal. By setting the flattening to 0, you model
a spherical planet.

The implementation of the ECEF coordinate system assumes that its
origin lies at the center of the planet, the x-axis intersects the prime

5-260

ECEF Position to LLA

(Greenwich) meridian and the equator, the z-axis is the mean spin
axis of the planet (positive to the north), and the y-axis completes the
right-handed system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics,
AIAA Education Series, Reston, Virginia, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,”
ANSI/AIAA R-004-1992.

See Also See “About Aerospace Coordinate Systems” on page 2-16.

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

5-261

EGM96 Geoid

Purpose Calculate geoid height as determined from EGM96 Geopotential Model

Library Environment/Gravity

Description The EGM96 Geoid block calculates the geoid height as determined
from the EGM96 Geopotential Model. The block interpolates the geoid
heights from a 15 minute grid of point values in the tide-free system. It
uses the EGM96 Geopotential Model to degree and order 360. The geoid
undulations are with respect to the WGS84 ellipsoid.

The interpolation scheme wraps over the poles to allow for geoid height
calculations at and near these locations.

Dialog
Box

Units
Specifies the parameter and output units:

5-262

EGM96 Geoid

Units Height

Metric (MKS) Meters

English Feet

Data type
Specify the data type of the input and output signals. From the
list, select double or single.

Inputs and
Outputs

Input Dimension Type Description

First Scalar Contains geocentric latitude in
degrees, where north latitude is
positive, and south latitude is
negative. Input latitude must be of
type single or double. If latitude is
not in the range from -90 to 90, the
block wraps it to be within the range.

Second Scalar Contains geocentric longitude in
degrees, where east longitude is
positive in the range from 0 to 360.
Input longitude must be of type
single or double. If longitude is not
in the range from 0 to 360, the block
wraps it to be within the range.

Output Dimension Type Description

First Scalar Contains the geoid height, in meters.

Limitations This block has the limitations of the 1996 Earth
Geopotential Model. For more information, see
http://www.ngdc.noaa.gov/mgg/gravity/1999/document/html/egm96.html.

5-263

http://www.ngdc.noaa.gov/mgg/gravity/1999/document/html/egm96.html

EGM96 Geoid

The WGS84 EGM96 geoid undulations have an error range of +/-0.5 to
+/-1.0 meters worldwide.

References “Department of Defense World Geodetic System 1984, Its Definition
and Relationship with Local Geodetic Systems”, NIMA TR8350.2.

“The Development of the Joint NASA GSFC and NIMA Geopotential
Model EGM96”, NASA/TP-1998-206861.

National Geospatial-Intelligence Agency Web site:
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html

See Also WGS84 Gravity Model

5-264

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html

Estimate Center of Gravity

Purpose Calculate center of gravity location

Library Mass Properties

Description The Estimate Center of Gravity block calculates the center of gravity
location and the rate of change of the center of gravity.

Linear interpolation is used to estimate the location of center of gravity
as a function of mass. The rate of change of center of gravity is a linear
function of rate of change of mass.

Dialog
Box

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full center of gravity
Specifies the center of gravity at gross mass of the craft.

5-265

Estimate Center of Gravity

Empty center of gravity
Specifies the center of gravity at empty mass of the craft.

Inputs and
Outputs

Input Dimension Type Description

First Contains the mass.

Second Contains the rate of change of mass.

Output Dimension Type Description

First Contains the center of gravity
location.

Second Contains the rate of change of center
of gravity location.

Examples See the aeroblk_vmm demo for an example of this block.

See Also Aerodynamic Forces and Moments

Estimate Inertia Tensor

Moments About CG Due to Forces

5-266

Estimate Inertia Tensor

Purpose Calculate inertia tensor

Library Mass Properties

Description The Estimate Inertia Tensor block calculates the inertia tensor and the
rate of change of the inertia tensor.

Linear interpolation is used to estimate the inertia tensor as a function
of mass. The rate of change of the inertia tensor is a linear function
of rate of change of mass.

Dialog
Box

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full inertia matrix
Specifies the inertia tensor at gross mass of the craft.

5-267

Estimate Inertia Tensor

Empty inertia matrix
Specifies the inertia tensor at empty mass of the craft.

Inputs and
Outputs

Input Dimension Type Description

First Contains the mass.

Second Contains the rate of change of mass.

Output Dimension Type Description

First Contains the inertia tensor.

Second Contains the rate of change of inertia
tensor.

See Also Estimate Center of Gravity

Symmetric Inertia Tensor

5-268

Flat Earth to LLA

Purpose Estimate geodetic latitude, longitude, and altitude from flat Earth
position

Library Utilities/Axes Transformations

Description The Flat Earth to LLA block converts a 3-by-1 vector of Flat Earth

position p() into geodetic latitude () , longitude () , and altitude
(h). The flat Earth coordinate system assumes the z-axis is downward
positive. The estimation begins by transforming the flat Earth x and
y coordinates to North and East coordinates. The transformation has
the form of

N
E

p
p

x

y

⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

cos sin
sin cos

where () is the angle in degrees clockwise between the x-axis and
north.

To convert the North and East coordinates to geodetic latitude and
longitude, the radius of curvature in the prime vertical (RN) and the
radius of curvature in the meridian (RM) are used.(RN) and (RM) are
defined by the following relationships:

R
R

f f

R R
f f

f f

N

M N

=
− −

= − −
− −

1 2

1 2

1 2

2 2

2

2 2

()sin

()

()sin

where (R) is the equatorial radius of the planet and f() is the flattening
of the planet.

Small changes in the in latitude and longitude are approximated from
small changes in the North and East positions by

5-269

Flat Earth to LLA

d
R

dN

d
R

dE

M

N

=
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

atan

atan

1

1
cos

The output latitude and longitude are simply the initial latitude and
longitude plus the small changes in latitude and longitude.

= +
= +

0

0

d

d

The altitude is the negative flat Earth z-axis value minus the reference
height (href).

h p hz ref= − −

5-270

Flat Earth to LLA

Dialog
Box

Units
Specifies the parameter and output units:

5-271

Flat Earth to LLA

Units Position
Equatorial
Radius Altitude

Metric (MKS) Meters Meters Meters

English Feet Feet Feet

This option is only available when Planet model is set to Earth
(WGS84).

Planet model
Specifies the planet model to use: Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet. This option is only available
with Planet model Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the
equatorial radius parameter should be the same as the units for
flat Earth position. This option is only available with Planet
model Custom.

Initial geodetic latitude and longitude
Specifies the reference location, in degrees of latitude and
longitude, for the origin of the estimation and the origin of the
flat Earth coordinate system.

Direction of flat Earth x-axis (degrees clockwise from north)
Specifies angle used for converting flat Earth x and y coordinates
to North and East coordinates.

Inputs and
Outputs

Input Dimension Type Description

First 3-by-1 vector Contains the position in flat Earth
frame.

Second Scalar Contains the reference altitude in the
same units for flat Earth position.

5-272

Flat Earth to LLA

Output Dimension Type Description

First 2-by-1 vector Contains the geodetic latitude and
longitude, in degrees.

Second Scalar Contains the altitude above the
input reference altitude, in same
units as flat Earth position.

Assumptions
and
Limitations

This estimation method assumes the flight path and bank angle are
zero.

This estimation method assumes the flat Earth z-axis is normal to the
Earth at the initial geodetic latitude and longitude only. This method
has higher accuracy over small distances from the initial geodetic
latitude and longitude, and nearer to the equator. The longitude
will have higher accuracy the smaller the variations in latitude.
Additionally, longitude is singular at the poles.

Example See the asbhl20 demo for an example of this block.

References Etkin, B., Dynamics of Atmospheric Flight, John Wiley & Sons, New
York, 1972.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second
Edition, John Wiley & Sons, New York, 2003.

See Also Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

ECEF Position to LLA

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

5-273

FlightGear Preconfigured 6DoF Animation

Purpose Connect model to FlightGear flight simulator

Library Animation/Flight Simulator Interfaces

Description The FlightGear Preconfigured 6DoF Animation block lets you drive
position and attitude values to a FlightGear flight simulator vehicle
given double precision values for longitude (l), latitude (ι), altitude (h),
roll (ϕ), pitch (θ), and yaw (ψ) respectively.

The block is a masked subsystem containing principally a Pack net_fdm
Packet for FlightGear block set for 6DoF inputs, a Send net_fdm Packet
to FlightGear block, and a Simulation Pace block. To access the full
capabilities of these blocks, use the individual corresponding blocks
from the Aerospace Blockset library.

The block is additionally configured as a SimViewingDevice, so that
if you generate code for your model using the Real-Time Workshop
product and connect to the running target code using theReal-Time
Workshop External Mode available from the model’s toolbar, then
the Simulink software can obtain the data from the target on the
fly and transmit position and attitude data to FlightGear. The
SimViewingDevice facility is described in the Simulink documentation.

This block does not produce deployable code, but can be used with
Real-Time Workshop external mode as a SimViewingDevice.

5-274

FlightGear Preconfigured 6DoF Animation

Dialog
Box

FlightGear version
Select your FlightGear software version.

Supported versions: v0.9.3, v0.9.8/0.9.8a, v0.9.9, v0.9.10,
v1.0, v1.9.1.

Destination IP address
Specify your destination IP address.

Destination port
Specify your destination port.

Sample time
Specify the sample time (–1 for inherited).

5-275

FlightGear Preconfigured 6DoF Animation

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the longitude, latitude,
altitude, roll, pitch, and yaw, in
double precision. Units are degrees
west/north for longitude and latitude,
meters above mean sea level for
altitude, and radians for attitude
values.

Reference Bowditch, N., American Practical Navigator, An Epitome of Navigation,
US Navy Hydrographic Office, 1802.

See Also Generate Run Script

Pack net_fdm Packet for FlightGear

Send net_fdm Packet to FlightGear

Simulation Pace

5-276

Force Conversion

Purpose Convert from force units to desired force units

Library Utilities/Unit Conversions

Description The Force Conversion block computes the conversion factor from
specified input force units to specified output force units and applies the
conversion factor to the input signal.

The Force Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbf Pound force

N Newtons

5-277

Force Conversion

Inputs and
Outputs

Input Dimension Type Description

First Contains the force in initial force
units.

Output Dimension Type Description

First Contains the force in final force
units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

5-278

Gain Scheduled Lead-Lag

Purpose Implement first-order lead-lag with gain-scheduled coefficients

Library GNC/Controls

Description The Gain Scheduled Lead-Lag block implements a first-order lag of
the form

u
as
bs

e= +
+

1
1

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made
dependent on flight condition or operating point. For example, they
could be produced from the Lookup Table (n-D) Simulink block.

Dialog
Box

Initial state, x_initial
The initial internal state for the filter x_initial. Given this
initial state, the initial output is given by

u
x initial ae

bt= = +
0

_

5-279

Gain Scheduled Lead-Lag

Inputs and
Outputs

Input Dimension Type Description

First Contains the filter input.

Second Contains the numerator coefficient.

Third Contains the denominator coefficient.

Output Dimension Type Description

First Contains the filter output.

5-280

Generate Run Script

Purpose Generate FlightGear run script on current computer

Library Animation/Flight Simulator Interfaces

Description The Generate Run Script block generates a customized FlightGear run
script on the current platform.

To generate the run script, fill the required information into the dialog’s
fields, then click Generate Script.

Fields in the dialog marked with an asterisk (*) are evaluated as
MATLAB expressions. The other fields are treated as literal text.

For More Information About FlightGear

See “Creating a FlightGear Run Script” on page 2-43 for more about
FlightGear.

5-281

Generate Run Script

Dialog
Box

5-282

Generate Run Script

Generate Script
Click to generate a run script for FlightGear. Do not click this
button until you have entered the correct information in the
dialog fields.

Output file name
Specify the name of the output file. The file name is the name of
the command you will use to start FlightGear with these initial
parameters. The file must have the .bat extension.

FlightGear base directory
Specify the name of your FlightGear installation folder.

FlightGear geometry model name
Specify the name of the folder containing the desired model
geometry in the FlightGear\data\Aircraft folder.

Destination port
Specify your network flight dynamics model (fdm) port. For more
information, see the Send net_fdm Packet to FlightGear block
reference.

Airport ID
Specify the airport ID. The list of supported airports is available
in the FlightGear interface, under Location.

Runway ID
Specify the runway ID.

Initial altitude
Specify the initial altitude of the aircraft, in feet.

Initial heading
Specify the initial heading of the aircraft, in degrees.

Offset distance
Specify the offset distance of the aircraft from the airport, in miles.

Offset azimuth
Specify the offset azimuth of the aircraft, in degrees.

Examples See the asbhl20 demo for an example of this block.

5-283

Generate Run Script

See Also FlightGear Preconfigured 6DoF Animation

Pack net_fdm Packet for FlightGear

Send net_fdm Packet to FlightGear

5-284

Geocentric to Geodetic Latitude

Purpose Convert geocentric latitude to geodetic latitude

Library Utilities/Axes Transformations

Description The Geocentric to Geodetic Latitude block converts a geocentric
latitude (λ) into geodetic latitude (μ). There are a number of geometric
relationships that are used to calculate the geodetic latitude in this
noniterative method. A number of angles and points are involved in the
calculation, which are shown in following figure.

.

5-285

Geocentric to Geodetic Latitude

Given geocentric latitude (λ) and the radius (r) from the center of the
planet (O) to the center of gravity (P), this noniterative method starts
by computing values for the point of r that intercepts the surface of the
planet (S). By rearranging the equation for an ellipse, the horizontal

coordinate, xa() is determined. When equatorial radius (R), polar
radius ()1 −()f R and xa tan , are substituted for semi-major axis,

semi-minor axis and vertical coordinate ya() , the resulting equation for
xa has the following form:

x
f R

f
a = −

+ −

()

tan ()

1

12 2

To determine the geodetic latitude at S a , the equation for an ellipse

with equatorial radius (R), polar radius ()1 −()f R is used again. This

time it is used to define ya in terms of xa .

y R x fa a= − −2 2 1()

Additionally, the relationship between geocentric latitude at the
planet’s surface and geodetic latitude is used.

a
f

=
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟atan

tan

()1 2

Using the relationship tan / = y xa a and the two equations above, the

resulting equation for a is obtained.

a
a

a

R x

f x
=

−
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

atan
2 2

1()

5-286

Geocentric to Geodetic Latitude

The correct sign of a is determined by testing λ and if λ is less than

zero a changes sign accordingly.

In order to calculate the geodetic latitude of P, a number of geometric
relationships are required to be calculated. These calculations follow.

The radius ra() from the center of the planet (O) to the surface of the
planet (S) is calculated by using trigonometric relationship.

r
x

a
a=

cos

The distance from S to P is defined by:

l r ra= −

The angular difference between geocentric latitude and geodetic
latitude at S(δλ) is defined by:

 = −a

Using l and δλ, the segment TP or the mean sea-level altitude (h) is
estimated.

h l= cos

The equation for the radius of curvature in the Meridian a() at a is

a

a

R f

f f
= −

− −()
()

()sin
/

1

1 2

2

2 2 3 2

Using l , δλ, h, and a , the angular difference between geodetic latitude

at S () and geodetic latitude at P a() is defined as:

5-287

Geocentric to Geodetic Latitude

=

+
⎛

⎝
⎜

⎞

⎠
⎟atan

l
ha

sin

Subtracting δμ from a then gives μ.

 = −a

Dialog
Box

5-288

Geocentric to Geodetic Latitude

Units
Specifies the parameter and output units:

Units
Radius from CG to
Center of Planet Equatorial Radius

Metric (MKS) Meters Meters

English Feet Feet

This option is only available when Planet model is set to Earth
(WGS84).

Planet model
Specifies the planet model to use: Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet. This option is only available
with Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the
equatorial radius parameter should be the same as the units for
radius. This option is only available with Planet model set to
Custom.

Inputs and
Outputs

Input Dimension Type Description

First Scalar Contains the geocentric latitude, in
degrees.

Second Scalar Contains the radius from center of
the planet to the center of gravity.

Output Dimension Type Description

First Scalar Contains the geodetic latitude, in
degrees.

5-289

Geocentric to Geodetic Latitude

Assumptions
and
Limitations

This implementation generates a geodetic latitude that lies between
±90 degrees.

References Jackson, E. B., Manual for a Workstation-based Generic Flight
Simulation Program (LaRCsim) Version 1.4, NASA TM 110164, April,
1995.

Hedgley, D. R., Jr., “An Exact Transformation from Geocentric to
Geodetic Coordinates for Nonzero Altitudes,” NASA TR R-458, March,
1976.

Clynch, J. R., “Radius of the Earth - Radii Used
in Geodesy,” Naval Postgraduate School, 2002,
http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry
2nd Edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

See Also ECEF Position to LLA

Flat Earth to LLA

Geodetic to Geocentric Latitude

LLA to ECEF Position

5-290

http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf

Geodetic to Geocentric Latitude

Purpose Convert geodetic latitude to geocentric latitude

Library Utilities/Axes Transformations

Description The Geodetic to Geocentric Latitude block converts a geodetic latitude
(μ) into geocentric latitude (λ). Geocentric latitude at the planet surface

s() is defined by flattening (f), and geodetic latitude in the following
relationship.

 s f= −atan(() tan)1 2

Geocentric latitude is defined by mean sea-level altitude (h), geodetic

latitude, radius of the planet rs() and geocentric latitude at the planet
surface in the following relationship.

=
+
+

⎛

⎝
⎜

⎞

⎠
⎟atan

h r
h r

s s

s s

sin sin
cos cos

5-291

Geodetic to Geocentric Latitude

Dialog
Box

Units
Specifies the parameter and output units:

Units Altitude Equatorial Radius

Metric (MKS) Meters Meters

English Feet Feet

5-292

Geodetic to Geocentric Latitude

This option is only available when Planet model is set to Earth
(WGS84).

Planet model
Specifies the planet model to use: Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet. This option is only available
with Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the
equatorial radius parameter should be the same as the units for
altitude. This option is only available with Planet model set
to Custom.

Inputs and
Outputs

Input Dimension Type Description

First Scalar Contains the geocentric latitude, in
degrees.

Second Scalar Contains the mean sea-level altitude
(MSL).

Output Dimension Type Description

First Scalar Contains the geodetic latitude, in
degrees.

Assumptions
and
Limitations

This implementation generates a geocentric latitude that lies between
±90 degrees.

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

5-293

Geodetic to Geocentric Latitude

See Also ECEF Position to LLA

Flat Earth to LLA

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

5-294

Horizontal Wind Model

Purpose Transform horizontal wind into body-axes coordinates

Library Environment/Wind

Description The Horizontal Wind Model block computes the wind velocity in
body-axes coordinates.

The wind is specified by wind speed and wind direction in Earth axes.
The speed and direction can be constant or variable over time. The
direction of the wind is in degrees clockwise from the direction of the
Earth x-axis (north). The wind direction is defined as the direction from
which the wind is coming. Using the direction cosine matrix (DCM), the
wind velocities are transformed into body-axes coordinates.

Dialog
Box

Units
Specifies the input and output units:

5-295

Horizontal Wind Model

Units Wind Speed Wind Velocity

Metric (MKS) Meters per
second

Meters per second

English (Velocity
in ft/s)

Feet per
second

Feet per second

English (Velocity
in kts)

Knots Knots

Wind speed source
Specify source of wind speed:

External Variable wind speed input to
block

Internal Constant wind speed specified
in mask

Wind speed at altitude (m/s)
Constant wind speed used if internal wind speed source is
selected.

Wind direction source
Specify source of wind direction:

External Variable wind direction input
to block

Internal Constant wind direction
specified in mask

Wind direction at altitude (degrees clockwise from north)
Constant wind direction used if internal wind direction source is
selected. The direction of the wind is in degrees clockwise from
the direction of the Earth x-axis (north). The wind direction is
defined as the direction from which the wind is coming.

5-296

Horizontal Wind Model

Inputs and
Outputs

Input Dimension Type Description

First Contains the direction cosine matrix.

Second
(Optional)

Contains the wind speed in selected
units.

Third
(Optional)

Contains the wind direction in
degrees.

Output Dimension Type Description

First Contains the wind velocity in
body-axes, in selected units.

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Von Karman Wind Turbulence Model (Continuous)

Wind Shear Model

5-297

Ideal Airspeed Correction

Purpose Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from each other

Library Flight Parameters

Description The Ideal Airspeed Correction block calculates one of the following
airspeeds: equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS), from one of the other two airspeeds.

Three equations are used to implement the Ideal Airspeed Correction
block. The first equation shows TAS as a function of EAS, relative
pressure ratio at altitude (δ), and speed of sound at altitude (a).

TAS
EAS a
a

= ×

0

Using the compressible form of Bernoulli’s equation and assuming
isentropic conditions, the last two equations for EAS and CAS are
derived.

EAS
P q

P
=

−() +⎛
⎝⎜

⎞
⎠⎟

−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−2
1

1 1
0

1

 () /

CAS
P q

P
=

−() +
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−
2

1
1 10

0 0

1

 () /

In order to generate a correction table and its approximate inverse,
these two equations were solved for dynamic pressure (q). Having
values of q by a function of EAS and ambient pressure at altitude (P) or
by a function of CAS, allows the two equations to be solved using the
other’s solution for q, thus creating a solution for EAS that depends on
P and CAS and a solution for CAS that depends on P and EAS.

5-298

Ideal Airspeed Correction

Dialog
Box

Units
Specifies the input and output units:

Units
Airspeed
Input

Speed of
Sound

Air
Pressure

Airspeed
Output

Metric (MKS) Meters per
second

Meters per
second

Pascal Meters
per
second

English
(Velocity in
ft/s)

Feet per
second

Feet per
second

Pound
force
per
square
inch

Feet per
second

English
(Velocity in
kts)

Knots Knots Pound
force
per
square
inch

Knots

Airspeed input
Specify the airspeed input type:

5-299

Ideal Airspeed Correction

TAS True airspeed

EAS Equivalent airspeed

CAS Calibrated airspeed

Airspeed output
Specify the airspeed output type:

Velocity Input Velocity Output

EAS (equivalent airspeed)TAS

CAS (calibrated airspeed)

TAS (true airspeed)EAS

CAS (calibrated airspeed)

TAS (true airspeed)CAS

EAS (equivalent airspeed)

Action for out of range input
Specify if an out-of-range input (supersonic airspeeds) invokes a
warning, an error, or no action.

Inputs and
Outputs

Input Dimension Type Description

First Contains the selected airspeed in the
selected units.

Second Contains the speed of sound in the
selected units.

Third Contains the static pressure in the
selected units.

5-300

Ideal Airspeed Correction

Output Dimension Type Description

First Contains the selected airspeed in the
selected units.

Assumptions
and
Limitations

This block assumes that the air flow is compressible, isentropic
(subsonic flow), dry air with constant specific heat ratio, γ.

Examples See the aeroblk_indicated model and the aeroblk_calibrated model
for examples of this block.

References Lowry, J. T., Performance of Light Aircraft, AIAA Education Series,
Washington, DC, 1999.

Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986.

5-301

Incidence & Airspeed

Purpose Calculate incidence and airspeed

Library Flight Parameters

Description The Incidence & Airspeed block supports the 3DoF equations of motion
model by calculating the angle between the velocity vector and the
body, and also the total airspeed from the velocity components in the
body-fixed coordinate frame.

α = ⎛
⎝⎜

⎞
⎠⎟

= +

atan
w
u

V u w2 2

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Two-element
vector

Contains the velocity of the
body resolved into the body-fixed
coordinate frame.

Output Dimension Type Description

First Contains the incidence angle, in
radians.

Second Contains the airspeed of the body.

Examples See the aeroblk_guidance model and the aero_guidance_airframe
model for examples of this block.

5-302

Incidence & Airspeed

See Also Incidence, Sideslip & Airspeed

5-303

Incidence, Sideslip & Airspeed

Purpose Calculate incidence, sideslip, and airspeed

Library Flight Parameters

Description The Incidence, Sideslip & Airspeed block supports the 6DoF (Euler
Angles) and 6DoF (Quaternion) models by calculating the angles
between the velocity vector and the body, and also the total airspeed
from the velocity components in the body-fixed coordinate frame.

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Three-element
vector

Contains the velocity of the
body resolved into the body-fixed
coordinate frame.

Output Dimension Type Description

First Contains the incidence angle in
radians.

Second Contains the sideslip angle in
radians.

Third Contains the airspeed of the body.

5-304

Incidence, Sideslip & Airspeed

Examples See Airframe in the aeroblk_HL20 model for an example of this block.

See Also Incidence & Airspeed

5-305

Interpolate Matrix(x)

Purpose Return interpolated matrix for given input

Library GNC/Controls

Description The Interpolate Matrix(x) block interpolates a one-dimensional array
of matrices.

This one-dimensional case assumes a matrix M is defined at a discrete
number of values of an independent variable

x = [x1 x2 x3 ... xi xi+1 ... xn].

Then for xi < x < xi+1, the block output is given by

() () ()1 1− + +λ λM x M xi i

where the interpolation fraction is defined as

λ = −() −()+x x x xi i i/ 1

The matrix to be interpolated should be three dimensional, the first two
dimensions corresponding to the matrix at each value of x. For example,
if you have three matrices A, B, and C defined at x = 0, x = 0.5, and
x = 1.0, then the input matrix is given by

matrix(:,:,1) = A;

matrix(:,:,2) = B;

matrix(:,:,3) = C;

5-306

Interpolate Matrix(x)

Dialog
Box

Matrix to interpolate
Matrix to be interpolated, with three indices and the third index
labeling the interpolating values of x.

Inputs and
Outputs

Input Dimension Type Description

First Contains the interpolation index i.

Second Contains the interpolation fraction λ.

Output Dimension Type Description

First Contains the interpolated matrix.

Assumptions
and
Limitations

This block must be driven from the Simulink Prelookup block.

Examples See the following block reference pages: 1D Controller
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and
1D Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)

Interpolate Matrix(x,y,z)

5-307

Interpolate Matrix(x,y)

Purpose Return interpolated matrix for given inputs

Library GNC/Controls

Description The Interpolate Matrix(x,y) block interpolates a two-dimensional array
of matrices.

This two-dimensional case assumes the matrix is defined as a function of
two independent variables, x = [x1 x2 x3... xi xi+1 ... xn] and y = [y1 y2 y3 ...
yj yj+1 ... ym]. For given values of x and y, four matrices are interpolated.
Then for xi < x < xi+1 and yj < y < yj+1, the output matrix is given by

()[() (,) (,)]

[() (,)

1 1

1
1

1

− − + +

− +
+

+

y x i j x i j

y x i j x

M x y M x y

M x y MM x yi j(,)]+ +1 1

where the two interpolation fractions are denoted by

x i i ix x x x= − −+() / ()1

and

y j j jy y y y= − −+() / ()1

In the two-dimensional case, the interpolation is carried out first on x
and then y.

The matrix to be interpolated should be four dimensional, the first
two dimensions corresponding to the matrix at each value of x and
y. For example, if you have four matrices A, B, C, and D defined at
(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and
(x = 1.0,y = 3.0), then the input matrix is given by

matrix(:,:,1,1) = A;

matrix(:,:,1,2) = B;

matrix(:,:,2,1) = C;

matrix(:,:,2,2) = D;

5-308

Interpolate Matrix(x,y)

Dialog
Box

Matrix to interpolate
Matrix to be interpolated, with four indices and the third and
fourth indices labeling the interpolating values of x and y.

Inputs and
Outputs

Input Dimension Type Description

First Contains the first interpolation index
i.

Second Contains the first interpolation
fraction λx.

Third Contains the second interpolation
index j.

Fourth Contains the second interpolation
fraction λy.

Output Dimension Type Description

First Contains the interpolated matrix.

Assumptions
and
Limitations

This block must be driven from the Simulink Prelookup block.

5-309

Interpolate Matrix(x,y)

Examples See the following block reference pages: 2D Controller
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and
2D Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)

Interpolate Matrix(x,y,z)

5-310

Interpolate Matrix(x,y,z)

Purpose Return interpolated matrix for given inputs

Library GNC/Controls

Description The Interpolate Matrix(x,y,z) block interpolates a three-dimensional
array of matrices.

This three-dimensional case assumes the matrix is defined as a function
of three independent variables:

x = [x1 x2 x3 ... xi xi+1 ... xn]

y = [y1 y2 y3 ... yj yj+1 ... ym]

z = [z1 z2 z3 ... zk zk+1 ... zp]

For given values of x, y, and z, eight matrices are interpolated. Then for

xi < x < xi+1

yj < y < yj+1

zk < z < zk+1

the output matrix is given by

1 1 1 1−() −() −() () + ()⎡
⎣

⎤
⎦{ +λ λ λ λz y x i j k x i j kM x y z M x y z, , , ,

+ −() () + ()⎡
⎣

⎤
⎦}

+

+ + +λ λ λ

λ

y x i j k x i j k

z

M x y z M x y z1

1

1 1 1, , , ,

−−() −() () + ()⎡
⎣

⎤
⎦{ + + +λ λ λy x i j k x i j kM x y z M x y z1 1 1 1, , , ,

 + −() () + ()⎡
⎣

⎤
⎦}+ + + + +λ λ λy x i j k x i j kM x y z M x y z1 1 1 1 1 1, , , ,

where the three interpolation fractions are denoted by

5-311

Interpolate Matrix(x,y,z)

λ

λ

x i i i

y j j j

z k k k

x x x x

i y y y y

z z z z

= −() −()
= − −()
= −() −()

+

+

+

/

() /

/

1

1

1

In the three-dimensional case, the interpolation is carried out first on x,
then y, and finally z.

The matrix to be interpolated should be five dimensional, the first two
dimensions corresponding to the matrix at each value of x, y, and z. For
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at
the following values of x, y, and z, then the corresponding input matrix
is given by

(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;

(x = 0.0,y = 1.0,z = 0.5) matrix(:,:,1,1,2) = B;

(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;

(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;

(x = 1.0,y = 1.0,z = 0.1) matrix(:,:,2,1,1) = E;

(x = 1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;

(x = 1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;

(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;

Dialog
Box

5-312

Interpolate Matrix(x,y,z)

Matrix to interpolate
Matrix to be interpolated, with five indices and the third, fourth,
and fifth indices labeling the interpolating values of x, y, and z.

Inputs and
Outputs

Input Dimension Type Description

First Contains the first interpolation index
i.

Second Contains the first interpolation
fraction λx.

Third Contains the second interpolation
index j.

Fourth Contains the second interpolation
fraction λy.

Fifth Contains the third interpolation
index k.

Sixth Contains the third interpolation
fraction λz.

Output Dimension Type Description

First Contains the interpolated matrix.

Assumptions
and
Limitations

This block must be driven from the Simulink Prelookup block.

Examples See the following block reference pages: 3D Controller
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(v),B(v),C(v),F(v),H(v)], and
3D Self-Conditioned [A(v),B(v),C(v),D(v)].

5-313

Interpolate Matrix(x,y,z)

See Also Interpolate Matrix(x)

Interpolate Matrix(x,y)

5-314

Invert 3x3 Matrix

Purpose Compute inverse of 3-by-3 matrix

Library Utilities/Math Operations

Description The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix.

If det(A) = 0, an error occurs and the simulation stops.

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 3-by-3 matrix

Output Dimension Type Description

First 3-by-3 matrix Contains the matrix inverse of input
matrix.

See Also Adjoint of 3x3 Matrix

Create 3x3 Matrix

Determinant of 3x3 Matrix

5-315

ISA Atmosphere Model

Purpose Implement International Standard Atmosphere (ISA)

Library Environment/Atmosphere

Description The ISA Atmosphere Model block implements the mathematical
representation of the international standard atmosphere values for
ambient temperature, pressure, density, and speed of sound for the
input geopotential altitude.

The ISA Atmosphere Model block icon displays the input and output
metric units.

Dialog
Box

Change atmospheric parameters
Select to customize various atmospheric parameters to be
different from the ISA values.

Inputs and
Outputs

Input Dimension Type Description

First Contains the geopotential height.

5-316

ISA Atmosphere Model

Output Dimension Type Description

First Contains the temperature.

Second Contains the speed of sound.

Third Contains the air pressure.

Fourth Contains the air density.

Assumptions
and
Limitations

Below the geopotential altitude of 0 km and above the geopotential
altitude of 20 km, temperature and pressure values are held. Density
and speed of sound are calculated using a perfect gas relationship.

Reference [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model, CIRA-86 Atmosphere Model, Lapse Rate
Model

5-317

Julian Epoch to Besselian Epoch

Purpose Transform position and velocity components from Standard Julian
Epoch (J2000) to discontinued Standard Besselian Epoch (B1950)

Library Utilities/Axes Transformations

Description The Julian Epoch to Besselian Epoch block transforms two 3-by-1

vectors of Julian Epoch position rJ2000() , and Julian Epoch velocity
vJ2000() into Besselian Epoch position rB1950() , and Besselian Epoch
velocity vB1950() . The transformation is calculated using:

r
v

M M
M M

r
v

B

B

rr vr

rv vv

T
J

J

1950

1950

2000

2000

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

where

M M M Mrr vr rv vv, , ,()
are defined as:

Mrr =
0 9999256782 0 0111820611 0 0048579477
0 0111820610 0 99

. - . - .

. . 999374784 0 0000271765
0 0048579479 0 0000271474 0 999988199

- .
. - . . 77

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Mvr =
− −0 00000242395018 0 00000002710663 0 00000001177656

0 00
. . .
. 0000002710663 0 00000242397878 0 00000000006587

0 0000000117
. .

.
−

77656 0 00000000006582 0 00000242410173−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥. .

Mrv =
− −

− −
−

0 000551 0 238565 0 435739
0 238514 0 002667 0 008541
0

. . .
. . .
.. . .435623 0 012254 0 002117

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

5-318

Julian Epoch to Besselian Epoch

Mvv =
− −

−
0 99994704 0 01118251 0 00485767
0 01118251 0 99995883 0
. . .
. . ..
. . .

00002718
0 00485767 0 00002714 1 00000956−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 3-by-1 vector Contains the position in Standard
Julian Epoch (J2000).

Second 3-by-1 vector Contains the velocity in Standard
Julian Epoch (J2000).

Output Dimension Type Description

First 3-by-1 vector Contains the position in Standard
Besselian Epoch (B1950).

Second 3-by-1 vector Contains the velocity in Standard
Besselian Epoch (B1950).

Reference “Supplement to Department of Defense World Geodetic System 1984
Technical Report: Part I - Methods, Techniques and Data Used in
WGS84 Development,” DMA TR8350.2-A.

See Also Besselian Epoch to Julian Epoch

5-319

Lapse Rate Model

Purpose Implement lapse rate model for atmosphere

Library Environment/Atmosphere

Description The Lapse Rate Model block implements the mathematical
representation of the lapse rate atmospheric equations for ambient
temperature, pressure, density, and speed of sound for the input
geopotential altitude. You can customize this atmospheric model,
described below, by specifying atmospheric properties in the block
dialog.

The following equations define the troposphere

T T Lh

P P
T
T

T
T

a RT

g
LR

g
LR

= −

=
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

=

−

0

0
0

0
0

1

ρ ρ

γ

The following equations define the tropopause (lower stratosphere)

T T Lhts

P P
T
T

e
hts h

T
T

e

g
LR

g
RT

g
LR

g
RT

= −

=
⎛

⎝
⎜

⎞

⎠
⎟

−

=
⎛

⎝
⎜

⎞

⎠
⎟

−

0

0
0

0
0

1

()

ρ ρ
(()hts h

a RT

−

= γ

where:

5-320

Lapse Rate Model

T0 Absolute temperature at mean sea level in kelvin (K)

ρ0 Air density at mean sea level in kg/m3

P0 Static pressure at mean sea level in N/m2

h Altitude in m

hts Height of the troposphere in m

T Absolute temperature at altitude h in kelvin (K)

ρ Air density at altitude h in kg/m3

P Static pressure at altitude h in N/m2

a Speed of sound at altitude h in m/s2

L Lapse rate in K/m

R Characteristic gas constant J/kg-K

γ Specific heat ratio

g Acceleration due to gravity in m/s2

The Lapse Rate Model block icon displays the input and output metric
units.

5-321

Lapse Rate Model

Dialog
Box

Change atmospheric parameters
When selected, the following atmospheric parameters can be
customized to be different from the ISA values.

Acceleration due to gravity
Specify the acceleration due to gravity (g).

Ratio of specific heats
Specify the ratio of specific heats γ.

Characteristic gas constant
Specify the characteristic gas constant (R).

5-322

Lapse Rate Model

Lapse rate
Specify the lapse rate of the troposphere (L).

Height of troposphere
Specify the upper altitude of the troposphere, a range of
decreasing temperature.

Height of tropopause
Specify the upper altitude of the tropopause, a range of constant
temperature.

Air density at mean sea level
Specify the air density at sea level (ρ0).

Ambient pressure at mean sea level
Specify the ambient pressure at sea level (P0).

Ambient temperature at mean sea level
Specify the ambient temperature at sea level (T0).

Inputs and
Outputs

Input Dimension Type Description

First Contains the geopotential height.

Output Dimension Type Description

First Contains the temperature.

Second Contains the speed of sound.

5-323

Lapse Rate Model

Output Dimension Type Description

Third Contains the air pressure.

Fourth Contains the air density.

Assumptions
and
Limitations

Below the geopotential altitude of 0 km and above the geopotential
altitude of the tropopause, temperature and pressure values are
held. Density and speed of sound are calculated using a perfect gas
relationship.

Reference [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

5-324

Length Conversion

Purpose Convert from length units to desired length units

Library Utilities/Unit Conversions

Description The Length Conversion block computes the conversion factor from
specified input length units to specified output length units and applies
the conversion factor to the input signal.

The Length Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles

5-325

Length Conversion

Inputs and
Outputs

Input Dimension Type Description

First Contains the length in initial length
units.

Output Dimension Type Description

First Contains the length in final length
units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

5-326

LLA to ECEF Position

Purpose Calculate Earth-centered Earth-fixed (ECEF) position from geodetic
latitude, longitude, and altitude above planetary ellipsoid

Library Utilities/Axes Transformations

Description The LLA to ECEF Position block converts geodetic latitude μ() ,

longitude ι() , and altitude h() above the planetary ellipsoid into a
3-by-1 vector of ECEF position p() . The ECEF position is calculated
from geocentric latitude at mean sea-level (λs) and longitude using:

p
p
p

p

r h
r h

x

y

z

s s

s s=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

+
+

cos cos cos cos
cos sin cos s

λ ι μ ι
λ ι μ iin
sin sin

ι
λ μr hs s +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where geocentric latitude at mean sea-level and the radius at a surface

point (rs) are defined by flattening f() , and equatorial radius R() in
the following relationships.

λ μ

λ

s

s
s

f

r
R

f

= −

=
+ − −()

atan(() tan)

/ () sin

1

1 1 1 1

2

2

2 2

5-327

LLA to ECEF Position

Dialog
Box

Units
Specifies the parameter and output units:

Units Altitude
Equatorial
Radius Position

Metric
(MKS)

Meters Meters Meters

English Feet Feet Feet

5-328

LLA to ECEF Position

This option is only available when Planet model is set to Earth
(WGS84).

Planet model
Specifies the planet model to use: Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet. This option is only available
with Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the
equatorial radius parameter should be the same as the units for
altitude. This option is only available with Planet model set
to Custom.

Inputs and
Outputs

Input Dimension Type Description

First 2-by-1 vector Contains the geodetic latitude and
longitude, in degrees.

Second Scalar Contains the altitude above the
planetary ellipsoid.

Output Dimension Type Description

First 3-by-1 vector Contains the position in ECEF
frame, in same units as altitude.

Assumptions
and
Limitations

The planet is assumed to be ellipsoidal by setting flattening to 0.0 a
spherical planet can be achieved.

The implementation of the ECEF coordinate system assumes that the
origin is at the center of the planet, the x-axis intersects the Greenwich
meridian and the equator, the z-axis being the mean spin axis of the
planet, positive to the north, and the y-axis completes the right-handed
system.

5-329

LLA to ECEF Position

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics,
AIAA Education Series, Reston, Virginia, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,”
ANSI/AIAA R-004-1992.

See Also See “About Aerospace Coordinate Systems” on page 2-16.

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

ECEF Position to LLA

Flat Earth to LLA

Radius at Geocentric Latitude

5-330

Mach Number

Purpose Compute Mach number using velocity and speed of sound

Library Flight Parameters

Description The Mach Number block computes Mach number.

Mach number is defined as

Mach
V V
a

= ⋅

where α is speed of sound and V is velocity vector.

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Contains the velocity vector.

Second Contains the speed of sound.

Output Dimension Type Description

First 3-by-1 vector Contains the Mach number.

Examples See Airframe in the aeroblk_HL20 model for an example of this block.

See Also Aerodynamic Forces and Moments

Dynamic Pressure

5-331

Mass Conversion

Purpose Convert from mass units to desired mass units

Library Utilities/Unit Conversions

Description The Mass Conversion block computes the conversion factor from
specified input mass units to specified output mass units and applies
the conversion factor to the input signal.

The Mass Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbm Pound mass

kg Kilograms

slug Slugs

5-332

Mass Conversion

Inputs and
Outputs

Input Dimension Type Description

First Contains the mass in initial mass
units.

Output Dimension Type Description

First 3-by-1 vector Contains the mass in final mass
units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

5-333

MATLAB Animation

Purpose Create six–degrees-of-freedom multibody custom geometry block

Library Animation/MATLAB-Based Animation

Description The MATLAB Animation block creates a six-degrees-of-freedom
multibody custom geometry block based on the Aero.Animation object.
This block animates one or more vehicle geometries with x-y-z position
and Euler angles through the specified bounding box, camera offset,
and field of view. This block expects the rotation order z-y-x (psi,
theta, phi).

To update the camera parameters in the animation, first set the
parameters then close and double-click the block to reopen the MATLAB
Animation window.

To access the dialog box for this block, right-click the block, then select
Mask Parameters. Alternatively, double-click the block to display the
MATLAB Animation window, then click the Block Parameters icon.

Note The underlying graphics system stores values in single precision.
As a result, you might notice that motion at coordinate positions
greater than approximately 1e6 appear unstable. This is because a
single-precision number has approximately six digits of precision. The
instability is due to quantization at the local value of the eps MATLAB
function. To visualize more stable motion for coordinates beyond 1e6,
either offset the input data to a local zero, or scale down the coordinate
values feeding the visualization.

5-334

MATLAB Animation

Dialog
Box

Vehicles
Specifies the vehicle to animate. From the list, select from 1 to 10.
The block mask inputs change to reflect the number of vehicles
you select. Each vehicle has its own set of inputs, denoted by the
number at the beginning of the input label.

Geometries
Specifies the vehicle geometries. You can specify these geometries
using one of the following:

5-335

MATLAB Animation

• Variable name, for example geomVar

• Cell array of variable names, for example {geomVar,
AltGeomVar}

• String with single quotes, for example, 'astredwedge.mat'

• Mixed cell array of variable names and strings, for example
{'file1.mat', 'file2.mat', 'file3.ac', geomVar}

Note All specified geometries specified must exist in the
MATLAB workspace and file names must exist in the current
folder or be on the MATLAB path.

Bounding box coordinates
Specifies the boundary coordinates for the vehicle.

This parameter is not tunable during simulation. A change to this
parameter takes effect after simulation stops.

Camera offset
Specifies the distance from the camera aim point to the camera
itself.

This parameter is not tunable during simulation. A change to this
parameter takes effect after simulation stops.

Camera view angle
Specifies the camera view angle. By default, the camera aim point
is the position of the first body lagged dynamically to indicate
motion.

This parameter is not tunable during simulation. A change to this
parameter takes effect after simulation stops.

Sample time
Specify the sample time (-1 for inherited).

5-336

MATLAB Animation

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the altitude, the crossrange
position, and the downrange position
of the vehicle in Earth coordinates.

Output Dimension Type Description

First Vectors Contains the Euler angles (roll,
pitch, and yaw) of the vehicle.

See Also Aero.Animation in the Aerospace Toolbox documentation

5-337

Moments About CG Due to Forces

Purpose Compute moments about center of gravity due to forces applied at a
point, not center of gravity

Library Mass Properties

Description The Moments about CG Due to Forces block computes moments about
center of gravity due to forces that are applied at point CP, not at the
center of gravity.

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Contains the forces applied at point
CP.

Second Contains the center of gravity.

Third Contains the application point of
forces.

Output Dimension Type Description

First Contains the moments at the center
of gravity in x-axes, y-axes and
z-axes.

See Also Aerodynamic Forces and Moments

5-338

Moments About CG Due to Forces

Estimate Center of Gravity

5-339

Non-Standard Day 210C

Purpose Implement MIL-STD-210C climatic data

Library Environment/Atmosphere

Description The Non-Standard Day 210C block implements a portion of the
climatic data of the MIL-STD-210C worldwide air environment to 80
km (geometric or approximately 262,000 feet geometric) for absolute
temperature, pressure, density, and speed of sound for the input
geopotential altitude.

The Non-Standard Day 210C block icon displays the input and output
units selected from the Units list.

Dialog
Box

5-340

Non-Standard Day 210C

Units
Specifies the input and output units:

Units Height Temperature
Speed of
Sound

Air
Pressure Air Density

Metric
(MKS)

Meters Kelvin Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per second Pound force
per square
inch

Slug per cubic
foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound force
per square
inch

Slug per cubic
foot

Specification
Specify the atmosphere model type from one of the following
atmosphere models. The default is MIL-STD-210C.

1976 COESA-extended U.S. Standard Atmosphere

This selection is linked to the COESA Atmosphere Model block.
See the block reference for more information.

MIL-HDBK-310

This selection is linked to the Non-Standard Day 310 block. See
the block reference for more information.

MIL-STD-210C

This selection is linked to the Non-Standard Day 210C block.
See the block reference for more information.

Atmospheric model type
Select the representation of the atmospheric data.

5-341

Non-Standard Day 210C

Profile Realistic atmospheric profiles associated with
extremes at specified altitudes. Recommended
for simulation of vehicles vertically traversing
the atmosphere or when the total influence of the
atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally
traversing the atmosphere without much change
in altitude.

Extreme parameter
Select the atmospheric parameter that is the extreme value.

High temperature Option always available

Low temperature Option always available

High density Option always available

Low density Option always available

High pressure This option is available only when
Envelope is selected for Atmospheric
model type

Low pressure This option is available only when
Envelope is selected for Atmospheric
model type

Frequency of occurrence
Select percent of time the values would occur.

Extreme
values

This option is available only when Envelope is
selected for Atmospheric model type.

1% Option always available

5% This option is available only when Envelope is
selected for Atmospheric model type.

5-342

Non-Standard Day 210C

10% Option always available

20% This option is available only when Envelope is
selected for Atmospheric model type.

Altitude of extreme value
Select geometric altitude at which the extreme values occur.
Applies to the profile atmospheric model only.

5 km (16404 ft)

10 km (32808 ft)

20 km (65617 ft)

30 km (98425 ft)

40 km (131234 ft)

Action for out of range input
Specify if out-of-range input invokes a warning, error, or no action.

Inputs and
Outputs

Input Dimension Type Description

First Contains the geopotential height.

Output Dimension Type Description

First Contains the temperature.

Second Contains the speed of sound.

Third Contains the air pressure.

Fourth Contains the air density.

Assumptions
and
Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above
the geometric altitude of 80,000 meters (approximately 262,000 feet).
The envelope atmospheric model has a few exceptions where values are
held below the geometric altitude of 1 kilometer (approximately 3,281
feet) and above the geometric altitude of 30,000 meters (approximately

5-343

Non-Standard Day 210C

98,425 feet). These exceptions arise from lack of data in MIL-STD-210C
for these conditions.

In general, temperature values are interpolated linearly, and density
values are interpolated logarithmically. Pressure and speed of sound
are calculated using a perfect gas law. The envelope atmospheric model
has a few exceptions where the extreme value is the only value provided
as an output. Pressure in these cases is interpolated logarithmically.
These envelope atmospheric model exceptions apply to all cases of high
and low pressure, high and low temperature, and high and low density,
excluding the extreme values and 1% frequency of occurrence. These
exceptions arise from lack of data in MIL-STD-210C for these conditions.

Another limitation is that climatic data for the region south of 60°S
latitude is excluded from consideration in MIL-STD-210C.

This block uses the metric version of data from the MIL-STD-210C
specifications. Certain data within the envelope are inconsistent
between metric and English versions for low density, low temperature,
high temperature, low pressure, and high pressure. The most
significant differences occur in the following values:

• For low density envelope data with 5% frequency, the density values
in metric units are inconsistent at 4 km and 18 km and the density
values in English units are inconsistent at 14 km.

• For low density envelope data with 10% frequency,

- The density values in metric units are inconsistent at 18 km.

- The density values in English units are inconsistent at 14 km.

• For low density envelope data with 20% frequency, the density values
in English units are inconsistent at 14 km.

• For low temperature envelope data with 20% frequency, the
temperature values at 20 km are inconsistent.

• For high pressure envelope data with 10% frequency, the pressure
values in metric units at 8 km are inconsistent.

5-344

Non-Standard Day 210C

Reference Global Climatic Data for Developing Military Products (MIL-STD-210C),
9 January 1987, Department of Defense, Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

Non-Standard Day 310

5-345

Non-Standard Day 310

Purpose Implement MIL-HDBK-310 climatic data

Library Environment/Atmosphere

Description The Non-Standard Day 310 block implements a portion of the climatic
data of the MIL-HDBK-310 worldwide air environment to 80 km
(geometric or approximately 262,000 feet geometric) for absolute
temperature, pressure, density, and speed of sound for the input
geopotential altitude.

The Non-Standard Day 310 block icon displays the input and output
units selected from the Units list.

Dialog
Box

5-346

Non-Standard Day 310

Units
Specifies the input and output units:

Units Height Temperature
Speed of
Sound

Air
Pressure Air Density

Metric
(MKS)

Meters Kelvin Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per second Pound force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound force
per square
inch

Slug per
cubic foot

Specification
Specify the atmosphere model type from one of the following
atmosphere models. The default is MIL-HDBK-310.

1976 COESA-extended U.S. Standard Atmosphere

This selection is linked to the COESA Atmosphere Model block.
See the block reference for more information.

MIL-HDBK-310

This selection is linked to the Non-Standard Day 310 block. See
the block reference for more information.

MIL-STD-210C

This selection is linked to the Non-Standard Day 210C block.
See the block reference for more information.

Atmospheric model type
Select the representation of the atmospheric data.

5-347

Non-Standard Day 310

Profile Realistic atmospheric profiles associated with
extremes at specified altitudes. Recommended
for simulation of vehicles vertically traversing
the atmosphere or when the total influence of
the atmosphere is needed.

Envelope Uses extreme atmospheric values at each
altitude. Recommended for vehicles only
horizontally traversing the atmosphere without
much change in altitude.

Extreme parameter
Select the atmospheric parameter which is the extreme value.

High temperature Option always available

Low temperature Option always available

High density Option always available

Low density Option always available

High pressure This option is available only
when Envelope is selected for
Atmospheric model type.

Low pressure This option is available only
when Envelope is selected for
Atmospheric model type.

Frequency of occurrence
Select percent of time the values would occur.

Extreme
values

This option is available only when Envelope is
selected for Atmospheric model type.

1% Option always available

5% This option is available only when Envelope is
selected for Atmospheric model type.

5-348

Non-Standard Day 310

10% Option always available

20% This option is available only when Envelope is
selected for Atmospheric model type.

Altitude of extreme value
Select geometric altitude at which the extreme values occur.
Applies to the profile atmospheric model only.

5 km (16404 ft)

10 km (32808 ft)

20 km (65617 ft)

30 km (98425 ft)

40 km (131234 ft)

Action for out of range input
Specify if out-of-range input invokes a warning, error, or no action.

Inputs and
Outputs

Input Dimension Type Description

First Contains the geopotential height.

Output Dimension Type Description

First Contains the temperature.

Second Contains the speed of sound.

Third Contains the air pressure.

Fourth Contains the air density.

Assumptions
and
Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above
the geometric altitude of 80,000 meters (approximately 262,000 feet).
The envelope atmospheric model has a few exceptions where values are
held below the geometric altitude of 1 kilometer (approximately 3,281
feet) and above the geometric altitude of 30,000 meters (approximately

5-349

Non-Standard Day 310

98,425 feet). These exceptions arise from lack of data in MIL-HDBK-310
for these conditions.

In general, temperature values are interpolated linearly, and density
values are interpolated logarithmically. Pressure and speed of sound
are calculated using a perfect gas law. The envelope atmospheric model
has a few exceptions where the extreme value is the only value provided
as an output. Pressure in these cases is interpolated logarithmically.
These envelope atmospheric model exceptions apply to all cases of
high and low pressure, high and low temperature, and high and low
density, excluding the extreme values and 1% frequency of occurrence.
These exceptions arise from lack of data in MIL-HDBK-310 for these
conditions.

Another limitation is that climatic data for the region south of 60°S
latitude is excluded from consideration in MIL-HDBK-310.

This block uses the metric version of data from the MIL-STD-310
specifications. Certain data within the envelope are inconsistent
between metric and English versions for low density, low temperature,
high temperature, low pressure, and high pressure. The most
significant differences occur in the following values:

• For low density envelope data with 5% frequency, the density values
in metric units are inconsistent at 4 km and 18 km and the density
values in English units are inconsistent at 14 km.

• For low density envelope data with 10% frequency,

- The density values in metric units are inconsistent at 18 km.

- The density values in English units are inconsistent at 14 km.

• For low density envelope data with 20% frequency, the density values
in English units are inconsistent at 14 km.

• For low temperature envelope data with 20% frequency, the
temperature values at 20 km are inconsistent.

• For high pressure envelope data with 10% frequency, the pressure
values in metric units at 8 km are inconsistent.

5-350

Non-Standard Day 310

Reference Global Climatic Data for Developing Military Products
(MIL-HDBK-310), 23 June 1997, Department of Defense, Washington,
D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

Non-Standard Day 210C

5-351

NRLMSISE-00 Atmosphere Model

Purpose Implement mathematical representation of 2001 United States Naval
Research Laboratory Mass Spectrometer and Incoherent Scatter Radar
Exosphere

Library Environment/Atmosphere

Description The NRLMSISE-00 Atmosphere Model block implements the
mathematical representation of the 2001 United States Naval
Research Laboratory Mass Spectrometer and Incoherent Scatter
Radar Exosphere (NRLMSISE-00). This block calculates the neutral
atmosphere empirical model from the surface to lower exosphere (0 to
1,000,000 meters). When configuring the block for this calculation, you
can also take into account the anomalous oxygen, which can affect the
satellite drag above 500,000 meters.

Note This block is valid only for altitudes between 0 and 1,000,000
meters (1,000 kilometers).

5-352

NRLMSISE-00 Atmosphere Model

Dialog
Box

Units
Specifies the input and output units:

5-353

NRLMSISE-00 Atmosphere Model

Units Temperature Height Density

Metric
(MKS)

Kelvin Meters kg/m3, some
density
outputs 1m3

English Rankine Feet lbm/ft3,
some
density
outputs 1/ft3

Input local apparent solar time
Select this check box to input the local apparent solar time, in
hours. Otherwise, the block inputs the default value.

Input flux and magnetic index information
Select this check box to input the 81-day average of F10.7, the
daily F10.7 flux for the previous day, and the array of 7 magnetic
index information (see the aph argument in the atmosnrlmsise00
function of the Aerospace Toolbox User’s Guide). Otherwise, the
block inputs the default value.

Source for flags
Specify the variation flag source. If you specify External, you
must enter the variation flag as an array of 23. If you specify
Internal, the flag source is internal to the block.

Flags
Specify the variation flag as an array of 23. This parameter
applies only when Source for flags has a value of Internal. You
can specify one of the following values for a field. The default
value for each field is 1.

• 0.0

Removes that value’s effect on the output.

• 1.0

Applies the main and the cross-term effects of that value on
the output.

5-354

NRLMSISE-00 Atmosphere Model

• 2.0

Applies only the cross-term effect of that value on the output.
The array has the following fields.

Field Description

Flags(1) F10.7 effect on mean

Flags(2) Independent of time

Flags(3) Symmetrical annual

Flags(4) Symmetrical semiannual

Flags(5) Asymmetrical annual

Flags(6) Asymmetrical semiannual

Flags(7) Diurnal

Flags(8) Semidiurnal

Flags(9) Daily AP. If you set this field to -1, the block uses
the entire matrix of magnetic index information
(APH) instead of APH(:,1)

Flags(10) All UT, longitudinal effects

Flags(11) Longitudinal

Flags(12) UT and mixed UT, longitudinal

Flags(13) Mixed AP, UT, longitudinal

Flags(14) Terdiurnal

Flags(15) Departures from diffusive equilibrium

Flags(16) All exospheric temperature variations

Flags(17) All variations from 120,000 meter temperature
(TLB)

Flags(18) All lower thermosphere (TN1) temperature
variations

5-355

NRLMSISE-00 Atmosphere Model

Field Description

Flags(19) All 120,000 meter gradient (S) variations

Flags(20) All upper stratosphere (TN2) temperature
variations

Flags(21) All variations from 120,000 meter values (ZLB)

Flags(22) All lower mesosphere temperature (TN3)
variations

Flags(23) Turbopause scale height variations

Include anomalous oxygen number density in total mass density
Select this check box to take into account the anomalous oxygen
when calculating the neutral atmosphere empirical model from
the surface to lower exosphere (0 to 1,000,000 meters). Taking
into account this number can affect the satellite drag above
500,000 meters.

Action for out of range input
Specify if out-of-range input invokes a warning, error, or no action.

Inputs and
Outputs

Input Dimension
Type

Description

First Array Contains N altitude, in meters.

Second Array Contains N latitudes, in degrees.

Third Array Contains N longitude, in degrees.

Fourth Array Contains N years.

Fifth Array Contains N days of a year (1 to 365 (or 366)).

Sixth Array Contains N seconds in a day, in universal
time (UT).

5-356

NRLMSISE-00 Atmosphere Model

Input Dimension
Type

Description

Seventh Array Contains N local apparent solar time, in
hours.

Eighth Array Contains N 81-day average of F10.7 flux,
centered on day of year (doy).

Ninth Array Contains N daily F10.7 flux for previous day.

Tenth N-by-7
array

Contains N-by-7 of magnetic index
information.

Eleventh Array of
23

Contains flags to enable or disable particular
variations for the outputs. See following
table.

Twelfth String Specifies total mass density output.

'Oxygen'
Total mass density outputs include
anomalous oxygen number density.

'NoOxygen'
Total mass density outputs do not
include anomalous oxygen number
density.

Thirteenth Action Determines action for out-of-range input.
Specify if out-of-range input invokes a
'Warning', 'Error', or no action ('None').
The default is 'Warning'.

These flags, associated with the eleventh input, enable or disable
particular variations for the outputs.

Field Description

Flags(1) F10.7 effect on mean

Flags(2) Independent of time

5-357

NRLMSISE-00 Atmosphere Model

Field Description

Flags(3) Symmetrical annual

Flags(4) Symmetrical semiannual

Flags(5) Asymmetrical annual

Flags(6) Asymmetrical semiannual

Flags(7) Diurnal

Flags(8) Semidiurnal

Flags(9) Daily AP. If you set this field to -1, the block uses the
entire matrix of magnetic index information (APH)
instead of APH(:,1)

Flags(10) All UT, longitudinal effects

Flags(11) Longitudinal

Flags(12) UT and mixed UT, longitudinal

Flags(13) Mixed AP, UT, longitudinal

Flags(14) Terdiurnal

Flags(15) Departures from diffusive equilibrium

Flags(16) All exospheric temperature variations

Flags(17) All variations from 120,000 meter temperature (TLB)

Flags(18) All lower thermosphere (TN1) temperature variations

Flags(19) All 120,000 meter gradient (S) variations

Flags(20) All upper stratosphere (TN2) temperature variations

Flags(21) All variations from 120,000 meter values (ZLB)

Flags(22) All lower mesosphere temperature (TN3) variations

Flags(23) Turbopause scale height variations

5-358

NRLMSISE-00 Atmosphere Model

Assumptions
and
Limitations

The F107 and F107A values that are used to generate the model
correspond to the 10.7 cm radio flux at the actual distance of the Earth
from the Sun rather than the radio flux at 1 AU. The following site
provides both classes of values:

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

5-359

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

Pack net_fdm Packet for FlightGear

Purpose Generate net_fdm packet for FlightGear

Library Animation/Flight Simulator Interfaces

Description The Pack net_fdm Packet for FlightGear block creates, from separate
inputs, a FlightGear net_fdm data packet compatible with a particular
version of FlightGear flight simulator. All the signals supported by
the FlightGear net_fdm data packet are supported by this block. The
signals are arranged into six groups. Any group can be turned on or off.
Zeros are inserted for packet values that are part of inactive signal
groups.

See “Inputs and Outputs” on page 5-362 for details on signals and
signal groups.

Supported FlightGear versions: v0.9.3, v0.9.8/0.9.8a, v0.9.9, v0.9.10,
v1.0, v1.9.1

5-360

Pack net_fdm Packet for FlightGear

Dialog
Box

FlightGear version
Select your FlightGear software version.

Supported FlightGear versions: v0.9.3, v0.9.8/0.9.8a, v0.9.9,
v0.9.10, v1.0, v1.9.1.

Show position/altitude inputs
Select this check box to include the position and altitude inputs
(signal group 1) into the FlightGear net_fdm data packet.

Show velocity/acceleration inputs
Select this check box to include the velocity and acceleration
inputs (signal group 2) into the FlightGear net_fdm data packet.

5-361

Pack net_fdm Packet for FlightGear

Show control surface position inputs
Select this check box to include the control surface position inputs
(signal group 3) into the FlightGear net_fdm data packet.

Show engine/fuel inputs
Select this check box to include the engine and fuel inputs (signal
group 4) into the FlightGear net_fdm data packet.

Show landing gear inputs
Select this check box to include the landing gear inputs (signal
group 5) into the FlightGear net_fdm data packet.

Show environment inputs
Select this check box to include the environment inputs (signal
group 6) into the FlightGear net_fdm data packet.

Sample time
Specify the sample time (-1 for inherited).

Inputs and
Outputs

Input Signals Supported for FlightGear 0.9.3

This table lists all the input signals supported for Version 0.9.3:

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

l rad double 1 Geodetic longitude

μ rad double 1 Geodetic altitude

h m double 1 Altitude above sea
level

Φ rad single 1 Roll

Θ rad single 1 Pitch

ψ rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

5-362

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

dΦ/dt rad/sec single 1 Roll rate

dΦ/dt rad/sec single 1 Pitch rate

dψ/dt rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

v_north ft/sec single 1 North velocity in
local/body frame

v_east ft/sec single 1 East velocity in
local/body frame

v_down ft/sec single 1 Down/vertical
velocity in local/body
frame

v_wind_body_north ft/sec single 1 Body north velocity
relative to local
airmass

v_wind_body_east ft/sec single 1 Body east velocity
relative to local
airmass

v_wind_body_down ft/sec single 1 Body down/vertical
velocity relative to
local airmass

stall_warning — single 1 0.0–1.0, indicating
the amount of stall

A_X_pilot ft/sec2 single 1 X acceleration in
body frame

A_Y_pilot ft/sec2 single 1 Y acceleration in
body frame

5-363

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

A_Z_pilot ft/sec2 single 1 Z acceleration in
body frame

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific units

single 1 Elevator position

flaps geometry-
specific units

single 1 Flaps position

left_aileron geometry-
specific units

single 1 Left aileron position

right_aileron geometry-
specific units

single 1 Right aileron
position

rudder geometry-
specific units

single 1 Rudder position

speedbrake geometry-
specific units

single 1 Speed brake position

spoilers geometry-
specific units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines — int32 1 Number of valid
engines

eng_state enum int32 4 Engine state
(0=off, 1=cranking,
2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

oil_temp oF single 4 Oil temp

5-364

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

oil_px lbf/in2 single 4 Oil pressure

num_tanks — int32 1 Max number of fuel
tanks

fuel_quantity — single 4 Amount of fuel in
tanks (0–1 fraction)

Signal Group 5: ShowLandingGearInputs

num_wheels — int32 1 Maximum number of
wheels

wow — boolean 3 Weight on wheels
signal (1=wheel is on
ground)

gear_pos — single 3 Landing gear
position (0-1,
indicating amount
deployed)

gear_steer — single 3 Landing gear
steering angle

gear_compression — single 3 Landing gear
compression

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec int32 1 Current UNIX time

warp sec int32 1 Offset in seconds to
UNIX time

visibility m single 1 Visibility in meters
(for visual effects)

5-365

Pack net_fdm Packet for FlightGear

Input Signals Supported for FlightGear 0.9.8/0.9.8a

This table lists all the input signals supported for Versions 0.9.8/0.9.8a:

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

l rad double 1 Geodetic longitude

μ rad double 1 Geodetic altitude

h m double 1 Altitude above sea
level

Φ rad single 1 Roll

Θ rad single 1 Pitch

ψ rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

α rad single 1 Angle of attack

β rad single 1 sideslip angle

dΦ/dt rad/sec single 1 Roll rate

dΦ/dt rad/sec single 1 Pitch rate

dψ/dt rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

v_north ft/sec single 1 North velocity in
local/body frame

v_east ft/sec single 1 East velocity in
local/body frame

5-366

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

v_down ft/sec single 1 Down/vertical
velocity in
local/body frame

v_wind_body_north ft/sec single 1 Body north velocity
relative to local
airmass

v_wind_body_east ft/sec single 1 Body east velocity
relative to local
airmass

v_wind_body_down ft/sec single 1 Body down/vertical
velocity relative to
local airmass

A_X_pilot ft/sec2 single 1 X acceleration in
body frame

A_Y_pilot ft/sec2 single 1 Y acceleration in
body frame

A_Z_pilot ft/sec2 single 1 Z acceleration in
body frame

stall_warning — single 1 0.0–1.0, indicating
the amount of stall

slip_deg deg single 1 Slip ball deflection

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific
units

single 1 Elevator position

elevator_trim_tab geometry-
specific
units

single 1 Elevator trim
position

5-367

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

left_flap geometry-
specific
units

single 1 Left flap position

right_flap geometry-
specific
units

single 1 Right flap position

left_aileron geometry-
specific
units

single 1 Left aileron position

right_aileron geometry-
specific
units

single 1 Right aileron
position

rudder geometry-
specific
units

single 1 Rudder position

nose_wheel geometry-
specific
units

single 1 Nose wheel position

speedbrake geometry-
specific
units

single 1 Speed brake
position

spoilers geometry-
specific
units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines — int32 1 Number of valid
engines

eng_state enum int32 4 Engine state
(0=off, 1=cranking,
2=running)

5-368

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

cht oF single 4 Cylinder head
temperature

mp_osi psi single 4 Manifold pressure

tit oF single 4 Turbine inlet
temperature

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

num_tanks — int32 1 Max number of fuel
tanks

fuel_quantity — single 4 Amount of fuel in
tanks (0–1 fraction)

Signal Group 5: ShowLandingGearInputs

num_wheels — int32 1 Maximum number
of wheels

wow — boolean 3 Weight on wheels
signal (1=wheel is
on ground)

gear_pos — single 3 Landing gear
position (0–1,
indicating amount
deployed)

gear_steer — single 3 Landing gear
steering angle

5-369

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

gear_compression — single 3 Landing gear
compression

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec int32 1 Current UNIX time

warp sec int32 1 Offset in seconds to
UNIX time

visibility m single 1 Visibility in meters
(for visual effects)

Input Signals Supported for FlightGear 0.9.9

This table lists all the input signals supported for Version 0.9.9:

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

l rad double 1 Geodetic longitude

μ rad double 1 Geodetic latitude

h m double 1 Altitude above sea
level

Φ rad single 1 Roll

Θ rad single 1 Pitch

ψ rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

α rad single 1 Angle of attack

β rad single 1 sideslip angle

dΦ/dt rad/sec single 1 Roll rate

dΦ/dt rad/sec single 1 Pitch rate

5-370

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

dψ/dt rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

v_north ft/sec single 1 North velocity in
local/body frame

v_east ft/sec single 1 East velocity in
local/body frame

v_down ft/sec single 1 Down/vertical velocity
in local/body frame

v_wind_body_north ft/sec single 1 Body north velocity
relative to local
airmass

v_wind_body_east ft/sec single 1 Body east velocity
relative to local
airmass

v_wind_body_down ft/sec single 1 Body down/vertical
velocity relative to
local airmass

A_X_pilot ft/sec2 single 1 X acceleration in body
frame

A_Y_pilot ft/sec2 single 1 Y acceleration in body
frame

A_Z_pilot ft/sec2 single 1 Z acceleration in body
frame

stall_warning — single 1 0.0–1.0, indicating the
amount of stall

slip_deg deg single 1 Slip ball deflection

Signal Group 3: ShowControlSurfacePositionInputs

5-371

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

elevator geometry-
specific
units

single 1 Elevator position

elevator_trim_tab geometry-
specific
units

single 1 Elevator trim position

left_flap geometry-
specific
units

single 1 Left flap position

right_flap geometry-
specific
units

single 1 Right flap position

left_aileron geometry-
specific
units

single 1 Left aileron position

right_aileron geometry-
specific
units

single 1 Right aileron position

rudder geometry-
specific
units

single 1 Rudder position

nose_wheel geometry-
specific
units

single 1 Nose wheel position

speedbrake geometry-
specific
units

single 1 Speed brake position

spoilers geometry-
specific
units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

5-372

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

num_engines — uint32 1 Number of valid
engines

eng_state enum uint32 4 Engine state
(0=off, 1=cranking,
2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

cht oF single 4 Cylinder head
temperature

mp_osi psi single 4 Manifold pressure

tit oF single 4 Turbine inlet
temperature

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

num_tanks — uint32 1 Max number of fuel
tanks

fuel_quantity — single 4 Amount of fuel in
tanks (0–1 fraction)

Signal Group 5: ShowLandingGearInputs

num_wheels — uint32 1 Maximum number of
wheels

wow — uint32 3 Weight on wheels
signal (1=wheel is on
ground)

gear_pos — single 3 Landing gear position
(0-1, indicating
amount deployed)

5-373

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

gear_steer — single 3 Landing gear steering
angle

gear_compression — single 3 Landing gear
compression

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec uint32 1 Current UNIX time

warp sec int32 1 Offset in seconds to
UNIX time

visibility m single 1 Visibility in meters
(for visual effects)

Input Signals Supported for FlightGear 0.9.10/1.0/1.9.1

This table lists all the input signals supported for Version 0.9.10, 1.0,
and 1.9.1:

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

l rad double 1 Geodetic longitude

μ rad double 1 Geodetic latitude

h m double 1 Altitude above sea
level

Φ rad single 1 Roll

Θ rad single 1 Pitch

ψ rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

α rad single 1 Angle of attack

5-374

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

β rad single 1 sideslip angle

dΦ/dt rad/sec single 1 Roll rate

dΦ/dt rad/sec single 1 Pitch rate

dψ/dt rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

v_north ft/sec single 1 North velocity in
local/body frame

v_east ft/sec single 1 East velocity in
local/body frame

v_down ft/sec single 1 Down/vertical velocity
in local/body frame

v_wind_body_north ft/sec single 1 Body north velocity
relative to local
airmass

v_wind_body_east ft/sec single 1 Body east velocity
relative to local
airmass

v_wind_body_down ft/sec single 1 Body down/vertical
velocity relative to
local airmass

A_X_pilot ft/sec2 single 1 X acceleration in body
frame

A_Y_pilot ft/sec2 single 1 Y acceleration in body
frame

A_Z_pilot ft/sec2 single 1 Z acceleration in body
frame

5-375

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

stall_warning — single 1 0.0–1.0, indicating the
amount of stall

slip_deg deg single 1 Slip ball deflection

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific
units

single 1 Elevator position

elevator_trim_tab geometry-
specific
units

single 1 Elevator trim position

left_flap geometry-
specific
units

single 1 Left flap position

right_flap geometry-
specific
units

single 1 Right flap position

left_aileron geometry-
specific
units

single 1 Left aileron position

right_aileron geometry-
specific
units

single 1 Right aileron position

rudder geometry-
specific
units

single 1 Rudder position

nose_wheel geometry-
specific
units

single 1 Nose wheel position

5-376

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

speedbrake geometry-
specific
units

single 1 Speed brake position

spoilers geometry-
specific
units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines — uint32 1 Number of valid
engines

eng_state enum uint32 4 Engine state
(0=off, 1=cranking,
2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

fuel_px psi single 4 Fuel pressure

EGT oF single 4 Exhaust gas temp

cht oF single 4 Cylinder head
temperature

mp_osi psi single 4 Manifold pressure

tit oF single 4 Turbine inlet
temperature

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

num_tanks — uint32 1 Max number of fuel
tanks

fuel_quantity — single 4 Amount of fuel in
tanks (0–1 fraction)

Signal Group 5: ShowLandingGearInputs

5-377

Pack net_fdm Packet for FlightGear

Name Units Type Width Description

num_wheels — uint32 1 Maximum number of
wheels

wow — uint32 3 Weight on wheels
signal (1=wheel is on
ground)

gear_pos — single 3 Landing gear position
(0–1, indicating
amount deployed)

gear_steer — single 3 Landing gear steering
angle

gear_compression — single 3 Landing gear
compression

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec uint32 1 Current UNIX time

warp sec int32 1 Offset in seconds to
UNIX time

visibility m single 1 Visibility in meters
(for visual effects)

Output Signal

The output signal is the FlightGear net_fdm data packet.

Examples See the asbhl20 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

Generate Run Script

Send net_fdm Packet to FlightGear

5-378

Pilot Joystick

Purpose Provide joystick interface on Windows platform

Library Animation/Animation Support Utilities

Description The Pilot Joystick block provides a pilot joystick interface for a Windows
platform. Roll, pitch, yaw, and throttle are mapped to the joystick X,
Y, R, and Z channels respectively.

You can also configure the block to output all channels by setting the
Output configuration parameter to AllOutputs.

This block does not produce deployable code.

Dialog
Box

5-379

Pilot Joystick

Joystick ID
Specify the joystick ID: Joystick 1, Joystick 2, or None.

Output configuration
Specify the output configuration: FourAxis or AllOutputs (see
Pilot Joystick All). FourAxis is the default.

Sample time
Specify the sample time (-1 for inherited).

Inputs and
Outputs

The block has the following outputs.

Four Axis Mode (All Double Precision Values)

Port Number Output Range Joystick Description

1 [-1, 1] [left, right] Roll command

2 [-1, 1] [forward/down,
back/up]

Pitch command

3 [-1, 1] [left, right] Yaw command

4 [0, 1] [min, max] Throttle command

All Outputs Mode (All Values Double Precision, Except for Buttons)

Port
Number

Array
Number Channel

Output
Range Joystick Description

1 1 X [-1, 1] [left, right] Roll command

1 2 Y [-1, 1] [forward/down,
back/up]

Pitch command

1 3 Z [0, 1] [min, max] Throttle
command

1 4 R [-1, 1] [left, right] Yaw command

5-380

Pilot Joystick

All Outputs Mode (All Values Double Precision, Except for Buttons) (Continued)

Port
Number

Array
Number Channel

Output
Range Joystick Description

1 5 U [0, 1] [min, max] U channel value

1 6 V [0, 1] [min, max] V channel value

2 buttons uint32 flagword
containing up
to 32 button
states. Bit 0 is
button 1, etc.

3 POV Point-of-view
hat value in
degrees as a
double. Zero
degrees is
straight ahead,
90 is to the left,
etc.

Output values are [-1,1] for centered values, [0,1] for noncentered
values, and uint32 for the buttons in All Outputs mode. Output sense
is positive for right-hand rule rotations on centered values (roll, pitch,
and yaw).

Assumptions
and
Limitations

If the joystick does not support an R (rudder or “twist”) channel, yaw
output is set to zero. Outputs are of type double except for the buttons
output in AllOutputs mode, which is a uint32 flagword of bits. On
non-Windows platforms, this block currently outputs zeros.

Note Pitch value has the opposite sense as that delivered by
FlightGear’s joystick interface.

5-381

Pilot Joystick

See Also Pilot Joystick All, Simulation Pace

5-382

Pilot Joystick All

Purpose Provide joystick interface on Windows platform

Library Animation/Animation Support Utilities

Description The Pilot Joystick block provides a pilot joystick interface for a Windows
platform. Roll, pitch, yaw, and throttle are mapped to the joystick X,
Y, R, and Z channels respectively.

You can also configure the block to output four axes by setting the
Output configuration parameter to FourAxis.

This block does not produce deployable code.

Dialog
Box

5-383

Pilot Joystick All

Joystick ID
Specify the joystick ID: Joystick 1, Joystick 2, or None.

Output configuration
Specify the output configuration: FourAxis (see Pilot Joystick) or
AllOutputs. AllOutputs is the default.

Sample time
Specify the sample time (-1 for inherited).

Inputs and
Outputs

The block has the following outputs.

Four Axis Mode (All Double Precision Values)

Port Number Output Range Joystick Description

1 [-1, 1] [left, right] Roll command

2 [-1, 1] [forward/down,
back/up]

Pitch command

3 [-1, 1] [left, right] Yaw command

4 [0, 1] [min, max] Throttle command

All Outputs Mode (All Values Double Precision, Except for Buttons)

Port
Number

Array
Number Channel

Output
Range Joystick Description

1 1 X [-1, 1] [left, right] Roll command

1 2 Y [-1, 1] [forward/down,
back/up]

Pitch command

1 3 Z [0, 1] [min, max] Throttle
command

1 4 R [-1, 1] [left, right] Yaw command

5-384

Pilot Joystick All

All Outputs Mode (All Values Double Precision, Except for Buttons) (Continued)

Port
Number

Array
Number Channel

Output
Range Joystick Description

1 5 U [0, 1] [min, max] U channel value

1 6 V [0, 1] [min, max] V channel value

2 buttons uint32 flagword
containing up to
32 button states.
Bit 0 is button 1,
etc.

3 POV Point-of-view hat
value in degrees
as a double.
Zero degrees is
straight ahead,
90 is to the left,
etc.

Output values are [-1,1] for centered values, [0,1] for noncentered
values, and uint32 for the buttons in All Outputs mode. Output sense
is positive for right-hand rule rotations on centered values (roll, pitch,
and yaw).

Assumptions
and
Limitations

If the joystick does not support an R (rudder or “twist”) channel, yaw
output is set to zero. Outputs are of type double except for the buttons
output in AllOutputs mode, which is a uint32 flagword of bits. On
non-Windows platforms, this block currently outputs zeros.

Note Pitch value has the opposite sense as that delivered by
FlightGear’s joystick interface.

See Also Pilot Joystick, Simulation Pace

5-385

Pressure Altitude

Purpose Calculate pressure altitude based on ambient pressure

Library Environment/Atmosphere

Description The Pressure Altitude block computes the pressure altitude based
on ambient pressure. Pressure altitude is the altitude in the 1976
Committee on the Extension of the Standard Atmosphere (COESA)
United States with specified ambient pressure.

Pressure altitude is also known as the mean sea level (MSL) altitude.

The Pressure Altitude block icon displays the input and output units
selected from the Units list.

Dialog
Box

Units
Specifies the input units:

Units Pstatic Alt_p

Metric (MKS) Pascal Meters

English Pound force per square inch Feet

Action for out of range input
Specify if out-of-range input invokes a warning, error, or no action.

5-386

Pressure Altitude

Inputs and
Outputs

Input Dimension Type Description

First Contains the static pressure.

Output Dimension Type Description

First Contains the pressure altitude.

Assumptions
and
Limitations

Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above
the pressure of 101325 Pa (approximately 14.7 psi), altitude values
are extrapolated logarithmically.

Air is assumed to be dry and an ideal gas.

Reference U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

5-387

Pressure Conversion

Purpose Convert from pressure units to desired pressure units

Library Utilities/Unit Conversions

Description The Pressure Conversion block computes the conversion factor from
specified input pressure units to specified output pressure units and
applies the conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

psi Pound mass per square inch

Pa Pascals

psf Pound mass per square foot

atm Atmospheres

5-388

Pressure Conversion

Inputs and
Outputs

Input Dimension Type Description

First Contains the pressure in initial
pressure units.

Output Dimension Type Description

First Contains the pressure in final
pressure units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Temperature Conversion

Velocity Conversion

5-389

Quaternion Conjugate

Purpose Calculate conjugate of quaternion

Library Utilities/MathOperations

Description The Quaternion Conjugate block calculates the conjugate for a given
quaternion.

The quaternion has the form of

q q q q q= + + +0 1 2 3i j k

The quaternion conjugate has the form of

′ = − − −q q q q q0 1 2 3i j k

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Quaternion or
vector

Contains quaternions in the form of
[q0, r0, ... , q1, r1, ... , q2, r2, ... , q3,
r3, ...].

Output Dimension Type Description

First Quaternion
conjugate or vector

Contains quaternion conjugates in
the form of [q0′, r0′, ... , q1′, r1′, ... , q2′,
r2′, ... , q3′, r3′, ...].

See Also Quaternion Division

5-390

Quaternion Conjugate

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

5-391

Quaternion Division

Purpose Divide quaternion by another quaternion

Library Utilities/Math Operations

Description The Quaternion Division block divides a given quaternion by another.

The quaternions have the form of

q q q q q= + + +0 1 2 3i j k

and

r r r r r= + + +0 1 2 3i j k

The resulting quaternion from the division has the form of

t
q
r

t t t t= = + + +0 1 2 3i j k

where

t
r q r q r q r q

r r r r

t
r q r q r q

0
0 0 1 1 2 2 3 3

0
2

1
2

2
2

3
2

1
0 1 1 0 2 3

=
+ + +
+ + +

=
− − +

()

(rr q

r r r r

t
r q r q r q r q

r r r r

3 2

0
2

1
2

2
2

3
2

2
0 2 1 3 2 0 3 1

0
2

1
2

2
2

)

()

+ + +

=
+ − −
+ + + 33

2

3
0 3 1 2 2 1 3 0

0
2

1
2

2
2

3
2

t
r q r q r q r q

r r r r
=

− + −
+ + +

()

5-392

Quaternion Division

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Quaternion or
vector

Contains quaternions in the form of
[q0, p0, ..., q1, p1, ... , q2, p2, ... , q3,
p3, ...].

Second Quaternion or
vector

Contains quaternions in the form of
[s0, r0, ..., s1, r1, ... , s2, r2, ... , s3, r3,
...].

Output Dimension Type Description

First Quaternion or
vector

Contains resulting quaternion or
vector of resulting quaternions from
division.

The output is the resulting quaternion from the division or vector of
resulting quaternions from division.

See Also Quaternion Conjugate

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

5-393

Quaternion Inverse

Purpose Calculate inverse of quaternion

Library Utilities/Math Operations

Description The Quaternion Inverse block calculates the inverse for a given
quaternion.

The quaternion has the form of

q q q q q= + + +0 1 2 3i j k

The quaternion inverse has the form of

q
q q q q

q q q q
− =

− − −
+ + +

1 0 1 2 3

0
2

1
2

2
2

3
2

i j k

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Quaternion or
vector

Contains quaternions in the form of
[q0, r0, ..., q1, r1, ... , q2, r2, ... , q3, r3,
...].

Output Dimension Type Description

First Quaternion
inverse or vector

Contains quaternion inverse or
vector of quaternion inverses.

See Also Quaternion Conjugate

5-394

Quaternion Inverse

Quaternion Division

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

5-395

Quaternion Modulus

Purpose Calculate modulus of quaternion

Library Utilities/Math Operations

Description The Quaternion Modulus block calculates the magnitude for a given
quaternion.

The quaternion has the form of

q q q q q= + + +0 1 2 3i j k

The quaternion modulus has the form of

q q q q q= + + +0
2

1
2

2
2

3
2

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Quaternion or
vector

Contains quaternions in the form of
[q0, r0, ..., q1, r1, ... , q2, r2, ... , q3, r3,
...].

Output Dimension Type Description

First Quaternion
modulus or vector

Contains quaternion modulus or
vector of quaternion modulus in the
form of [|q|, |r|, ...].

See Also Quaternion Conjugate

5-396

Quaternion Modulus

Quaternion Division

Quaternion Inverse

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

5-397

Quaternion Multiplication

Purpose Calculate product of two quaternions

Library Utilities/Math Operations

Description The Quaternion Multiplication block calculates the product for two
given quaternions.

The quaternions have the form of

q q q q q= + + +0 1 2 3i j k

and

r r r r r= + + +0 1 2 3i j k

The quaternion product has the form of

t q r t t t t= × = + + +0 1 2 3i j k

where

t r q r q r q r q

t r q r q r q r q

t r q r

0 0 0 1 1 2 2 3 3

1 0 1 1 0 2 3 3 2

2 0 2

= − − −
= + − +
= +

()

()

(11 3 2 0 3 1

3 0 3 1 2 2 1 3 0

q r q r q

t r q r q r q r q

+ −
= − + +

)

()

Dialog
Box

5-398

Quaternion Multiplication

Inputs and
Outputs

Input Dimension Type Description

First Quaternion or
vector

Contains quaternions in the form of
[q0, p0, ..., q1, p1, ... , q2, p2, ... , q3,
p3, ...].

Second Quaternion or
vector

Contains quaternions in the form of
[s0, r0, ..., s1, r1, ... , s2, r2, ... , s3, r3,
...].

Output Dimension Type Description

First Quaternion
product or vector

Contains quaternion product or
vector of quaternion products.

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

5-399

Quaternion Norm

Purpose Calculate norm of quaternion

Library Utilities/Math Operations

Description The Quaternion Norm block calculates the norm for a given quaternion.

The quaternion has the form of

q q q q= + + +0 1 2 3i j kq

The quaternion norm has the form of

norm q q q q q() = + + +0
2

1
2

2
2

3
2

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Quaternion or
vector

Contains quaternions in the form of
[q0, r0, ..., q1, r1, ... , q2, r2, ... , q3, r3,
...].

Output Dimension Type Description

First Quaternion norm
or vector

Contains quaternion norm or vector
of quaternion norms in the form of
[norm(q), norm(r), ...].

See Also Quaternion Conjugate

Quaternion Division

5-400

Quaternion Norm

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Normalize

Quaternion Rotation

5-401

Quaternion Normalize

Purpose Normalize quaternion

Library Utilities/Math Operations

Description The Quaternion Normalize block calculates a normalized quaternion for
a given quaternion.

The quaternion has the form of

q q q q q= + + +0 1 2 3i j k

The normalized quaternion has the form of

normal q
q q q q

q q q q
() =

+ + +

+ + +
0 1 2 3

0
2

1
2

2
2

3
2

i j k

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Quaternion or
vector

Contains quaternions in the form of
[q0, r0, ..., q1, r1, ... , q2, r2, ... , q3, r3,
...].

Output Dimension Type Description

First Normalized
quaternion or
vector

Contains normalized quaternion or
vector of normalized quaternions.

5-402

Quaternion Normalize

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Rotation

5-403

Quaternion Rotation

Purpose Rotate vector by quaternion

Library Utilities/Math Operations

Description The Quaternion Rotation block rotates a vector by a quaternion.

The quaternion has the form of

q q q q q= + + +0 1 2 3i j k

The vector has the form of

v v v v= + +i j k1 2 3

The rotated vector has the form of

′ =

′

′

′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

− − + −

v

v

v

v

q q q q q q q q q1

2

3

2
2

3
2

1 2 0 3 1 31 2 2 2 2() () (00 2

1 2 0 3 1
2

3
2

2 3 0 1

1 3 0 2 2

2 1 2 2 2

2 2

q

q q q q q q q q q q

q q q q q

)

() () ()

() (

− − − +

+ qq q q q q

v
v
v

3 0 1 1
2

2
2

1

2

31 2 2− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥) ()

Dialog
Box

5-404

Quaternion Rotation

Inputs and
Outputs

Input Dimension Type Description

First Quaternion or
vector

Contains quaternions in the form of
[q0, r0, ..., q1, r1, ... , q2, r2, ... , q3, r3,
...].

Second Vector Contains vector or vector of vectors
in the form of [v1, u1, ... , v2, u2, ... ,
v3, u3, ...].

Output Dimension Type Description

First Rotated
quaternion or
vector

Contains rotated vector or vector of
rotated vectors.

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

5-405

Quaternions to Direction Cosine Matrix

Purpose Convert quaternion vector to direction cosine matrix

Library Utilities/Axes Transformations

Description The Quaternions to Direction Cosine Matrix block transforms the
four-element unit quaternion vector (q0, q1, q2, q3) into a 3-by-3 direction
cosine matrix (DCM). The outputted DCM performs the coordinate
transformation of a vector in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described
by a quaternion q, it changes to P′ given by the following relationship:

′ =
= + + +

= − − −
= + + +

P qPq
q q q q q

q q q q q

P x y z

c

c
0 1 2 3

0 1 2 3

0

i j k

i j k
i j k

Expanding P′ and collecting terms in x, y, and z gives the following for
P′ in terms of P in the vector quaternion format:

′ =
′
′
′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
+ − − + − +

P
x
y
z

q q q q x q q q q y
0 0

2 20
2

1
2

2
2

3
2

1 2 0 3() () (()

() () ()

q q q q z

q q q q x q q q q y q q q q

1 3 0 2

0 3 1 2 0
2

1
2

2
2

3
2

2 3 0 12 2

+

+ + − + − + − zz

q q q q x q q q q y q q q q z2 21 3 0 2 0 1 2 3 0
2

1
2

2
2

3
2() () ()− + + + − − +

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥
⎥

Since individual terms in P′ are linear combinations of terms in x, y,
and z, a matrix relationship to rotate the vector (x, y, z) to (x′, y′, z′) can
be extracted from the preceding. This matrix rotates a vector in inertial
axes, and hence is transposed to generate the DCM that performs the
coordinate transformation of a vector in inertial axes into body axes.

5-406

Quaternions to Direction Cosine Matrix

DCM

q q q q q q q q q q q q

q q q q=

+ − − + −

−

() () ()

() (

0
2

1
2

2
2

3
2

1 2 0 3 1 3 0 2

1 2 0 3

2 2

2 qq q q q q q q q

q q q q q q q q q

0
2

1
2

2
2

3
2

2 3 0 1

1 3 0 2 2 3 0 1 0
2

2

2 2

− + − +

+ − −

) ()

() () (qq q q1
2

2
2

3
2− +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥)

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 4-by-1 quaternion
vector

Contains the quaternion vector.

Output Dimension Type Description

First 3-by-3 direction
cosine matrix.

Contains the direction cosine matrix.

See Also Direction Cosine Matrix to Rotation Angles

Direction Cosine Matrix to Quaternions

Rotation Angles to Direction Cosine Matrix

Rotation Angles to Quaternions

5-407

Quaternions to Rotation Angles

Purpose Determine rotation vector from quaternion

Library Utilities/Axes Transformations

Description The Quaternions to Rotation Angles block converts the four-element
quaternion vector (q0, q1, q2, q3) into the rotation described by the three
rotation angles (R1, R2, R3). The block generates the conversion by
comparing elements in the direction cosine matrix (DCM) as a function
of the rotation angles. The elements in the DCM are functions of a
unit quaternion vector. For example, for the rotation order z-y-x, the
DCM is defined as:

DCM =
−

−
cos cos cos sin sin
(sin sin cos cos sin) (sin sin s

 iin cos cos) sin cos

(cos sin cos sin sin) (cos sin sin

+

+ −−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥sin cos) cos cos

The DCM defined by a unit quaternion vector is:

DCM

q q q q q q q q q q q q

q q q q=

+ − − + −

−

() () ()

() (

0
2

1
2

2
2

3
2

1 2 0 3 1 3 0 2

1 2 0 3

2 2

2 qq q q q q q q q

q q q q q q q q q

0
2

1
2

2
2

3
2

2 3 0 1

1 3 0 2 2 3 0 1 0
2

2

2 2

− + − +

+ − −

) ()

() () (qq q q1
2

2
2

3
2− +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥)

From the preceding equation, you can derive the following relationships
between DCM elements and individual rotation angles for a ZYX
rotation order:

 =

= + − − +

atan

atan

((,), (,))

((),(

DCM DCM

q q q q q q q q

2 3 3 3

2 2 3 0 1 0
2

1
2

2
2

33
2

1 3 0 2

1 3
2

1 2

))

((,))
(())

((,),

= −
= − −
=

asin
asin

atan

DCM
q q q q

DCM DDCM

q q q q q q q q

(,))

((),())

1 1

2 1 2 0 3 0
2

1
2

2
2

3
2= + + − −atan

5-408

Quaternions to Rotation Angles

where Ψ is R1, Θ is R2, and Φ is R3.

Dialog
Box

Rotation Order
Specifies the output rotation order for three rotation angles. From
the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX,
XZY, or XZX. The default is ZYX.

Inputs and
Outputs

Input Dimension Type Description

First 4-by-1 quaternion
vector

Contains the quaternion vector.

5-409

Quaternions to Rotation Angles

Output Dimension Type Description

First 3-by-3 vector Contains the rotation angles.

Assumptions
and
Limitations

The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY'
implementations generate an R2 angle that is between ±90 degrees, and
R1 and R3 angles that are between ±180 degrees.

The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX'
implementations generate an R2 angle that is between 0 and 180
degrees, and R1 and R3 angles that are between ±180 degrees.

See Also Direction Cosine Matrix to Rotation Angles

Direction Cosine Matrix to Quaternions

Quaternions to Direction Cosine Matrix

Rotation Angles to Direction Cosine Matrix

Rotation Angles to Quaternions

5-410

Radius at Geocentric Latitude

Purpose Estimate radius of ellipsoid planet at geocentric latitude

Library Flight Parameters

Description The Radius at Geocentric Latitude block estimates the radius ()rs of an

ellipsoid planet at a particular geocentric latitude ()s .

The following equation estimates the ellipsoid radius ()rs using

flattening ()f , geocentric latitude ()s , and equatorial radius ()R .

r
R

f
s

s

=
+ − −⎡

⎣
⎤
⎦

2

2 21 1 1 1/ () sin

5-411

Radius at Geocentric Latitude

Dialog
Box

Units
Specifies the parameter and output units:

Units
Equatorial
Radius

Radius at Geocentric
Latitude

Metric (MKS) Meters Meters

English Feet Feet

This option is only available when Planet model is set to Earth
(WGS84).

5-412

Radius at Geocentric Latitude

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available
with Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. This option is
only available with Planet model set to Custom.

Inputs and
Outputs

Input Dimension Type Description

First Contains the geocentric latitude, in
degrees.

Output Dimension Type Description

First Contains the radius of planet at
geocentric latitude, in the same as
the units as flattening.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics,
AIAA Education Series, Reston, Virginia, 2000.

See Also ECEF Position to LLA

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Geocentric to Geodetic Latitude

5-413

Radius at Geocentric Latitude

Geodetic to Geocentric Latitude

LLA to ECEF Position

5-414

Relative Ratio

Purpose Calculate relative atmospheric ratios

Library Flight Parameters

Description The Relative Ratio block computes the relative atmospheric ratios,

including relative temperature ratio (θ), , relative pressure ratio
(δ), and relative density ratio (σ).

θ represents the ratio of the air stream temperature at a chosen
reference station relative to sea level standard atmospheric conditions.

 = T
T0

δ represents the ratio of the air stream pressure at a chosen reference
station relative to sea level standard atmospheric conditions.

 = P
P0

σ represents the ratio of the air stream density at a chosen reference
station relative to sea level standard atmospheric conditions.

=
0

The Relative Ratio block icon displays the input units selected from
the Units list.

5-415

Relative Ratio

Dialog
Box

Units
Specifies the input units:

Units Tstatic Pstatic rho_static

Metric
(MKS)

Kelvin Pascal Kilograms per
cubic meter

English Degrees
Rankine

Pound force
per square
inch

Slug per cubic
foot

Theta
When selected, the θ is calculated and static temperature is a
required input.

Square root of theta

When selected, the is calculated and static temperature is
a required input.

Delta
When selected, the δ is calculated and static pressure is a required
input.

5-416

Relative Ratio

Sigma
When selected, the σ is calculated and static density is a required
input.

Inputs and
Outputs

Input Dimension Type Description

First Contains the Mach number.

Second Contains the static temperature.

Third Contains the static pressure.

Fourth Contains the static density.

Output Dimension Type Description

First Contains the θ.

Second
Contains the .

Third Contains the δ.

Fourth Contains the σ.

Assumptions For cases in which total temperature, total pressure, or total density
ratio is desired (Mach number is nonzero), the total temperature,
total pressure, and total densities are calculated assuming perfect gas
(with constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

Reference Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986.

5-417

Rotation Angles to Direction Cosine Matrix

Purpose Convert rotation angles to direction cosine matrix

Library Utilities/Axes Transformations

Description The Rotation Angles to Direction Cosine Matrix block determines the
direction cosine matrix (DCM) from a given set of rotation angles, R1,
R2, and R3, respectively the first, second, and third rotation angles. The
output is a 3-by-3 DCM that performs the coordinate transformation of
a vector in inertial axes into a vector in body axes.

Dialog
Box

Rotation Order
Specifies the input rotation order for three rotation angles. From
the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX,
XZY, or XZX. The default is ZYX.

Inputs and
Outputs

Input Dimension Type Description

First 3-by-1 vector Contains the rotation angles, in
radians.

5-418

Rotation Angles to Direction Cosine Matrix

Output Dimension Type Description

First 3-by-3 matrix Contains the direction cosine matrix.

See Also Direction Cosine Matrix to Quaternions

Direction Cosine Matrix to Rotation Angles

Quaternions to Direction Cosine Matrix

5-419

Rotation Angles to Quaternions

Purpose Calculate quaternion from rotation angles

Library Utilities/Axes Transformations

Description The Rotation Angles to Quaternions block converts the rotation
described by the three rotation angles (R1, R2, R3) into the four-element
quaternion vector (q0, q1, q2, q3). A quaternion vector represents a

rotation about a unit vector x y z, ,() through an angle θ. A unit
quaternion itself has unit magnitude, and can be written in the
following vector format.

q

q

q

q

q

x

y
=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

0

1

2

3

2
2
2

2

cos(/)
sin(/)
sin(/)

sin(/

))z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

An alternative representation of a quaternion is as a complex number,

q q q q q= + + +0 1 2 3i j k

where, for the purposes of multiplication,

i j k
ij ji k
jk kj i
ki ik j

2 2 2 1= = = −
= − =
= − =
= − =

The benefit of representing the quaternion in this way is the ease
with which the quaternion product can represent the resulting
transformation after two or more rotations.

5-420

Rotation Angles to Quaternions

Dialog
Box

Rotation Order
Specifies the output rotation order for three wind rotation angles.
From the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ,
XYX, XZY, or XZX. The default is ZYX.

Inputs and
Outputs

Input Dimension Type Description

First 3-by-1 vector Contains the rotation angles, in
radians.

Output Dimension Type Description

First 4-by-1 matrix Contains the quaternion vector.

Assumptions
and
Limitations

The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY'
implementations generate an R2 angle that is between ±90 degrees, and
R1 and R3 angles that are between ±180 degrees.

The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX'
implementations generate an R2 angle that is between 0 and 180
degrees, and R1 and R3 angles that are between ±180 degrees.

5-421

Rotation Angles to Quaternions

See Also

Direction Cosine Matrix to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Rotation Angles

Rotation Angles to Direction Cosine Matrix

5-422

Second Order Linear Actuator

Purpose Implement second-order linear actuator

Library Actuators

Description The Second Order Linear Actuator block outputs the actual actuator
position using the input demanded actuator position and other dialog
parameters that define the system.

Dialog
Box

Natural frequency
The natural frequency of the actuator. The units of natural
frequency are radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Initial position
The initial position of the actuator. The units of initial position
should be the same as the units of demanded actuator position.

Inputs and
Outputs

Input Dimension Type Description

First Contains the demanded actuator
position.

5-423

Second Order Linear Actuator

Output Dimension Type Description

First Contains the actual actuator
position.

See Also Second Order Nonlinear Actuator

5-424

Second Order Nonlinear Actuator

Purpose Implement second-order actuator with rate and deflection limits

Library Actuators

Description The Second Order Nonlinear Actuator block outputs the actual actuator
position using the input demanded actuator position and other dialog
parameters that define the system.

Dialog
Box

Natural frequency
The natural frequency of the actuator. The units of natural
frequency are radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

5-425

Second Order Nonlinear Actuator

Maximum deflection
The largest actuator position allowable. The units of maximum
deflection should be the same as the units of demanded actuator
position.

Minimum deflection
The smallest actuator position allowable. The units of minimum
deflection should be the same as the units of demanded actuator
position.

Maximum rate
The fastest speed allowable for actuator motion. The units of
maximum rate should be the units of demanded actuator position
per second.

Initial position
The initial position of the actuator. The units of initial position
should be the same as the units of demanded actuator position.

Inputs and
Outputs

Input Dimension Type Description

First Contains the demanded actuator
position.

Output Dimension Type Description

First Contains the actual actuator
position.

Examples See the Airframe & Autopilot subsystem in the aero_guidance model
and the Actuators subsystem in the aeroblk_HL20 model for an
example of this block.

See Also Second Order Linear Actuator

5-426

Self-Conditioned [A,B,C,D]

Purpose Implement state-space controller in self-conditioned form

Library GNC/Controls

Description The Self-Conditioned [A,B,C,D] block can be used to implement the
state-space controller defined by

�x Ax Be
u Cx De

= +
= +

⎡

⎣
⎢

⎤

⎦
⎥

in the self-conditioned form

�z A HC z B HD e Hu

u Cz De
meas

dem

= − + − +
= +

() ()

The input umeas is a vector of the achieved actuator positions, and the

output udem is the vector of controller actuator demands. In the case

that the actuators are not limited, then u umeas dem= and substituting
the output equation into the state equation returns the nominal
controller. In the case that they are not equal, the dynamics of the
controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track

umeas but at the same time not so fast that noise on e is propagated to

udem . The matrix H is designed by a callback to the Control System
Toolbox command place to place the poles at defined locations.

5-427

Self-Conditioned [A,B,C,D]

Dialog
Box

A-matrix
A-matrix of the state-space implementation.

B-matrix
B-matrix of the state-space implementation.

C-matrix
C-matrix of the state-space implementation.

D-matrix
D-matrix of the state-space implementation.

Initial state, x_initial
This is a vector of initial states for the controller, i.e., initial
values for the state vector, z. It should have length equal to the
size of the first dimension of A.

5-428

Self-Conditioned [A,B,C,D]

Poles of A-H*C
This is a vector of the desired poles of A-H*C. Hence the number
of pole locations defined should be equal to the dimension of the
A-matrix.

Inputs and
Outputs

Input Dimension Type Description

First Contains the control error.

Second Contains the measured actuator
position.

Output Dimension Type Description

First Contains the actuator demands.

Assumptions
and
Limitations

Note This block requires the Control System Toolbox product.

Examples This Simulink model shows a state-space controller implemented in
both self-conditioned and standard state-space forms. The actuator
authority limits of ±0.5 units are modeled by the saturation block.

5-429

Self-Conditioned [A,B,C,D]

Notice that the A-matrix has a zero in the 1,1 element, indicating
integral action.

The top trace shows the conventional state-space implementation. The
output of the controller winds up well past the actuator upper authority
limit of +0.5. The lower trace shows that the self-conditioned form

5-430

Self-Conditioned [A,B,C,D]

results in an actuator demand that tracks the upper authority limit,
which means that when the sign of the control error, e, is reversed, the
actuator demand responds immediately.

Reference The algorithm used to determine the matrix H is defined in Kautsky,
Nichols, and Van Dooren, “Robust Pole Assignment in Linear State
Feedback,” International Journal of Control, Vol. 41, No. 5, pages
1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

5-431

Send net_fdm Packet to FlightGear

Purpose Transmit net_fdm packet to destination IP address and port for
FlightGear session

Library Animation/Flight Simulator Interfaces

Description The Send net_fdm Packet to FlightGear block transmits the net_fdm
packet to FlightGear on the current computer, or a remote computer
on the network. The packet is constructed using the Pack net_fdm
Packet for FlightGear block. The destination port should be an unused
port that you can use when you launch FlightGear with the FlightGear
command line flag:

--fdm=network,localhost,5501,5502,5503

The second port in the list, 5502, is the network flight dynamics model
(fdm) port.

This block does not product deployable code.

Determining the Destination IP Address

You can use one of several techniques to determine the destination
IP address, such as:

• Use 127.0.0.1 for “this” computer

• Ping another computer from a Windows cmd.exe (or UNIX shell)
prompt:

C:\> ping andyspc

Pinging andyspc [144.213.175.92] with 32 bytes of data:

Reply from 144.213.175.92: bytes=32 time=30ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253

Ping statistics for 144.213.175.92:

5-432

Send net_fdm Packet to FlightGear

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 20ms, Maximum = 30ms, Average = 22ms

• On a Windows machine, type ipconfig and use the returned IP
Address:

H:\>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . :

IP Address. : 192.168.42.178

Subnet Mask : 255.255.255.0

Default Gateway : 192.168.42.254

Dialog
Box

Destination IP address
Specify your destination IP address.

5-433

Send net_fdm Packet to FlightGear

Destination port
Specify your destination port.

Sample time
Specify the sample time (-1 for inherited).

Inputs and
Outputs

The input signal is the FlightGear net_fdm data packet.

Examples See the asbhl20 for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

Generate Run Script

Pack net_fdm Packet for FlightGear

5-434

Simple Variable Mass 3DoF (Body Axes)

Purpose Implement three-degrees-of-freedom equations of motion of simple
variable mass with respect to body axes

Library Equations of Motion/3DoF

Description The Simple Variable Mass 3DoF (Body Axes) block considers the
rotation in the vertical plane of a body-fixed coordinate frame about
an Earth-fixed reference frame.

The equations of motion are

5-435

Simple Variable Mass 3DoF (Body Axes)

�
�

�
�

�
�

�

�

u
F
m

mU
m

qw g

w
F
m

mw
m

qu g

q
M I q

I

q

x

z

yy

yy

= − − −

= − + +

=
−

=

sin

cos

II
I I

m m
myy

yyfull yyempty

full empty
=

−
−

�

where the applied forces are assumed to act at the center of gravity
of the body.

5-436

Simple Variable Mass 3DoF (Body Axes)

Dialog
Box

Units
Specifies the input and output units:

5-437

Simple Variable Mass 3DoF (Body Axes)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout
the simulation.

Simple Variable Mass and inertia vary linearly
as a function of mass rate.

Custom Variable Mass and inertia variations
are customizable.

The Simple Variable selection conforms to the previously
described equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, (θ0).

Initial incidence
A scalar value for the initial angle between the velocity vector

and the body, ()0 .

5-438

Simple Variable Mass 3DoF (Body Axes)

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in
the Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in
mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal
gravity source is selected. If gravity is to be neglected in the
simulation, this value can be set to 0.

5-439

Simple Variable Mass 3DoF (Body Axes)

Inputs and
Outputs

Input Dimension Type Description

First Contains the force acting along the
body x-axis, (Fx).

Second Contains the force acting along the
body z-axis, (Fz).

Third Contains the applied pitch moment,
(M).

Fourth Contains the rate of change of mass,

()�m .

Fifth
(Optional)

Contains the gravity in the selected
units.

Output Dimension Type Description

First Contains the pitch attitude, in
radians (θ).

Second Contains the pitch angular rate, in
radians per second (q).

Third Contains the pitch angular
acceleration, in radians per second

squared ()�q .

Fourth Two-element
vector

Contains the location of the body, in
the Earth-fixed reference frame, (Xe,
Ze).

Fifth Two-element
vector

Contains the velocity of the
body resolved into the body-fixed
coordinate frame, (u, w).

5-440

Simple Variable Mass 3DoF (Body Axes)

Output Dimension Type Description

Sixth Two-element
vector

Contains the acceleration of the
body resolved into the body-fixed
coordinate frame, (Ax,Az).

Seventh Scalar element Contains a flag for fuel tank status,
(Fuel):

• 1 indicates that the tank is full.

• 0 indicates that the integral is
neither full nor empty.

• -1 indicates that the tank is
empty.

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Wind Axes)

5-441

Simple Variable Mass 3DoF (Wind Axes)

Purpose Implement three-degrees-of-freedom equations of motion of simple
variable mass with respect to wind axes

Library Equations of Motion/3DoF

Description The Simple Variable Mass 3DoF (Wind Axes) block considers the
rotation in the vertical plane of a wind-fixed coordinate frame about
an Earth-fixed reference frame.

The equations of motion are

5-442

Simple Variable Mass 3DoF (Wind Axes)

� �

�

� �
�

V
F

m
mV
m

g

F

mV
q

g
V

q
M I

x

z

y yy

wind

wind

body

= − −

= + +

= =
−

sin

cos

qq

I

q

I
I I

m m
m

yy

yy
yyfull yyempty

full empty

� �

� �

 = −

=
−
−

where the applied forces are assumed to act at the center of gravity
of the body.

5-443

Simple Variable Mass 3DoF (Wind Axes)

Dialog
Box

Units
Specifies the input and output units:

5-444

Simple Variable Mass 3DoF (Wind Axes)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout
the simulation.

Simple Variable Mass and inertia vary linearly
as a function of mass rate.

Custom Variable Mass and inertia variations
are customizable.

The Simple Variable selection conforms to the previously
described equations of motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial flight path angle of the body, (γ0).

Initial incidence
A scalar value for the initial angle between the velocity vector

and the body, ().0

5-445

Simple Variable Mass 3DoF (Wind Axes)

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in
the Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in
mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal
gravity source is selected. If gravity is to be neglected in the
simulation, this value can be set to 0.

5-446

Simple Variable Mass 3DoF (Wind Axes)

Inputs and
Outputs

Input Dimension
Type

Description

First Contains the force acting along the wind
x-axis, (Fx).

Second Contains the force acting along the wind
z-axis, (Fz).

Third Contains the applied pitch moment in body
axes, (M).

Fourth
Contains the rate of change of mass, ().�m

Fifth
(Optional)

Contains the gravity in the selected units.

Output Dimension
Type

Description

First Contains the flight path angle, in radians (γ).

Second Contains the pitch angular rate, in radians
per second (ωy).

Third Contains the pitch angular acceleration, in
radians per second squared (dωy/dt).

Fourth Two-element
vector

Contains the location of the body, in the
Earth-fixed reference frame, (Xe, Ze).

Fifth Two-element
vector

Contains the velocity of the body resolved into
the wind-fixed coordinate frame, (V, 0).

Sixth Two-element
vector

Contains the acceleration of the body resolved
into the body-fixed coordinate frame, (Ax, Az).

5-447

Simple Variable Mass 3DoF (Wind Axes)

Output Dimension
Type

Description

SeventhScalar
Contain the angle of attack, ().0

Eight Scalar
element

Contains a flag for fuel tank status, (Fuel):

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full
nor empty.

• -1 indicates that the tank is empty.

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

5-448

Simple Variable Mass 6DoF (Euler Angles)

Purpose Implement Euler angle representation of six-degrees-of-freedom
equations of motion of simple variable mass

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF (Euler Angles) block considers the
rotation of a body-fixed coordinate frame (Xb, Yb, Zb) about a flat Earth
reference frame (Xe, Ye, Ze). The origin of the body-fixed coordinate
frame is the center of gravity of the body, and the body is assumed to
be rigid, an assumption that eliminates the need to consider the forces
acting between individual elements of mass. The flat Earth reference
frame is considered inertial, an excellent approximation that allows
the forces due to the Earth’s motion relative to the “fixed stars” to be
neglected.

!�

"�

#� !
$ "

%

�

&�	������
���$���

����'�����������	
�������

(

The translational motion of the body-fixed coordinate frame is given
below, where the applied forces [Fx Fy Fz]

T are in the body-fixed frame.

5-449

Simple Variable Mass 6DoF (Euler Angles)

F

F

F

F

m V V mV

V

u

v

w

b

x

y

z

b b b

b

b

b

b

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

()

,

� �

pp
q
r

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The rotational dynamics of the body-fixed frame are given below, where
the applied moments are [L MN]T, and the inertia tensor I is with
respect to the origin O.

M
L
M
N

I I I

I

I I I

I I I

I

B

xx xy xz

yx yy yz

z

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=

− −

− −

−

� � ()

xx zy zzI I−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The inertia tensor is determined using a table lookup which linearly
interpolates between Ifull and Iempty based on mass (m). While the rate of
change of the inertia tensor is estimated by the following equation.

� �I
I I

m m
mfull empty

full empty
=

−
−

The relationship between the body-fixed angular velocity vector, [p q r]T,

and the rate of change of the Euler angles, [� � �]T, can be determined
by resolving the Euler rates into the body-fixed coordinate frame.

5-450

Simple Variable Mass 6DoF (Euler Angles)

p
q
r

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

�

0
0

1 0 0
0
0

cos sin
sin cos

⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−0

0

1 0 0
0
0

0
�

cos sin

sin cos

cos siin

sin cos

0 1 0
0

0
0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥−

�

�

�

�
J ⎥⎥

⎥

Inverting J then gives the required relationship to determine the Euler
rate vector.

�

�

�

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p
q
r

1
0

(sin tan) (cos tan)
cos −−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

sin
sin
cos

cos
cos

0

p
q
r

5-451

Simple Variable Mass 6DoF (Euler Angles)

Dialog
Box

Units
Specifies the input and output units:

5-452

Simple Variable Mass 6DoF (Euler Angles)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout
the simulation.

Simple Variable Mass and inertia vary linearly
as a function of mass rate.

Custom Variable Mass and inertia variations
are customizable.

The Simple Variable selection conforms to the previously
described equations of motion.

Representation
Select the representation to use:

Euler Angles Use Euler angles within
equations of motion.

Quaternion Use quaternions within
equations of motion.

5-453

Simple Variable Mass 6DoF (Euler Angles)

The Euler Angles selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll,
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Inputs and
Outputs

Input Dimension
Type

Description

First Vector Contains the three applied forces.

Second Vector Contains the three applied moments.

Third Scalar Contains the rate of change of mass.

5-454

Simple Variable Mass 6DoF (Euler Angles)

Output Dimension
Type

Description

First Three-element
vector

Contains the velocity in the flat Earth
reference frame.

Second Three-element
vector

Contains the position in the flat Earth
reference frame.

Third Three-element
vector

Contains the Euler rotation angles [roll,
pitch, yaw], in radians.

Fourth 3-by-3matrix Applies to the coordinate transformation from
flat Earth axes to body-fixed axes.

Fifth Three-element
vector

Contains the velocity in the body-fixed frame.

Sixth Three-element
vector

Contains the angular rates in body-fixed axes,
in radians per second.

SeventhThree-element
vector

Contains the angular accelerations in
body-fixed axes, in radians per second.

Eight Three-element
vector

Contains the accelerations in body-fixed axes.

Ninth Scalar
element

Contains a flag for fuel tank status:
• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full
nor empty.

• -1 indicates that the tank is empty.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body.

Reference Mangiacasale, L., Flight Mechanics of a μ-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

5-455

Simple Variable Mass 6DoF (Euler Angles)

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-456

Simple Variable Mass 6DoF (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion of simple variable mass with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system and the translational
dynamics, see the block description for the Simple Variable Mass 6DoF
(Euler Angles) block.

The integration of the rate of change of the quaternion vector is given
below. The gain K drives the norm of the quaternion state vector to
1.0 should ε become nonzero. You must choose the value of this gain
with care, because a large value improves the decay rate of the error
in the norm, but also slows the simulation because fast dynamics are
introduced. An error in the magnitude in one element of the quaternion
vector is spread equally among all the elements, potentially increasing
the error in the state vector.

�
�
�
�

q
q
q
q

p q r
p r q
q r p
r q p

0

1

2

3

1
2

0
0

0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

− − −
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= − +

q
q
q
q

K

q
q
q
q

q q

0

1

2

3

0

1

2

3

0
2

1
21

ε

ε ++ +()q q3
2

4
2

5-457

Simple Variable Mass 6DoF (Quaternion)

Dialog
Box

Units
Specifies the input and output units:

5-458

Simple Variable Mass 6DoF (Quaternion)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per second
squared

Feet
per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout
the simulation.

Simple Variable Mass and inertia vary linearly
as a function of mass rate.

Custom Variable Mass and inertia variations
are customizable.

The Simple Variable selection conforms to the previously
described equations of motion.

Representation
Select the representation to use:

5-459

Simple Variable Mass 6DoF (Quaternion)

Euler Angles Use Euler angles within
equations of motion.

Quaternion Use quaternions within
equations of motion.

The Quaternion selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll,
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

5-460

Simple Variable Mass 6DoF (Quaternion)

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal
to 1.0.

Inputs and
Outputs

Input Dimension
Type

Description

First Vector Contains the three applied forces.

Second Vector Contains the three applied moments.

Third Scalar Contains the rate of change of mass.

Output Dimension
Type

Description

First Three-element
vector

Contains the velocity in the flat Earth
reference frame.

Second Three-element
vector

Contains the position in the flat Earth
reference frame.

Third Three-element
vector

Contains the Euler rotation angles [roll,
pitch, yaw], in radians.

Fourth 3-by-3matrix Applies to the coordinate transformation from
flat Earth axes to body-fixed axes.

Fifth Three-element
vector

Contains the velocity in the body-fixed frame.

Sixth Three-element
vector

Contains the angular rates in body-fixed axes,
in radians per second.

SeventhThree-element
vector

Contains the angular accelerations in
body-fixed axes, in radians per second.

5-461

Simple Variable Mass 6DoF (Quaternion)

Output Dimension
Type

Description

Eight Three-element
vector

Contains the accelerations in body-fixed axes.

Ninth Scalar
element

Contains a flag for fuel tank status:
• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full
nor empty.

• -1 indicates that the tank is empty.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body.

Reference Mangiacasale, L., Flight Mechanics of a μ-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

5-462

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-463

Simple Variable Mass 6DoF ECEF (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion of simple variable mass in Earth-centered
Earth-fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF ECEF (Quaternion) block considers
the rotation of a Earth-centered Earth-fixed (ECEF) coordinate frame
(XECEF, YECEF, ZECEF) about an Earth-centered inertial (ECI) reference
frame (XECI, YECI, ZECI). The origin of the ECEF coordinate frame is the
center of the Earth, additionally the body of interest is assumed to be
rigid, an assumption that eliminates the need to consider the forces
acting between individual elements of mass. The representation of the
rotation of ECEF frame from ECI frame is simplified to consider only the
constant rotation of the ellipsoid Earth (ωe) including an initial celestial
longitude (LG(0)). This excellent approximation allows the forces due to
the Earth’s complex motion relative to the “fixed stars” to be neglected.

5-464

Simple Variable Mass 6DoF ECEF (Quaternion)

The translational motion of the ECEF coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body frame.

F
F
F

F

m V V DCM V DCM Xb

x

y

z

b b b bf e b bf e e f=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × + ×() + × ×� ω ω ω ω())

()

()

+ + ×()�m V DCM Xb bf e fω

where the change of position in ECEF � �x xf i() is calculated by

�x DCM Vf fb b=

and the velocity of the body with respect to ECEF frame, expressed in

body frame ()Vb , angular rates of the body with respect to ECI frame,

5-465

Simple Variable Mass 6DoF ECEF (Quaternion)

expressed in body frame ()ωb . Earth rotation rate ()ωe , and relative
angular rates of the body with respect to north-east-down (NED) frame,

expressed in body frame ()ωrel are defined as

V
u
v
w

p
q
r

b rel e

e

b r

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

 ω ω
ω

ω ω

0
0

eel bf e be ned

ned

E

DCM DCM

l

l

V N h

+ +

= −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

+

ω ω

ω
μ

μ

μ

�

�
�

cos

sin

(()
− +()

+()

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

V M h
V N h

N

E tan μ

The rotational dynamics of the body defined in body-fixed frame are
given below, where the applied moments are [L M N]T, and the inertia
tensor I is with respect to the origin O.

M
L
M
N

I I I

I

I I I

I I I

b b b b b

xx xy xz

yx yy y

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=

− −

− −

� �ω ω ω ω()

zz

zx zy zzI I I− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The inertia tensor is determined using a table lookup which linearly
interpolates between Ifull and Iempty based on mass (m). The rate of
change of the inertia tensor is estimated by the following equation.

5-466

Simple Variable Mass 6DoF ECEF (Quaternion)

� �I
I I

m m
mfull empty

full empty
=

−
−

The integration of the rate of change of the quaternion vector is given
below.

�
�
�
�

q
q
q
q

b b b

b b

0

1

2

3

1
2

0 1 2 3
1 0 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
= −

() () ()
− () − ()

ω ω ω
ω ω ωbb

b b b

b b b

q
q2

2 3 0 1
3 2 1 0

0

()
− () () − ()
− () − () ()

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ω ω ω
ω ω ω

11

2

3

q
q

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

5-467

Simple Variable Mass 6DoF ECEF (Quaternion)

Dialog
Box

5-468

Simple Variable Mass 6DoF ECEF (Quaternion)

Units
Specifies the input and output units:

5-469

Simple Variable Mass 6DoF ECEF (Quaternion)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass type
Select the type of mass to use:

Fixed Mass is constant throughout
the simulation (see 6DoF
ECEF (Quaternion)).

Simple Variable Mass and inertia vary linearly
as a function of mass rate.

Custom Variable Mass and inertia variations
are customizable (see Custom
Variable Mass 6DoF ECEF
(Quaternion)).

The Simple Variable selection conforms to the previously
described equations of motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in
the geodetic reference frame.

Initial velocity in body axes
The three-element vector containing the initial velocity of the body
with respect to the ECEF frame, expressed in the body frame.

5-470

Simple Variable Mass 6DoF ECEF (Quaternion)

Initial Euler orientation
The three-element vector containing the initial Euler rotation
angles [roll, pitch, yaw], in radians. Euler rotation angles are
those between the body and NED coordinate systems.

Initial body rotation rates
The three-element vector for the initial angular rates of the body
with respect to the NED frame, expressed the body frame, in
radians per second.

Initial mass
The mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Planet model
Specifies the planet model to use: Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet. This option is only available
when Planet model is set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the
equatorial radius parameter should be the same as the units for
ECEF position. This option is only available when Planet model
is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/s. This
option is only available when Planet model is set to Custom.

5-471

Simple Variable Mass 6DoF ECEF (Quaternion)

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial
longitude:

Internal Use celestial longitude value
from mask dialog.

External Use external input for celestial
longitude value.

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of
the ECI frame.

Inputs and
Outputs

Input Dimension Type Description

First Vector Contains the three applied forces
in body-fixed axes.

Second Vector Contains the three applied
moments in body-fixed axes.

Third Scalar Contains the rate of change of
mass.

Output Dimension Type Description

First Three-element
vector

Contains the velocity of body
respect to ECEF frame, expressed
in ECEF frame.

Second Three-element
vector

Contains the position in the ECEF
reference frame.

Third Three-element
vector

Contains the position in geodetic
latitude, longitude and altitude, in
degrees, degrees and selected units
of length respectively.

5-472

Simple Variable Mass 6DoF ECEF (Quaternion)

Output Dimension Type Description

Fourth Three-element
vector

Contains the body rotation angles
[roll, pitch, yaw], in radians. Euler
rotation angles are those between
body and NED coordinate systems.

Fifth 3-by-3 matrix Applies to the coordinate
transformation from ECI axes
to body-fixed axes.

Sixth 3-by-3 matrix Applies to the coordinate
transformation from NED axes to
body-fixed axes.

Seventh 3-by-3 matrix Applies to the coordinate
transformation from ECEF
axes to NED axes.

Eighth Three-element
vector

Contains the velocity of body with
respect to ECEF frame, expressed
in body frame.

Ninth Three-element
vector

Contains the relative angular rates
of body with respect to NED frame,
expressed in body frame, in radians
per second.

Tenth Three-element
vector

Contains the angular rates of the
body with respect to ECI frame,
expressed in body frame, in radians
per second.

Eleventh Three-element
vector

Contains the angular accelerations
of the body with respect to ECI
frame, expressed in body frame, in
radians per second.

5-473

Simple Variable Mass 6DoF ECEF (Quaternion)

Output Dimension Type Description

Twelfth Three-element
vector

Contains the accelerations in
body-fixed axes.

Thirteenth Scalar Is an element containing a flag for
fuel tank status:

• 1 indicates that the tank is full.

• 0 indicates that the integral is
neither full nor empty.

• -1 indicates that the tank is
empty.

Assumptions
and
Limitations

This implementation assumes that the applied forces are acting at the
center of gravity of the body.

This implementation generates a geodetic latitude that lies between ±90
degrees, and longitude that lies between ±180 degrees. Additionally,
the MSL altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a
spherical planet can be achieved. The Earth’s precession, nutation,
and polar motion are neglected. The celestial longitude of Greenwich
is Greenwich Mean Sidereal Time (GMST) and provides a rough
approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the
origin is at the center of the planet, the x-axis intersects the Greenwich
meridian and the equator, the z-axis is the mean spin axis of the planet,
positive to the north, and the y-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the
origin is at the center of the planet, the x-axis is the continuation of
the line from the center of the Earth through the center of the Sun
toward the vernal equinox, the z-axis points in the direction of the
mean equatorial plane’s north pole, positive to the north, and the y-axis
completes the right-hand system.

5-474

Simple Variable Mass 6DoF ECEF (Quaternion)

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second
Edition, John Wiley & Sons, New York, 2003.

McFarland, Richard E., A Standard Kinematic Model for Flight
simulation at NASA-Ames, NASA CR-2497.

“Supplement to Department of Defense World Geodetic System 1984
Technical Report: Part I - Methods, Techniques and Data Used in
WGS84 Development,” DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-475

Simple Variable Mass 6DoF Wind (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom
equations of motion of simple variable mass with respect to wind axes

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF Wind (Quaternion) block considers
the rotation of a wind-fixed coordinate frame (Xw, Yw, Zw) about an
flat Earth reference frame (Xe, Ye, Ze). The origin of the wind-fixed
coordinate frame is the center of gravity of the body, and the body is
assumed to be rigid, an assumption that eliminates the need to consider
the forces acting between individual elements of mass. The flat Earth
reference frame is considered inertial, an excellent approximation that
allows the forces due to the Earth’s motion relative to the “fixed stars”
to be neglected.

!�

"�

#� !%
"%

#%)�*
&�	������
���$���

����'�����������	
�������

(

+�	�,��-��
������	
�������

The translational motion of the wind-fixed coordinate frame is given
below, where the applied forces [Fx Fy Fz]

T are in the wind-fixed frame.

5-476

Simple Variable Mass 6DoF Wind (Quaternion)

F

F

F

F

m V V mV

V
V p

w

x

y

z

w w w w

w w

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

()

,

� �

0
0

ww

w

w

wb

b

b

b

bq

r

DMC

p

q

r

w
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−
−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

�
�

sin

cos

,

pp

q

r

b

b

b

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The rotational dynamics of the body-fixed frame are given below, where
the applied moments are [L MN]T, and the inertia tensor I is with
respect to the origin O. Inertia tensor I is much easier to define in
body-fixed frame.

M
L
M
N

I I I

I

I I I

I I I

b b b b b

xx xy xz

yx yy y

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= + × +

=

− −

− −

� � ()

zz

zx zy zzI I I− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The inertia tensor is determined using a table lookup which linearly
interpolates between Ifull and Iempty based on mass (m). While the rate of
change of the inertia tensor is estimated by the following equation.

� �I
I I

m m
mfull empty

full empty
=

−
−

The integration of the rate of change of the quaternion vector is given
below.

5-477

Simple Variable Mass 6DoF Wind (Quaternion)

�
�
�
�

q

q

q

q

p q r
p r q
q r p
r q p

0

1

2

3

1 2

0
0

0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= − − −
− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

/
⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

q

q

q

q

0

1

2

3

Dialog
Box

5-478

Simple Variable Mass 6DoF Wind (Quaternion)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet
per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout
the simulation.

Simple Variable Mass and inertia vary linearly
as a function of mass rate.

Custom Variable Mass and inertia variations
are customizable.

The Simple Variable selection conforms to the previously
described equations of motion.

Representation
Select the representation to use:

5-479

Simple Variable Mass 6DoF Wind (Quaternion)

Wind Angles Use wind angles within
equations of motion.

Quaternion Use quaternions within
equations of motion.

The Quaternion selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial
sideslip angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank,
flight path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body,
in body-fixed axes.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body, in
body-fixed axes.

5-480

Simple Variable Mass 6DoF Wind (Quaternion)

Inputs and
Outputs

Input Dimension
Type

Description

First Vector Contains the three applied forces in
wind-fixed axes.

Second Vector Contains the three applied moments in
body-fixed axes.

Third Scalar Contains the rate of change of mass.

Output Dimension
Type

Description

First Three-element
vector

Contains the velocity in the flat Earth
reference frame.

Second Three-element
vector

Contains the position in the flat Earth
reference frame.

Third Three-element
vector

Contains the wind rotation angles [bank,
flight path, heading], in radians.

Fourth 3-by-3
matrix

Applies to the coordinate transformation
from flat Earth axes to wind-fixed axes.

Fifth Three-element
vector

Contains the velocity in the wind-fixed
frame.

Sixth Two-element
vector

Contains the angle of attack and sideslip
angle, in radians.

Seventh Two-element
vector

Contains the rate of change of angle of
attack and rate of change of sideslip angle,
in radians per second.

Eighth Three-element
vector

Contains the angular rates in body-fixed
axes, in radians per second.

Ninth Three-element
vector

Contains the angular accelerations in
body-fixed axes, in radians per second.

5-481

Simple Variable Mass 6DoF Wind (Quaternion)

Output Dimension
Type

Description

Tenth Three-element
vector

Contains the accelerations in body-fixed
axes.

Eleventh Scalar
element

Contains a flag for fuel tank status:
• 1 indicates that the tank is full.

• 0 indicates that the integral is neither
full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body.

References Mangiacasale, L., Flight Mechanics of a μ-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

5-482

Simple Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-483

Simple Variable Mass 6DoF Wind (Wind Angles)

Purpose Implement wind angle representation of six-degrees-of-freedom
equations of motion of simple variable mass

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the
translational dynamics, see the block description for the Simple
Variable Mass 6DoF (Quaternion) block.

The relationship between the wind angles, []T, can be determined
by resolving the wind rates into the wind-fixed coordinate frame.

p

q

r

w

w

w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢

�

0
0

1 0 0
0
0

cos sin
sin cos⎢⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0

1 0 0
0
0

�

cos sin

sin cos

cos 00
0 1 0

0

0
0 1

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡

⎡

⎣

⎢
⎢
⎢

−
sin

sin cos

�

�
�
�

J
⎤⎤

⎦

⎥
⎥
⎥

Inverting J then gives the required relationship to determine the wind
rate vector.

�
�
�

 ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p

q

r

w

w

w

1
0

(sin tan) (cos tan)
coos sin
sin
cos

cos
cos

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

p

q

r

w

w

w

The body-fixed angular rates are related to the wind-fixed angular rate
by the following equation.

p

q

r

DMC

p

q

r

w

w

w

wb

b

b

b

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−
−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

�
�

sin

cos

5-484

Simple Variable Mass 6DoF Wind (Wind Angles)

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular
rates.

�
�
�

 ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=J

p

q

r

w

w

w

1
0

(sin tan) (cos tan)
coos sin
sin
cos

cos
cos

sin

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

0

DMC

p

qwb

b

b

�

−−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�
�

 rb cos

5-485

Simple Variable Mass 6DoF Wind (Wind Angles)

Dialog
Box

Units
Specifies the input and output units:

5-486

Simple Variable Mass 6DoF Wind (Wind Angles)

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters
per second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in
ft/s)

Pound Foot
pound

Feet per
second
squared

Feet
per
second

Feet Slug Slug
foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug
foot
squared

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout
the simulation.

Simple Variable Mass and inertia vary linearly
as a function of mass rate.

Custom Variable Mass and inertia variations
are customizable.

The Simple Variable selection conforms to the previously
described equations of motion.

Representation
Select the representation to use:

Wind Angles Use wind angles within
equations of motion.

Quaternion Use quaternions within
equations of motion.

5-487

Simple Variable Mass 6DoF Wind (Wind Angles)

The Wind Angles selection conforms to the previously described
equations of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in
the flat Earth reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial
sideslip angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank,
flight path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates,
in radians per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body,
in body-fixed axes.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body, in
body-fixed axes.

5-488

Simple Variable Mass 6DoF Wind (Wind Angles)

Inputs and
Outputs

Input Dimension
Type

Description

First Vector Contains the three applied forces in
wind-fixed axes.

Second Vector Contains the three applied moments in
body-fixed axes.

Third Scalar Contains the rate of change of mass.

Output Dimension
Type

Description

First Three-element
vector

Contains the velocity in the fixed Earth
reference frame.

Second Three-element
vector

Contains the position in the flat Earth
reference frame.

Third Three-element
vector

Contains the wind rotation angles [bank,
flight path, heading], in radians.

Fourth 3-by-3
matrix

Applies to the coordinate transformation
from flat Earth axes to wind-fixed axes.

Fifth Three-element
vector

Contains the velocity in the wind-fixed
frame.

Sixth Two-element
vector

Contains the angle of attack and sideslip
angle, in radians.

Seventh Two-element
vector

Contains the rate of change of angle of
attack and rate of change of sideslip angle,
in radians per second.

Eighth Three-element
vector

Contains the angular rates in body-fixed
axes, in radians per second.

Ninth Three-element
vector

Contain the angular accelerations in
body-fixed axes, in radians per second.

5-489

Simple Variable Mass 6DoF Wind (Wind Angles)

Output Dimension
Type

Description

Tenth Three-element
vector

Contains the accelerations in body-fixed
axes.

Eleventh Scalar
element

Contains a flag for fuel tank status:
• 1 indicates that the tank is full.

• 0 indicates that the integral is neither
full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and
Limitations

The block assumes that the applied forces are acting at the center of
gravity of the body.

References Mangiacasale, L., Flight Mechanics of a μ-Airplane with a MATLAB
Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

5-490

Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

5-491

Simulation Pace

Purpose Set simulation rate for improved animation viewing

Library Animation/Animation Support Utilities

Description The Simulation Pace block lets you run the simulation at the specified
pace so that connected animations appear aesthetically pleasing.

This block does not produce deployable code.

Use the Sample time parameter to set how often the Simulink
interface synchronizes with the wall clock.

The sample time of this block should be considered for human
interaction with visualizations. The default is 1/30th of a second, chosen
to correspond to a 30 frames-per-second visualization rate (typical for
desktop computers).

Caution

Choose as slow of a sample time as needed for smooth animation, since
oversampling has little benefit and undersampling can cause animation
“jumpiness” and potentially block the MATLAB main thread on your
computer.

5-492

Simulation Pace

Dialog
Box

Simulation pace
Specifies the ratio of simulation time to clock time. The default is
1 second of simulation time per second of clock time.

Sleep mode
Setting the Sleep mode parameter to off lets you disable the
pace functionality and run as fast as possible.

Output pace error
If you select this check box, the block outputs the “pace error”
value (simulationTime minus ClockTime), in seconds. The pace
error is positive if the simulation is running faster than the
specified pace and negative if slower than the specified pace.

5-493

Simulation Pace

Sample time
Specify the sample time (-1 for inherited). Larger sample times
result in more efficient simulations, but less smooth in output
pace when there are multiple Simulink time steps between pacer
block samples. If the Sample time is too large, the MATLAB
interface may become less responsive as MATLAB and Simulink
calculations are blocked from running when the block puts the
MATLAB interface to sleep.

Inputs and
Outputs

The block optionally outputs the “pace error” value (simulationTime
minus ClockTime), in seconds. The pace error is positive if the
simulation is running faster than the specified pace and negative if
slower than the specified pace.

Outputting the pace error from the block lets you record the overall pace
achieved during the simulation or routing the signal to other blocks to
make decisions about the simulation if the simulation is too slow to
keep up with the specified pace.

Assumptions
and
Limitations

The simulation pace is implemented by putting the entire MATLAB
thread to sleep until it needs to run again to keep up the pace. The
Simulink software is single threaded and runs on the one MATLAB
thread, so only one Simulation Pace block can be active at a time.

Examples See the asbhl20 demo for an example of this block.

See Also Pilot Joystick

5-494

SinCos

Purpose Compute sine and cosine of angle

Library Utilities/Math Operations

Description The SinCos block computes the sine and cosine of the input angle, theta.

Dialog
Box

Inputs and
Outputs

The first input is an angle, in radians.

The first output is the sine of the input angle.

The second output is the cosine of the input angle.

5-495

Spherical Harmonic Gravity Model

Purpose Implement spherical harmonic representation of planetary gravity

Library Environment/Gravity

Description

The Spherical Harmonic Gravity Model block implements the
mathematical representation of spherical harmonic planetary gravity
based on planetary gravitational potential. It provides a convenient
way to describe a planet gravitational field outside of its surface in
spherical harmonic expansion.

You can use spherical harmonics to modify the magnitude and direction
of spherical gravity (-GM/r2). The most significant or largest spherical
harmonic term is the second degree zonal harmonic, J2, which accounts
for oblateness of a planet.

Use this block if you want more accurate gravity values than spherical
gravity models. For example, non-atmospheric flight applications might
require higher accuracy.

5-496

Spherical Harmonic Gravity Model

Dialog
Box

5-497

Spherical Harmonic Gravity Model

Units
Specifies the parameter and output units:

Units Height

Metric (MKS) Meters

English Feet

Degree
Specify the degree of harmonic model. Recommended degrees are:

Planet
Model

Degree

EGM2008 120

EGM96 70

5-498

Spherical Harmonic Gravity Model

Planet
Model

Degree

LP100K 60

LP165P 60

GMM2B 60

Action for out of range input
Specify if out-of-range input invokes a warning, error, or no action.

Planet model
Specify the planetary model. From the list, select EGM2008
(Earth), EGM96 (Earth), LP100K (Moon), LP165P (Moon), GMM2B
(Mars), or Custom.

Selecting Custom enables you to specify your own planetary model.
This option enables the Planet mat-file parameter.

When defining your own planetary model, the Degree parameter
is limited to the maximum value for int16. When inputting a
large degree, you might receive an out-of-memory error. For more
information about avoiding out-of-memory errors in the MATLAB
environment, see:

http://www.mathworks.com/support/tech-notes/1100/1107.html

http://www.mathworks.com/support/tech-notes/1100/1110.html

EGM2008 is the latest Earth spherical harmonic gravitational
model from National Geospatial-Intelligence Agency (NGA). This
block provides the WGS-84 version of this gravitational model.
You can use the EGM96 planetary model if you need to use the
older standard for Earth.

LP100K and LP165P were created in approximately the same year
with similar data. LP100K is best for lunar orbit determination

5-499

http://www.mathworks.com/support/tech-notes/1100/1107.html
http://www.mathworks.com/support/tech-notes/1100/1110.html

Spherical Harmonic Gravity Model

based upon computational time required to compute orbits.
LP165P is best for extended lunar mission orbit accuracy.

Planet mat-file
Specify a MAT-file that contains definitions for a custom planetary
model. The aerogmm2b.mat file in the Aerospace Toolbox is the
default MAT-file for a custom planetary model.

This file must contain:

Variable Description

Re Scalar of planet equatorial radius in meters (m).

GM Scalar of planetary gravitational parameter in
meters cubed per second squared (m3/s2)

degree Scalar of maximum degree.

C (degree+1)-by-(degree+1) matrix containing
normalized spherical harmonic coefficients matrix,
C.

S (degree+1)-by-(degree+1) matrix containing
normalized spherical harmonic coefficients matrix,
S.

When using a large value for Degree, you might receive an
out-of-memory error. For more information about avoiding
out-of-memory errors in the MATLAB environment, see:

http://www.mathworks.com/support/tech-notes/1100/1107.html

http://www.mathworks.com/support/tech-notes/1100/1110.html

References Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

“NIMA TR8350.2: Department of Defense World Geodetic System 1984,
“Its Definition and Relationship with Local Geodetic Systems”.

5-500

http://www.mathworks.com/support/tech-notes/1100/1107.html
http://www.mathworks.com/support/tech-notes/1100/1110.html

Spherical Harmonic Gravity Model

Konopliv, A. S., S. W. Asmar, E. Carranza, W. L. Sjogen, D. N. Yuan.,
“Recent Gravity Models as a Result of the Lunar Prospector Mission,
Icarus”, Vol. 150, no. 1, pp 1–18, 2001.

Lemoine, F. G., D. E. Smith, D.D. Rowlands, M.T. Zuber, G. A.
Neumann, and D. S. Chinn, “An improved solution of the gravity field of
Mars (GMM-2B) from Mars Global Surveyor”, J. Geophys. Res., Vol.
106, No. E10, pp 23359-23376, October 25, 2001.

Kenyon S., J. Factor, N. Pavlis, and S. Holmes, “Towards the Next
Earth Gravitational Model”, Society of Exploration Geophysicists 77th
Annual Meeting, San Antonio, Texas, September 23-28, 2007.

Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor, “An Earth
Gravitational Model to Degree 2160: EGM2008”, presented at the
2008 General Assembly of the European Geosciences Union, Vienna,
Austria, April 13-18, 2008.

Grueber, T., and A. Köhl, “Validation of the EGM2008 Gravity Field
with GPS-Leveling and Oceanographic Analyses”, presented at the IAG
International Symposium on Gravity, Geoid & Earth Observation 2008,
Chania, Greece, June 23-27, 2008.

5-501

Symmetric Inertia Tensor

Purpose Create inertia tensor from moments and products of inertia

Library Mass Properties

Description The Symmetric Inertia Tensor block creates an inertia tensor from
moments and products of inertia. Each input corresponds to an element
of the tensor.

The inertia tensor has the form of

Inertia

I I I

I I I

I I I

xx xy yz

xy yy xz

yz xz zz

=

− −

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First Contains the moment of inertia
about the x-axis.

Second Contains the product of inertia in the
xy plane.

Third Contains the product of inertia in the
xz plane.

Fourth Contains the moment of inertia
about the y-axis.

5-502

Symmetric Inertia Tensor

Input Dimension Type Description

Fifth Contains the product of inertia in the
yz plane.

Sixth Contains the moment of inertia
about the z-axis.

Output Dimension Type Description

First Contains a symmetric 3-by-3 inertia
tensor.

See Also Create 3x3 Matrix

5-503

Temperature Conversion

Purpose Convert from temperature units to desired temperature units

Library Utilities/Unit Conversions

Description The Temperature Conversion block computes the conversion factor from
specified input temperature units to specified output temperature units
and applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output
units selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

K Kelvin

F Degrees Fahrenheit

C Degrees Celsius

R Degrees Rankine

5-504

Temperature Conversion

Inputs and
Outputs

Input Dimension Type Description

First Contains the temperature in initial
temperature units.

Output Dimension Type Description

First Contains the temperature in final
temperature units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Velocity Conversion

5-505

Three-Axis Accelerometer

Purpose Implement three-axis accelerometer

Library GNC/Navigation

Description The Three-Axis Accelerometer block implements an accelerometer on

each of the three axes. The ideal measured accelerations (Aimeas)

include the acceleration in body axes at the center of gravity (Ab), lever
arm effects due to the accelerometer not being at the center of gravity,
and, optionally, gravity in body axes can be removed.

A A d d gimeas b b b b= + × × + × − () �

where b are body-fixed angular rates, �b are body-fixed angular

accelerations and d is the lever arm. The lever arm (d) is defined as
the distances that the accelerometer group is forward, right and below
the center of gravity.

d

d

d

d

x x

y y

z z

x

y

z

acc CG

acc CG

acc CG

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

− −
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

()

()⎥⎥

The orientation of the axes used to determine the location of the
accelerometer group (xacc, yacc, zacc) and center of gravity (xCG, yCG, zCG)
is from the zero datum (typically the nose) to aft, to the right of the
vertical centerline and above the horizontal centerline. The x-axis
and z-axis of this measurement axes are opposite the body-fixed axes
producing the negative signs in the lever arms for x-axis and z-axis.

Measured accelerations (Ameas) output by this block contain error
sources and are defined as

A A A A noisemeas imeas SFCC bias= × + +

5-506

Three-Axis Accelerometer

where ASFCC is a 3-by-3 matrix of scaling factors on the diagonal and

misalignment terms in the nondiagonal, and Abiasare the biases.

Optionally discretizations can be applied to the block inputs and
dynamics along with nonlinearizations of the measured accelerations
via a Saturation block.

Dialog
Box

5-507

Three-Axis Accelerometer

Units
Specifies the input and output units:

Units Acceleration Length

Metric (MKS) Meters per second squared Meters

English Feet per second squared Feet

Accelerometer location
The location of the accelerometer group is measured from the
zero datum (typically the nose) to aft, to the right of the vertical
centerline and above the horizontal centerline. This measurement
reference is the same for the center of gravity input. The units are
in selected length units.

5-508

Three-Axis Accelerometer

Subtract gravity
Select to subtract gravity from acceleration readings.

Second order dynamics
Select to apply second-order dynamics to acceleration readings.

Natural frequency (rad/sec)
The natural frequency of the accelerometer. The units of natural
frequency are radians per second.

Damping ratio
The damping ratio of the accelerometer. A dimensionless
parameter.

Scale factors and cross-coupling
The 3-by-3 matrix used to skew the accelerometer from body axes
and to scale accelerations along body axes.

Measurement bias
The three-element vector containing long-term biases along the
accelerometer axes. The units are in selected acceleration units.

Update rate (sec)
Specify the update rate of the accelerometer. An update rate of
0 will create a continuous accelerometer. If noise is selected and
the update rate is 0, then the noise will be updated at the rate of
0.1. The units of update rate are seconds.

Noise on
Select to apply white noise to acceleration readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of
the accelerometer.

Noise power
The height of the PSD of the white noise for each axis of the
accelerometer.

5-509

Three-Axis Accelerometer

Lower and upper output limits
The six-element vector containing three minimum values and
three maximum values of acceleration in each of the accelerometer
axes. The units are in selected acceleration units.

Inputs and
Outputs

Input Dimension Type Description

First Three-element
vector

Contains the actual accelerations in
body-fixed axes, in selected units.

Second Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

Third Three-element
vector

Contains the angular accelerations
in body-fixed axes, in radians per
second squared.

Fourth Three-element
vector

Contains the location of the center of
gravity, in selected units.

Fifth
(Optional)

Three-element
vector

Contains the gravity, in selected
units.

Output Dimension Type Description

First Three-element
vector

Contains the measured accelerations
from the accelerometer, in selected
units.

Assumptions
and
Limitations

Vibropendulous error and hysteresis effects are not accounted for in
this block. Additionally, this block is not intended to model the internal
dynamics of different forms of the instrument.

Note This block requires the Control System Toolbox product for
discrete operation (nonzero sample time).

5-510

Three-Axis Accelerometer

Reference Rogers, R. M., Applied Mathematics in Integrated Navigation Systems,
AIAA Education Series, 2000.

See Also Three-Axis Gyroscope

Three-Axis Inertial Measurement Unit

5-511

Three-Axis Gyroscope

Purpose Implement three-axis gyroscope

Library GNC/Navigation

Description The Three-Axis Gyroscope block implements a gyroscope on each of

the three axes. The measured body angular rates ()meas include the

body angular rates ()b , errors, and optionally discretizations and
nonlinearizations of the signals.

 meas b SFCC bias gsensGs noise= × + + × +

where SFCC is a 3-by-3 matrix of scaling factors on the diagonal and

misalignment terms in the nondiagonal, bias are the biases, (Gs) are

the Gs on the gyroscope, and gsens are the g-sensitive biases.

Optionally discretizations can be applied to the block inputs and
dynamics along with nonlinearizations of the measured body angular
rates via a Saturation block.

5-512

Three-Axis Gyroscope

Dialog
Box

5-513

Three-Axis Gyroscope

Second order dynamics
Select to apply second-order dynamics to gyroscope readings.

Natural frequency (rad/sec)
The natural frequency of the gyroscope. The units of natural
frequency are radians per second.

Damping ratio
The damping ratio of the gyroscope. A dimensionless parameter.

Scale factors and cross-coupling
The 3-by-3 matrix used to skew the gyroscope from body axes and
to scale angular rates along body axes.

Measurement bias
The three-element vector containing long-term biases along the
gyroscope axes. The units are in radians per second.

G-sensitive bias
The three-element vector contains the maximum change in rates
due to linear acceleration. The units are in radians per second
per g-unit.

Update rate (sec)
Specify the update rate of the gyroscope. An update rate of 0 will
create a continuous gyroscope. If noise is selected and the update
rate is 0, then the noise will be updated at the rate of 0.1. The
units of update rate are seconds.

Noise on
Select to apply white noise to gyroscope readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of
the gyroscope.

Noise power
The height of the PSD of the white noise for each axis of the
gyroscope.

5-514

Three-Axis Gyroscope

Lower and upper output limits
The six-element vector containing three minimum values and
three maximum values of angular rates in each of the gyroscope
axes. The units are in radians per second.

Inputs and
Outputs

Input Dimension Type Description

First Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

Second Three-element
vector

Contains the accelerations in
body-fixed axes, in Gs.

Output Dimension Type Description

First Three-element
vector

Contains the measured angular
rates from the gyroscope, in radians
per second.

Assumptions
and
Limitations

Anisoelastic bias and anisoinertial bias effects are not accounted for in
this block. Additionally, this block is not intended to model the internal
dynamics of different forms of the instrument.

Note This block requires the Control System Toolbox product for
discrete operation (nonzero sample time).

Reference Rogers, R. M., Applied Mathematics in Integrated Navigation Systems,
AIAA Education Series, 2000.

See Also Three-Axis Accelerometer

Three-Axis Inertial Measurement Unit

5-515

Three-Axis Inertial Measurement Unit

Purpose Implement three-axis inertial measurement unit (IMU)

Library GNC/Navigation

Description The Three-Axis Inertial Measurement Unit block implements an
inertial measurement unit (IMU) containing a three-axis accelerometer
and a three-axis gyroscope.

For a description of the equations and application of errors, see the
Three-Axis Accelerometer block and the Three-Axis Gyroscope block
reference pages.

Dialog
Box

5-516

Three-Axis Inertial Measurement Unit

5-517

Three-Axis Inertial Measurement Unit

Units
Specifies the input and output units:

Units Acceleration Length

Metric (MKS) Meters per second
squared

Meters

English Feet per second squared Feet

IMU location
The location of the IMU, which is also the accelerometer group
location, is measured from the zero datum (typically the nose) to
aft, to the right of the vertical centerline and above the horizontal
centerline. This measurement reference is the same for the center
of gravity input. The units are in selected length units.

5-518

Three-Axis Inertial Measurement Unit

Update rate (sec)
Specify the update rate of the accelerometer and gyroscope.
An update rate of 0 will create a continuous accelerometer and
continuous gyroscope. If noise is selected and the update rate is
0, then the noise will be updated at the rate of 0.1. The units of
update rate are seconds.

Second order dynamics for accelerometer
Select to apply second-order dynamics to acceleration readings.

Accelerometer natural frequency (rad/sec)
The natural frequency of the accelerometer. The units of natural
frequency are radians per second.

Accelerometer damping ratio
The damping ratio of the accelerometer. A dimensionless
parameter.

Accelerometer scale factors and cross-coupling
The 3-by-3 matrix used to skew the accelerometer from body-axis
and to scale accelerations along body-axis.

Accelerometer measurement bias
The three-element vector containing long-term biases along the
accelerometer axes. The units are in selected acceleration units.

Accelerometer lower and upper output limits
The six-element vector containing three minimum values and
three maximum values of acceleration in each of the accelerometer
axes. The units are in selected acceleration units.

Gyro second order dynamics
Select to apply second-order dynamics to gyroscope readings.

Gyro natural frequency (rad/sec)
The natural frequency of the gyroscope. The units of natural
frequency are radians per second.

Gyro damping ratio
The damping ratio of the gyroscope. A dimensionless parameter.

5-519

Three-Axis Inertial Measurement Unit

Gyro scale factors and cross-coupling
The 3-by-3 matrix used to skew the gyroscope from body axes and
to scale angular rates along body axes.

Gyro measurement bias
The three-element vector containing long-term biases along the
gyroscope axes. The units are in radians per second.

G-sensitive bias
The three-element vector contains the maximum change in rates
due to linear acceleration. The units are in radians per second
per g-unit.

Gyro lower and upper output limits
The six-element vector containing three minimum values and
three maximum values of angular rates in each of the gyroscope
axes. The units are in radians per second.

Noise on
Select to apply white noise to acceleration and gyroscope readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of
the accelerometer and gyroscope.

Noise power
The height of the PSD of the white noise for each axis of the
accelerometer and gyroscope.

Inputs and
Outputs

Input Dimension Type Description

First Three-element
vector

Contains the actual accelerations in
body-fixed axes, in selected units.

Second Three-element
vector

Contains the angular rates in
body-fixed axes, in radians per
second.

5-520

Three-Axis Inertial Measurement Unit

Input Dimension Type Description

Third Three-element
vector

Contains the angular accelerations
in body-fixed axes, in radians per
second squared.

Fourth Three-element
vector

Contains the location of the center of
gravity, in selected units.

Fifth Three-element
vector

Contains the gravity, in selected
units.

Output Dimension Type Description

First Three-element
vector

Contains the measured accelerations
from the accelerometer, in selected
units.

Second Three-element
vector

Contains the measured angular
rates from the gyroscope, in radians
per second.

Assumptions
and
Limitations

Vibropendulous error, hysteresis affects, anisoelastic bias and
anisoinertial bias are not accounted for in this block. Additionally,
this block is not intended to model the internal dynamics of different
forms of the instrument.

Note This block requires the Control System Toolbox product for
discrete operation (nonzero sample time).

Examples See the asbhl20 demo for an example of this block.

Reference Rogers, R. M., Applied Mathematics in Integrated Navigation Systems,
AIAA Education Series, 2000.

5-521

Three-Axis Inertial Measurement Unit

See Also Three-Axis Accelerometer

Three-Axis Gyroscope

5-522

Turbofan Engine System

Purpose Implement first-order representation of turbofan engine with controller

Library Propulsion

Description The Turbofan Engine System block computes the thrust and the weight
of fuel flow of a turbofan engine and controller at a specific throttle
position, Mach number, and altitude.

This system is represented by a first-order system with unitless
heuristic lookup tables for thrust, thrust specific fuel consumption
(TSFC), and engine time constant. For the lookup table data, thrust is a
function of throttle position and Mach number, TSFC is a function of
thrust and Mach number, and engine time constant is a function of
thrust. The unitless lookup table outputs are corrected for altitude
using the relative pressure ratio δ and relative temperature ratio θ, and
scaled by maximum sea level static thrust, fastest engine time constant
at sea level static, sea level static thrust specific fuel consumption, and
ratio of installed thrust to uninstalled thrust.

The Turbofan Engine System block icon displays the input and output
units selected from the Units list.

5-523

Turbofan Engine System

Dialog
Box

Units
Specifies the input and output units:

Units Altitude Thrust Fuel Flow

Metric
(MKS)

Meters Newtons Kilograms per
second

English Feet Pound force Pound mass per
second

Initial thrust source
Specifies the source of initial thrust:

5-524

Turbofan Engine System

Internal Use initial thrust value from
mask dialog.

External Use external input for initial
thrust value.

Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Fastest engine time at sea level.

Sea-level static thrust specific fuel consumption
Thrust specific fuel consumption at sea level, at Mach = 0, and at
maximum thrust, in specified mass units per hour per specified
thrust units.

Ratio of installed thrust to uninstalled thrust
Coefficient representing the loss in thrust due to engine
installation.

Inputs and
Outputs

Input Dimension Type Description

First Contains the throttle position,
which can vary from zero to one,
corresponding to no and full throttle.

Second Contains the Mach number.

Third Contains the altitude in specified
length units.

5-525

Turbofan Engine System

Output Dimension Type Description

First Contains the thrust in specified force
units.

Second Contains the fuel flow in specified
mass units per second.

Assumptions
and
Limitations

The atmosphere is at standard day conditions and an ideal gas.

The Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be
used as a reference model.

This engine system is assumed to have a high bypass ratio.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986.

Raymer, D. P., Aircraft Design: A Conceptual Approach, AIAA
Education Series, Washington, DC, 1989.

Hill, P. G., and C. R. Peterson, Mechanics and Thermodynamics
of Propulsion, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1970.

5-526

Velocity Conversion

Purpose Convert from velocity units to desired velocity units

Library Utilities/Unit Conversions

Description The Velocity Conversion block computes the conversion factor from
specified input velocity units to specified output velocity units and
applies the conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog
Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s Meters per second

ft/s Feet per second

km/s Kilometers per second

in/s Inches per second

km/h Kilometers per hour

mph Miles per hour

5-527

Velocity Conversion

kts Nautical miles per hour

ft/min Feet per minute

Inputs and
Outputs

Input Dimension Type Description

First Contains the velocity in initial
velocity units.

Output Dimension Type Description

First Contains the velocity in final velocity
units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

5-528

Von Karman Wind Turbulence Model (Continuous)

Purpose Generate continuous wind turbulence with Von Kármán velocity spectra

Library Environment/Wind

Description The Von Kármán Wind Turbulence Model (Continuous) block uses the
Von Kármán spectral representation to add turbulence to the aerospace
model by passing band-limited white noise through appropriate forming
filters. This block implements the mathematical representation
in the Military Specification MIL-F-8785C and Military Handbook
MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process
defined by velocity spectra. For an aircraft flying at a speed V through
a frozen turbulence field with a spatial frequency of Ω radians per
meter, the circular frequency ω is calculated by multiplying V by Ω . The
following table displays the component spectra functions:

MIL-F-8785C MIL-HDBK-1797

Longitudinal

Φu () 2 1

1 1 339

2

2
5

6

u u

u

L
V

L
V

⋅

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

2 1

1 1 339

2

2
5

6

u u

u

L
V

L
V

⋅

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

Φ p ()

w

w

w

VL

L
b

b
V

2

1
3

2

0 8
4

1
4

⋅

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

.

w

w

w

VL

L
b

b
V

2

1
3

22

0 8
2

4

1
4

⋅

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

.

Lateral

5-529

Von Karman Wind Turbulence Model (Continuous)

MIL-F-8785C MIL-HDBK-1797

Φv ()

v v
v

v

L
V

L
V

L
V

2

2

2
11

6

1
8
3

1 339

1 1 339

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

.

2
1

8
3

2 678

1 2 678

2

2

2
11

6

v v
v

v

L
V

L
V

L
V

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

.

Φr ()
∓

V

b
V

v

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()

2

2
1

3
Φ

∓

V

b
V

v

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()

2

2
1

3
Φ

Vertical

Φw ()

w w
w

w

L
V

L
V

L
V

2

2

2
11

6

1
8
3

1 339

1 1 339

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

.

2
1

8
3

2 678

1 2 678

2

2

2
11

6

w w
w

w

L
V

L
V

L
V

⋅
+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

.

Φq ()
± ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()

V

b
V

w

2

2
1

4
Φ

±⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⋅ ()

V

b
V

w

2

2
1

4
Φ

The variable b represents the aircraft wingspan. The variables Lu,
Lv, Lw represent the turbulence scale lengths. The variables σu , σv , σw
represent the turbulence intensities:

5-530

Von Karman Wind Turbulence Model (Continuous)

The spectral density definitions of turbulence angular rates are defined
in the references as three variations, which are displayed in the
following table:

p
w

yg
g=

∂
∂

q
w

xg
g=

∂
∂

r
v

xg
g= −

∂
∂

p
w

yg
g=

∂
∂

q
w

xg
g=

∂
∂

r
v

xg
g=

∂
∂

p
w

yg
g= −

∂
∂

q
w

xg
g= −

∂
∂

r
v

xg
g=

∂
∂

The variations affect only the vertical (qg) and lateral (rg) turbulence
angular rates.

Keep in mind that the longitudinal turbulence angular rate spectrum,
Фp(ω), is a rational function. The rational function is derived from
curve-fitting a complex algebraic function, not the vertical turbulence
velocity spectrum, Фw(ω), multiplied by a scale factor. Because the
turbulence angular rate spectra contribute less to the aircraft gust
response than the turbulence velocity spectra, it may explain the
variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra.

Vertical Lateral

Фq(ω)

Фq(ω)

−Фq(ω)

−Фr(ω)

Фr(ω)

Фr(ω)

5-531

Von Karman Wind Turbulence Model (Continuous)

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is passed through forming filters. The
forming filters are approximations of the Von Kármán velocity spectra
which are valid in a range of normalized frequencies of less than 50
radians. These filters can be found in both the Military Handbook
MIL-HDBK-1797 and the reference by Ly and Chan.

The following two tables display the transfer functions.

MIL-F-8785C

Longitudinal

H su ()

u
u u

u u

L
V

L
V

s

L
V

s
L
V

s

2
1 0 25

1 1 357 0 1987
2

2

⋅ +⎛
⎝⎜

⎞
⎠⎟

+ + ⎛
⎝⎜

⎞
⎠⎟

.

. .

H sp ()

w

w
V

b

L
b
V

s

0 8 4

1
4

1
6

1
3

. ⋅

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

Lateral

H sv ()

v
v v v

v

L
V

L
V

s
L
V

s

L
V

1
1 2 7478 0 3398

1 2 9958

2
2⋅ + + ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

. .

. ss
L
V

s
L
V

sv v+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

1 9754 0 1539
2

2
3

3. .

5-532

Von Karman Wind Turbulence Model (Continuous)

MIL-F-8785C

H sr () ∓ s
V
b
V

s
H sv

1
3+ ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⋅ ()

Vertical

H sw ()

w
w w w

w

L
V

L
V

s
L
V

s

L
V

1
1 2 7478 0 3398

1 2 9958

2
2⋅ + + ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

. .

. ss
L
V

s
L
V

sw w+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

1 9754 0 1539
2

2
3

3. .

H sq () ±

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⋅ ()
s
V
b
V

s
H sw

1
4

MIL-HDBK-1797

Longitudinal

H su ()

u
u u

u u

L
V

L
V

s

L
V

s
L
V

s

2
1 0 25

1 1 357 0 1987
2

2

⋅ +⎛
⎝⎜

⎞
⎠⎟

+ + ⎛
⎝⎜

⎞
⎠⎟

.

. .

5-533

Von Karman Wind Turbulence Model (Continuous)

MIL-HDBK-1797

H sp ()

w

w
V

b

L
b
V

s

0 8 4

2 1
4

1
6

1
3

. ⋅

⎛
⎝⎜

⎞
⎠⎟

() + ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

Lateral

H sv ()

v
v v vL

V
L
V

s
L
V

s
1 2

1 2 7478
2

0 3398
2

1 2 9958

2
2⋅ + + ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

. .

.
22

1 9754
2

0 1539
22

2
3

3L
V

s
L
V

s
L
V

sv v v+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

. .

H sr () ∓ s
V
b
V

s
H sv

1
3+ ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⋅ ()

Vertical

5-534

Von Karman Wind Turbulence Model (Continuous)

MIL-HDBK-1797

H sw ()

w
w w wL

V
L
V

s
L
V

s
1 2

1 2 7478
2

0 3398
2

1 2 9958

2
2⋅ + + ⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

. .

.
22

1 9754
2

0 1539
22

2
3

3L
V

s
L
V

s
L
V

sw w w+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

. .

H sq () ±

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⋅ ()
s
V
b
V

s
H sw

1
4

Divided into two distinct regions, the turbulence scale lengths and
intensities are functions of altitude.

Note The same transfer functions result after evaluating the
turbulence scale lengths. The differences in turbulence scale lengths
and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at
low altitudes, where h is the altitude in feet, are represented in the
following table:

MIL-F-8785C MIL-HDBK-1797

L h

L L
h

h

w

u v

=

= =
+()0 177 0 000823 1 2. . .

2

2
0 177 0 000823 1 2

L h

L L
h

h

w

u v

=

= =
+(). . .

5-535

Von Karman Wind Turbulence Model (Continuous)

The turbulence intensities are given below, whereW20 is the wind speed
at 20 feet (6 m). Typically for light turbulence, the wind speed at 20 feet
is 15 knots; for moderate turbulence, the wind speed is 30 knots; and for
severe turbulence, the wind speed is 45 knots.

w

u

w

v

w

W

h

=

= =
+()

0 1

1

0 177 0 000823

20

0 4

.

. . .

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug , aligned along the horizontal
relative mean wind vector

• Vertical turbulence velocity, wg , aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and
intensities are based on the assumption that the turbulence is isotropic.
In the military references, the scale lengths are represented by the
following equations:

MIL-F-8785C MIL-HDBK-1797

Lu = Lv = Lw = 2500 ft Lu = 2Lv = 2Lw = 2500 ft

The turbulence intensities are determined from a lookup table that
provides the turbulence intensity as a function of altitude and the
probability of the turbulence intensity being exceeded. The relationship
of the turbulence intensities is represented in the following equation:
σu=σv=σw.

The turbulence axes orientation in this region is defined as being
aligned with the body coordinates:

5-536

Von Karman Wind Turbulence Model (Continuous)

Between Low and Medium/High Altitudes (1000 feet <
Altitude < 2000 feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities
and turbulence angular rates are determined by linearly interpolating
between the value from the low altitude model at 1000 feet transformed
from mean horizontal wind coordinates to body coordinates and the
value from the high altitude model at 2000 feet in body coordinates.

5-537

Von Karman Wind Turbulence Model (Continuous)

Dialog
Box

Units
Define the units of wind speed due to the turbulence.

5-538

Von Karman Wind Turbulence Model (Continuous)

Units Wind Velocity Altitude Air Speed

Metric
(MKS)

Meters/second Meters Meters/second

English
(Velocity
in ft/s)

Feet/second Feet Feet/second

English
(Velocity
in kts)

Knots Feet Knots

Specification
Define which military reference to use. This affects the application
of turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Continuous Von Karman (+q
-r)

Use continuous
representation of Von
Kármán velocity spectra
with positive vertical and
negative lateral angular rates
spectra.

Continuous Von Karman (+q
+r)

Use continuous
representation of Von
Kármán velocity spectra
with positive vertical and
lateral angular rates spectra.

Continuous Von Karman (-q
+r)

Use continuous
representation of Von
Kármán velocity spectra
with negative vertical and
positive lateral angular rates
spectra.

5-539

Von Karman Wind Turbulence Model (Continuous)

Continuous Dryden (+q -r) Use continuous
representation of Dryden
velocity spectra with positive
vertical and negative lateral
angular rates spectra.

Continuous Dryden (+q +r) Use continuous
representation of Dryden
velocity spectra with positive
vertical and lateral angular
rates spectra.

Continuous Dryden (-q +r) Use continuous
representation of Dryden
velocity spectra with negative
vertical and positive lateral
angular rates spectra.

Discrete Dryden (+q -r) Use discrete representation of
Dryden velocity spectra with
positive vertical and negative
lateral angular rates spectra.

Discrete Dryden (+q +r) Use discrete representation of
Dryden velocity spectra with
positive vertical and lateral
angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of
Dryden velocity spectra with
negative vertical and positive
lateral angular rates spectra.

The Continuous Von Kármán selections conform to the transfer
function descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 20 feet (6 meters)
provides the intensity for the low-altitude turbulence model.

5-540

Von Karman Wind Turbulence Model (Continuous)

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 20 feet (6 meters) is
an angle to aid in transforming the low-altitude turbulence model
into a body coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a
lookup table that gives the turbulence intensity as a function of
altitude and the probability of the turbulence intensity’s being
exceeded.

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant,
and from the military references, a figure of 1750 feet is
recommended for the longitudinal turbulence scale length of the
Dryden spectra.

Note An alternate scale length value changes the power spectral
density asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on
the angular rates.

Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is
generated.

Noise seeds
There are four random numbers required to generate the
turbulence signals, one for each of the three velocity components
and one for the roll rate. The turbulences on the pitch and yaw
angular rates are based on further shaping of the outputs from
the shaping filters for the vertical and lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

5-541

Von Karman Wind Turbulence Model (Continuous)

Inputs and
Outputs

Input Dimension Type Description

First Contains the altitude in units
selected.

Second Contains the aircraft speed in units
selected.

Third Contains a direction cosine matrix.

Output Dimension Type Description

First Three-element
signal

Contains the turbulence velocities,
in the selected units.

Second Three-element
signal

Contains the turbulence angular
rates, in radians per second.

Assumptions
and
Limitations

The frozen turbulence field assumption is valid for the cases of
mean-wind velocity and the root-mean-square turbulence velocity, or
intensity, are small relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear
air turbulence because the following factors are not incorporated into
the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

5-542

Von Karman Wind Turbulence Model (Continuous)

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA
Education Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust
Covariance Matrices,” AIAA Paper 80-1615, Atmospheric Flight
Mechanics Conference, Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and
Automatic Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide
for MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted
Airplanes’,” ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation
at NASA-Ames,” NASA CR-2497, Computer Sciences Corporation,
January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent
Gusts and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences
Meeting, St. Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

5-543

WGS84 Gravity Model

Purpose Implement 1984 World Geodetic System (WGS84) representation of
Earth’s gravity

Library Environment/Gravity

Description The WGS84 Gravity Model block implements the mathematical
representation of the geocentric equipotential ellipsoid of the World
Geodetic System (WGS84). The block output is the Earth’s gravity at
a specific location. Gravity precision is controlled via the Type of
gravity model parameter.

The WGS84 Gravity Model block icon displays the input and output
units selected from the Units list.

Dialog
Box

Type of gravity model
Specifies the method to calculate gravity:

• WGS84 Taylor Series

5-544

WGS84 Gravity Model

• WGS84 Close Approximation

• WGS84 Exact

Units
Specifies the input and output units:

Units Height Gravity

Metric
(MKS)

Meters Meters per second squared

English Feet Feet per second squared

Exclude Earth’s atmosphere
Select for the value for the Earth’s gravitational field to exclude
the mass of the atmosphere.

Clear for the value for the Earth’s gravitational field to include
the mass of the atmosphere.

This option is available only with Type of gravity model
WGS84 Close Approximation or WGS84 Exact.

Precessing reference frame
When selected, the angular velocity of the Earth is calculated
using the International Astronomical Union (IAU) value of
the Earth’s angular velocity and the precession rate in right
ascension. To obtain the precession rate in right ascension, Julian
centuries from Epoch J2000.0 is calculated using the dialog
parameters of Month, Day, and Year.

If cleared, the angular velocity of the Earth used is the value of
the standard Earth rotating at a constant angular velocity.

This option is available only with Type of gravity model
WGS84 Close Approximation or WGS84 Exact.

Input Julian date
When selected, another input port, JD, appears on the block mask.
Select this check box if you want to manually specify the Julian

5-545

WGS84 Gravity Model

date for the block. Otherwise, the block calculates the Julian date
given the values of Month, Day, and Year. Selecting this block
disables the Month, Day, and Year parameters.

Month
Specifies the month used to calculate Julian centuries from Epoch
J2000.0.

This option is available only with Type of gravity model
WGS84 Close Approximation orWGS84 Exact and only when
Precessing reference frame is selected. It is disabled if you
select Input Julian Date.

Day
Specifies the day used to calculate Julian centuries from Epoch
J2000.0.

This option is available only with Type of gravity model
WGS84 Close Approximation orWGS84 Exact and only when
Precessing reference frame is selected. It is disabled if you
select Input Julian Date.

Year
Specifies the year used to calculate Julian centuries from Epoch
J2000.0. The year must be 2000 or greater.

This option is available only with Type of gravity model
WGS84 Close Approximation orWGS84 Exact and only when
Precessing reference frame is selected. It is disabled if you
select Input Julian Date.

No centrifugal effects
When selected, calculated gravity is based on pure attraction
resulting from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force
resulting from the Earth’s angular velocity.

5-546

WGS84 Gravity Model

This option is available only with Type of gravity model
WGS84 Close Approximation or WGS84 Exact.

Action for out of range input
Specify if out-of-range input invokes a warning, error, or no action.

Inputs and
Outputs

Input Dimension
Type

Description

First Three-element
vector

Contains the position in geodetic latitude,
longitude and altitude, with units in
degrees, degrees, and selected units of length
respectively.

Second
(Optional)

Scalar Contains the Julian centuries that you
specified.

Output Dimension
Type

Description

Output Vector Applies to gravity in the north-east-down
(NED) coordinate system. The Exact
method should output both normal and
tangent gravity (down and north in the NED
coordinate system).

Assumptions
and
Limitations

The WGS84 gravity calculations are based on the assumption of a
geocentric equipotential ellipsoid of revolution. Since the gravity
potential is assumed to be the same everywhere on the ellipsoid, there
must be a specific theoretical gravity potential that can be uniquely
determined from the four independent constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It is sufficient near the surface when submicrogal precision is
not necessary. At medium and high geodetic heights, it is less accurate.

5-547

WGS84 Gravity Model

Use of the WGS84 Close Approximation model should be limited to a
geodetic height of 20,000.0 m (approximately 65,620.0 feet). Below this
height, it gives results with submicrogal precision.

To predict and determine a satellite orbit with high accuracy, use the
EGM96 through degree and order 70.

Examples See the Environment Models subsystem in the Airframe subsystem of
the aeroblk_HL20 model for an example of this block.

Reference [1] NIMA TR8350.2: “Department of Defense World Geodetic System
1984, Its Definition and Relationship with Local Geodetic Systems.”

5-548

Wind Angles to Direction Cosine Matrix

Purpose Convert wind angles to direction cosine matrix

Library Utilities/Axes Transformations

Description The Wind Angles to Direction Cosine Matrix block converts three wind
rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM
matrix performs the coordinate transformation of a vector in earth axes
(ox0, oy0, oz0) into a vector in wind axes (ox3, oy3, oz3). The order of the
axis rotations required to bring this about is:

1 A rotation about oz0 through the heading angle (χ) to axes (ox1, oy1,
oz1)

2 A rotation about oy1 through the flight path angle (γ) to axes (ox2,
oy2, oz2)

3 A rotation about ox2 through the bank angle (μ) to axes (ox3, oy3, oz3)

ox
oy
oz

DCM
ox
oy
oz

ox
oy
oz

we

3

3

3

0

0

0

3

3

3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
=

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1 0 0
0
0

0
0 1 0

0
cos sin
sin cos

cos sin

sin c
μ μ
μ μ

γ γ

γ oos

cos sin
sin cos

γ

χ χ
χ χ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
0
0

0 0 1

0

0

0

ox
oy
oz

⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

Combining the three axis transformation matrices defines the following
DCM.

DCMwe =
−

−
cos cos cos sin sin

(sin sin cos cos sin) (sin sin
γ χ γ χ γ

μ γ χ μ χ μ γγ χ μ χ μ γ
μ γ χ μ χ μ γ

sin cos cos) sin cos
(cos sin cos sin sin) (cos sin si

+
+ nn sin cos cos cosχ μ χ μ γ−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

5-549

Wind Angles to Direction Cosine Matrix

Dialog
Box

Inputs and
Outputs

Input Dimension Type Description

First 3-by-1 vector Contains wind angles, in radians.

Output Dimension Type Description

First 3-by-3 direction
cosine matrix

Transforms earth vectors to wind
vectors.

Assumptions
and
Limitations

This implementation generates a flight path angle that lies between ±90
degrees, and bank and heading angles that lie between ±180 degrees.

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix to Rotation Angles

Direction Cosine Matrix to Wind Angles

Rotation Angles to Direction Cosine Matrix

5-550

Wind Angular Rates

Purpose Calculate wind angular rates from body angular rates, angle of attack,
sideslip angle, rate of change of angle of attack, and rate of change of
sideslip

Library Flight Parameters

Description The Wind Angular Rates block supports the equations of motion in
wind-fixed frame models by calculating the wind-fixed angular rates

(pw, qw, rw). The body-fixed angular rates (pb, qb, rb), angle of attack ()α ,

sideslip angle (β), rate of change of angle of attack ()�α , and rate of

change of sideslip ()�β are related to the wind-fixed angular rate by the
following equation.

p
q
r

w

w

w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= − −

cos cos sin sin cos
cos sin cos sin sin

α β β α β
α β β α ββ

α α

β α
α

β α−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥sin cos

sin

cos0

p
q

r

b

b

b

�

�
�

Dialog
Box

5-551

Wind Angular Rates

Inputs and
Outputs

Input Dimension Type Description

First 2-by-1 vector Contains angle of attack and sideslip,
in radians.

2-by-1 vector Contains rate of change of angle of
attack and rate of change of sideslip,
in radians per second.

Contains the body angular rates, in
radians per second.

Output Dimension Type Description

First Contains the wind angular rates, in
radians per second.

See Also 3DoF (Body Axes)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

5-552

Wind Shear Model

Purpose Calculate wind shear conditions

Library Environment/Wind

Description

The Wind Shear Model block adds wind shear to the aerospace model.
This implementation is based on the mathematical representation in
the Military Specification MIL-F-8785C [1]. The magnitude of the wind
shear is given by the following equation for the mean wind profile as
a function of altitude and the measured wind speed at 20 feet (6 m)
above the ground.

u W

h
z

z

ft h ftw =

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

< <20
0

0

20
3 1000

ln

ln

,

where uw is the mean wind speed,W20 is the measured wind speed at an
altitude of 20 feet, h is the altitude, and z0 is a constant equal to 0.15
feet for Category C flight phases and 2.0 feet for all other flight phases.
Category C flight phases are defined in reference [1] to be terminal
flight phases, which include takeoff, approach, and landing.

The resultant mean wind speed in the flat Earth axis frame is changed
to body-fixed axis coordinates by multiplying by the direction cosine
matrix (DCM) input to the block. The block output is the mean wind
speed in the body-fixed axis.

5-553

Wind Shear Model

Dialog
Box

Units
Define the units of wind shear.

Units Wind Altitude

Metric (MKS) Meters/second Meters

English (Velocity in
ft/s)

Feet/second Feet

English (Velocity in
kts)

Knots Feet

Flight phase
Select flight phase:

• Category C — Terminal Flight Phases

• Other

Wind speed at 6 m (20 feet) altitude (m/s, f/s, or knots)
The measured wind speed at an altitude of 20 feet (6 m) above
the ground.

5-554

Wind Shear Model

Wind direction at 6 m (20 feet) altitude (degrees clockwise from
north)

The direction of the wind at an altitude of 20 feet (6 m), measured
in degrees clockwise from the direction of the Earth x-axis (north).
The wind direction is defined as the direction from which the
wind is coming.

Inputs and
Outputs

Input Dimension Type Description

First Contains the altitude in units
selected.

Second 3-by-3 direction
cosine matrix

Output Dimension Type Description

First 3-by-1 vector Contains the mean wind speed in
the body axes frame, in the selected
units.

Examples See the Airframe subsystem in the aeroblk_HL20 model for an example
of this block.

Reference U.S. Military Specification MIL-F-8785C, 5 November 1980.

See Also Discrete Wind Gust Model

Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Von Karman Wind Turbulence Model (Continuous)

5-555

World Magnetic Model 2000

Purpose Calculate Earth’s magnetic field at specific location and time using
World Magnetic Model 2000 (WMM2000)

Library Environment/Gravity

Description The WMM2000 block implements the mathematical representation of
the National Geospatial Intelligence Agency (NGA) World Magnetic
Model 2000. The WMM2000 block calculates the Earth’s magnetic field
vector, horizontal intensity, declination, inclination, and total intensity
at a specified location and time. The reference frame is north-east-down
(NED).

Dialog
Box

Units
Specifies the input and output units:

5-556

World Magnetic Model 2000

Units Height Magnetic Field
Horizontal
Intensity Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss

Input decimal year
When selected, the decimal year is an input for the World
Magnetic Model 2000 block. Otherwise, a date must be specified
using the dialog parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out-of-range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination
When selected, the declination, the angle between true north and
the magnetic field vector (positive eastwards), is output.

Output inclination
When selected, the inclination, the angle between the horizontal
plane and the magnetic field vector (positive downwards), is
output.

Output total intensity
When selected, the total intensity is output.

5-557

World Magnetic Model 2000

Inputs and
Outputs

Input Dimension Type Description

First Contains the height, in selected
units.

Second Contains the latitude in degrees.

Third Contains the longitude in degrees.

Fourth
(Optional)

Contains the desired year in a
decimal format to include any
fraction of the year that has already
passed. The value is the current
year plus the number of days that
have passed in this year divided by
365.The following code illustrates
how to calculate the decimal year,
dyear, for March 21, 2005:

%%%BEGIN CODE%%%

dyear=decyear('21-March-2005','dd-mmm-yyyy')

%%%END CODE%%%

Output Dimension Type Description

First Contains the magnetic field vector
in selected units.

Second
(Optional)

Contains the horizontal intensity in
selected units.

Third
(Optional)

Contains the declination in degrees.

Fourth
(Optional)

Contains the inclination in degrees.

Fifth
(Optional)

Contains the total intensity in
selected units.

5-558

World Magnetic Model 2000

Limitations The WMM2000 specification produces data that is reliable five years
after the epoch of the model, which is January 1, 2000.

The internal calculation of decimal year does not take into account local
time or leap seconds.

The WMM2000 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth’s core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the
mantle and crust), are not included. Also, the substantial fluctuations
of the geomagnetic field, which occur constantly during magnetic
storms and almost constantly in the disturbance field (auroral zones),
are not included.

Reference Macmillian, S. and J. M. Quinn, 2000. “The Derivation of the World
Magnetic Model 2000,” British Geological Survey Technical Report
WM/00/17R.

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

See Also World Magnetic Model 2005

5-559

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

World Magnetic Model 2005

Purpose Calculate Earth’s magnetic field at specific location and time using
World Magnetic Model 2005 (WMM2005)

Library Environment/Gravity

Description The WMM2005 block implements the mathematical representation of
the National Geospatial Intelligence Agency (NGA) World Magnetic
Model 2005. The WMM2005 block calculates the Earth’s magnetic field
vector, horizontal intensity, declination, inclination, and total intensity
at a specified location and time. The reference frame is north-east-down
(NED).

Note You cannot use this block to model the Earth magnetic field
above an altitude of 1,000,000 meters.

5-560

World Magnetic Model 2005

Dialog
Box

Units
Specifies the input and output units:

Units Height Magnetic Field
Horizontal
Intensity Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss

Input decimal year
When selected, the decimal year is an input for the World
Magnetic Model 2005 block. Otherwise, a date must be specified
using the dialog parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

5-561

World Magnetic Model 2005

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out-of-range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination
When selected, the declination, the angle between true north and
the magnetic field vector (positive eastwards), is output.

Output inclination
When selected, the inclination, the angle between the horizontal
plane and the magnetic field vector (positive downwards), is
output.

Output total intensity
When selected, the total intensity is output.

Inputs and
Outputs

Input Dimension Type Description

First Contains the height, in selected
units.

Second Contains the latitude in degrees.

5-562

World Magnetic Model 2005

Input Dimension Type Description

Third Contains the longitude in degrees.

Fourth
(Optional)

Contains the desired year in a
decimal format to include any
fraction of the year that has already
passed. The value is the current
year plus the number of days that
have passed in this year divided by
365.The following code illustrates
how to calculate the decimal year,
dyear, for March 21, 2005:

%%%BEGIN CODE%%%

dyear=decyear('21-March-2005','dd-mmm-yyyy')

%%%END CODE%%%

Output Dimension Type Description

First Vector Contains the magnetic field in
selected units.

Second
(Optional)

Contains the horizontal intensity in
selected units.

Third
(Optional)

Contains the declination in degrees.

Fourth
(Optional)

Contains the inclination in degrees.

Fifth
(Optional)

Contains the total intensity in
selected units.

Limitations The WMM2005 specification produces data that is reliable five years
after the epoch of the model, which is January 1, 2005.

5-563

World Magnetic Model 2005

The internal calculation of decimal year does not take into account local
time or leap seconds.

The WMM2005 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth’s core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the
mantle and crust), are not included. Also, the substantial fluctuations
of the geomagnetic field, which occur constantly during magnetic
storms and almost constantly in the disturbance field (auroral zones),
are not included.

Reference http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

See Also World Magnetic Model 2000

5-564

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

World Magnetic Model 2010

Purpose Calculate Earth’s magnetic field at specific location and time using
World Magnetic Model 2010 (WMM2010)

Library Environment/Gravity

Description The WMM2010 block implements the mathematical representation of
the National Geospatial Intelligence Agency (NGA) World Magnetic
Model 2010. The WMM2010 block calculates the Earth’s magnetic field
vector, horizontal intensity, declination, inclination, and total intensity
at a specified location and time. The reference frame is north-east-down
(NED).

Note You cannot use this block to model the Earth magnetic field
above an altitude of 1,000,000 meters.

5-565

World Magnetic Model 2010

Dialog
Box

Units
Specifies the input and output units:

Units Height Magnetic Field
Horizontal
Intensity Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss

Input decimal year
When selected, the decimal year is an input for the World
Magnetic Model 2010 block. Otherwise, a date must be specified
using the dialog parameters of Month, Day, and Year.

5-566

World Magnetic Model 2010

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out-of-range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination
When selected, the declination, the angle between true north and
the magnetic field vector (positive eastwards), is output.

Output inclination
When selected, the inclination, the angle between the horizontal
plane and the magnetic field vector (positive downwards), is
output.

Output total intensity
When selected, the total intensity is output.

Inputs and
Outputs

Input Dimension Type Description

First Contains the height, in selected
units.

Second Contains the latitude in degrees.

5-567

World Magnetic Model 2010

Input Dimension Type Description

Third Contains the longitude in degrees.

Fourth
(Optional)

Contains the desired year in a
decimal format to include any
fraction of the year that has already
passed. The value is the current year
plus the number of days that have
passed in this year divided by 365.

The following code illustrates how to
calculate the decimal year, dyear, for
March 21, 2010:

%%%BEGIN CODE%%%

dyear=decyear('21-March-2010','dd-mmm-yyyy')

%%%END CODE%%%

Output Dimension Type Description

First Vector Contains the magnetic field in
selected units.

Second
(Optional)

Contains the horizontal intensity in
selected units.

Third
(Optional)

Contains the declination in degrees.

Fourth
(Optional)

Contains the inclination in degrees.

Fifth
(Optional)

Contains the total intensity in
selected units.

Limitations The WMM2010 specification produces data that is reliable five years
after the epoch of the model, which is January 1, 2015.

5-568

World Magnetic Model 2010

The internal calculation of decimal year does not take into account local
time or leap seconds.

The WMM2010 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth’s core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the
mantle and crust), are not included. Also, the substantial fluctuations
of the geomagnetic field, which occur constantly during magnetic
storms and almost constantly in the disturbance field (auroral zones),
are not included.

Reference http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

See Also World Magnetic Model 2000, World Magnetic Model 2005

5-569

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

Zonal Harmonic Gravity Model

Purpose Calculate zonal harmonic representation of planetary gravity

Library Environment/Gravity

Description

The Zonal Harmonic Gravity Model block calculates the zonal harmonic
representation of planetary gravity at a specific location based on
planetary gravitational potential. This block provides a convenient way
to describe the gravitational field of a planet outside its surface.

By default, the block uses the fourth order zonal coefficient for Earth to
calculate the zonal harmonic gravity. It also allows you to specify the
second or third zonal coefficient.

gravityzonal is implemented using the following planetary parameter
values for each planet:

Planet Equatorial
Radius (Re) in
Meters

Gravitational
Parameter (GM) in
m3/s2

Zonal Harmonic Coefficients
(J Values)

Earth 6378.1363e3 3.986004415e14 [0.0010826269 -0.0000025323
-0.0000016204]

Jupiter 71492.e3 1.268e17 [0.01475 0 -0.00058]

Mars 3397.2e3 4.305e13 [0.001964 0.000036]

Mercury 2439.0e3 2.2032e13 0.00006

Moon 1738.0e3 4902.799e9 0.0002027

Neptune 24764e3 6.809e15 0.004

Saturn 60268.e3 3.794e16 [0.01645 0 -0.001]

5-570

Zonal Harmonic Gravity Model

Planet Equatorial
Radius (Re) in
Meters

Gravitational
Parameter (GM) in
m3/s2

Zonal Harmonic Coefficients
(J Values)

Uranus 25559.e3 5.794e15 0.012

Venus 6052.0e3 3.257e14 0.000027

Dialog
Box

5-571

Zonal Harmonic Gravity Model

Units
Specify the input units:

Units Position Equatorial Radius
Gravitational
Parameter

Metric
(MKS)

Meters Meters Meters cubed per
second squared

English Feet Feet Feet cubed per
second squared

Degree
Specify the degree of harmonic model.

• 2 — Second degree, J2. Most significant or largest spherical
harmonic term, which accounts for the oblateness of a planet.

• 3 — Third degree, J3.

• 4 — Fourth degree, J4 (default).

5-572

Zonal Harmonic Gravity Model

Action for out of range input
Specify if out-of-range input invokes a warning, error, or no action.

Planet model
Specify the planetary model. From the list, select Mercury, Venus,
Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, or Custom.

Selecting Custom enables you to specify your own planetary model.
This option enables the Equatorial radius, Gravitational
parameter, and J values parameters.

Selecting Mercury, Venus, Moon, Uranus, or Neptune limits the
degree to 2.

Selecting Mars limits the degree to 3.

Equatorial radius
Specify the planetary equatorial radius in the length units that
the Units parameter defines.

Gravitational parameter
Specify the planetary gravitational parameter in the length units
cubed per second squared that the Units parameter defines.

J values
Specify a 3-element array that defines the zonal harmonic
coefficients.

Inputs and
Outputs

This block accepts only scalar inputs (m=1).

Input Dimension
Type

Description

First m-by-3
matrix

Contains planet-centered planet-fixed
coordinates from the center of the planet
in the selected length units. If Planet
model has a value of Earth, this matrix
contains Earth-centered Earth-fixed (ECEF)
coordinates.

5-573

Zonal Harmonic Gravity Model

Output Dimension
Type

Description

First m-by-3
array

Contains gravity values in the x-axis, y-axis
and z-axis of the planet-centered planet-fixed
coordinates in the selected length units per
second squared.

References Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

Fortescue, P., J. Stark, G. Swinerd, (Eds.). Spacecraft Systems
Engineering, Third Edition, Wiley & Sons, West Sussex, 2003.

Tewari, A., Atmospheric and Space Flight Dynamics Modeling and
Simulation with MATLAB and Simulink, Birkhäuser, Boston, 2007.

5-574

A

Aerospace Units

The main blocks of theAerospace Blockset library support standard
measurement systems. The Unit Conversion blocks support all units listed
in this table.

Quantity Metric (MKS) English

Acceleration meters/second2 (m/s2),
kilometers/second2 (km/s2),
(kilometers/hour)/second
(km/h-s), g-unit (g)

inches/second2 (in/s2),
feet/second2 (ft/s2),
(miles/hour)/second
(mph/s), g-unit (g)

Angle radian (rad), degree (deg),
revolution

radian (rad), degree (deg),
revolution

Angular
acceleration

radians/second2 (rad/s2),
degrees/second2 (deg/s2),
revolutions/minute (rpm),
revolutions/second (rps)

radians/second2 (rad/s2),
degrees/second2 (deg/s2),
revolutions/minute (rpm),
revolutions/second (rps)

Angular
velocity

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

Density kilogram/meter3 (kg/m3) pound mass/foot3 (lbm/ft3),
slug/foot3 (slug/ft3), pound
mass/inch3 (lbm/in3)

Force newton (N) pound (lb)

Inertia kilogram-meter2 (kg-m2) slug-foot2 (slug-ft2)

Length meter (m) inch (in), foot (ft), mile (mi),
nautical mile (nm)

A Aerospace Units

Quantity Metric (MKS) English

Mass kilogram (kg) slug (slug), pound mass
(lbm)

Pressure Pascal (Pa) pound/inch2 (psi),
pound/foot2 (psf),
atmosphere (atm)

Temperature kelvin (K), degrees Celsius
(oC)

degrees Fahrenheit (oF),
degrees Rankine (oR)

Torque newton-meter (N-m) pound-feet (lb-ft)

Velocity meters/second (m/s),
kilometers/second (km/s),
kilometers/hour (km/h)

inches/second (in/s),
feet/second (ft/s),
feet/minute (ft/min),
miles/hour (mph), knots

A-2

Index

IndexSymbols and Numerics
1D Controller [A(v),B(v),C(v),D(v)] block 5-2
1D Controller Blend u=(1-L).K1.y+L.K2.y

block[oneD Controller Blend
u=(1-L).K1.y+L.K2.y block 5-5

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
block 5-9

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
block 5-13

2D Controller [A(v),B(v),C(v),D(v)] block 5-17
2D Controller Blend block 5-21
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

block 5-25
2D Self-Conditioned [A(v),B(v),C(v),D(v)]

block 5-30
3D Controller [A(v),B(v),C(v),D(v)] block 5-35
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

block 5-39
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

block 5-44
3DoF (Body Axes) block 5-52
3DoF (Wind Axes) block 5-57
3DoF Animation block 5-49
3x3 Cross Product block 5-63
4th Order Point Mass (Longitudinal) block 5-64
4th Order Point Mass Forces (Longitudinal)

block 5-68
6DoF (Euler Angles) block 5-73
6DoF (Quaternion) block 5-80
6DoF Animation block 5-70
6DoF ECEF (Quaternion) block 5-86
6DoF Wind (Quaternion) block 5-97
6DoF Wind (Wind Angles) block 5-104
6th Order Point Mass (Coordinated Flight)

block 5-110
6th Order Point Mass Forces (Coordinated

Flight) block 5-115

A
AC3D coordinates 2-24
Acceleration Conversion block 5-118
Actuators library 2-4
Adjoint of 3x3 Matrix block 5-120
Aerodynamic Forces and Moments block 5-122
Aerodynamics library 2-4
airspeed correction 3-2
Angle Conversion block 5-127
Angular Acceleration Conversion block 5-129
Angular Velocity Conversion block 5-131
Animation library 2-4

Animation Support Utilities sublibrary 2-5
Flight Simulator Interfaces sublibrary 2-5
MATLAB-Based Animation sublibrary 2-5

B
Besselian Epoch to Julian Epoch block 5-133
body coordinates 2-18

C
Calculate Range block 5-135
CIRA Atmosphere Model block 5-138
COESA Atmosphere Model block 5-143
Controllers

1D Controller [A(v),B(v),C(v),D(v)]
block[oneD Controller
[A(v),B(v),C(v),D(v)] 5-2

coordinate systems
display 2-23
modeling 2-18
navigation 2-20
overview 2-16

Create 3x3 Matrix block 5-146
creating an aerospace model

basic steps 2-8
Custom Variable Mass 3DoF (Body Axes)

block 5-148

Index-1

Index

Custom Variable Mass 3DoF (Wind Axes)
block 5-153

Custom Variable Mass 6DoF (Euler Angles)
block 5-159

Custom Variable Mass 6DoF (Quaternion)
block 5-166

Custom Variable Mass 6DoF ECEF (Quaternion)
block 5-172

Custom Variable Mass 6DoF Wind (Quaternion)
block 5-182

Custom Variable Mass 6DoF Wind (Wind Angles)
block 5-189

D
demo models

running 1-17
Density Conversion block 5-195
Determinant of 3x3 Matrix block 5-197
Digital DATCOM Forces and Moments

block 5-199
Direction Cosine Matrix Body to Wind

block 5-206
Direction Cosine Matrix Body to Wind to Alpha

and Beta block 5-208
Direction Cosine Matrix ECEF to NED

block 5-211
Direction Cosine Matrix ECEF to NED to

Latitude and Longitude block 5-214
Direction Cosine Matrix to Quaternions

block 5-217
Direction Cosine Matrix to Rotation Angles

block 5-219
Direction Cosine Matrix to Wind Angles

block 5-222
Discrete Wind Gust Model block 5-225
Dryden Wind Turbulence Model (Continuous)

block 5-229
Dryden Wind Turbulence Model (Discrete)

block 5-243

Dynamic Pressure block 5-256

E
ECEF coordinates 2-22
ECEF Position to LLA block 5-257
ECI coordinates 2-21
Environment library 2-5

Atmosphere sublibrary 2-5
Gravity sublibrary 2-5
Wind sublibrary 2-5

Equations of Motion library 2-5
3DoF sublibrary 2-6
6DoF sublibrary 2-6
Point Mass sublibrary 2-6

Estimate Center of Gravity block 5-265
Estimate Inertia Tensor block 5-267

F
Flat Earth to LLA block 5-269
Flight Parameters library 2-6
FlightGear

aircraft models 2-33
example 2-48
flight simulator overview 2-26
installing 2-30
obtaining 2-26
running 2-38

FlightGear coordinates 2-23
FlightGear Preconfigured 6DoF Animation

block 5-274
Force Conversion block 5-277

G
Gain Scheduled Lead-Lag block 5-279
Generate Run Script block 5-281
Geocentric to Geodetic Latitude block 5-285
Geodetic to Geocentric Latitude block 5-291
GNC Library

Index-2

Index

Control sublibrary 2-6
Guidance sublibrary 2-6
Navigation sublibrary 2-6

H
Horizontal Wind Model block 5-295

I
Ideal Airspeed Correction block 5-298
Incidence & Airspeed block 5-302
Incidence, Sideslip & Airspeed block 5-304
Interpolate Matrix(x) block 5-306
Interpolate Matrix(x,y) block 5-308
Interpolate Matrix(x,y,z) block 5-311
Invert 3x3 Matrix block 5-315
ISA Atmosphere Model block 5-316

J
Julian Epoch to Besselian Epoch block 5-318

L
Lapse Rate Model block 5-320
latitude 2-20
Length Conversion block 5-325
lifting body (HL-20) 3-19
LLA to ECEF Position block 5-327

M
Mach Number block 5-331
Mass Conversion block 5-332
Mass Properties library 2-6
MATLAB

opening demos
using the command line 1-17
using the Start button 1-17

MATLAB files

running simulations from 2-15
missile guidance system 3-34
Moments about CG due to Forces block 5-338

N
NED coordinates 2-21
Non-Standard Day 210C block 5-340
Non-Standard Day 310 block 5-346
NRLMSISE-00 Model block 5-352

P
Pack net_fdm Packet for FlightGear block 5-360
parameters

tuning 2-14
Pilot Joystick All block 5-383
Pilot Joystick block 5-379
Pressure Altitude block 5-386
Pressure Conversion block 5-388
Propulsion library 2-6

Q
Quaternion Conjugate block 5-390
Quaternion Division block 5-392
Quaternion Inverse block 5-394
Quaternion Modulus block 5-396
Quaternion Multiplication block 5-398
Quaternion Norm block 5-400
Quaternion Normalize block 5-402
Quaternion Rotation block 5-404
Quaternions to Direction Cosine Matrix

block 5-406
Quaternions to Rotation Angles block 5-408

R
Radius at Geocentric Latitude block 5-411
Relative Ratio block 5-415

Index-3

Index

Rotation Angles to Direction Cosine Matrix
block 5-418

S
Second Order Linear Actuator block 5-423
Second Order Nonlinear Actuator block 5-425
Self-Conditioned [A,B,C,D] block 5-427
Send net_fdm Packet to FlightGear block 5-432
Simple Variable Mass 3DoF (Body Axes)

block 5-435
Simple Variable Mass 3DoF (Wind Axes)

block 5-442
Simple Variable Mass 6DoF (Euler Angles)

block 5-449
Simple Variable Mass 6DoF (Quaternion)

block 5-457
Simple Variable Mass 6DoF ECEF (Quaternion)

block 5-464
Simple Variable Mass 6DoF Wind (Quaternion)

block 5-476
Simple Variable Mass 6DoF Wind (Wind Angles)

block 5-484
Simulation Pace block 5-492
simulations

running from MATLAB file 2-15
Simulink

block libraries 2-2
modifying models 1-12
opening Aerospace Blockset 2-2
opening demos

using the Help browser 1-17
running demos 1-10
using the Simulink Library Browser 2-3

SinCos block 5-495
Symmetric Inertia Tensor block 5-502

T
Temperature Conversion block 5-504
Three-Axis Accelerometer block 5-506
Three-axis Gyroscope block 5-512
Three-Axis Inertial Measurement Unit

block 5-516
tuning parameters 2-14
Turbofan Engine System block 5-523

U
Utilities library 2-7

Axes Transformation sublibrary 2-7
Math Operations sublibrary 2-7
Unit Conversions sublibrary 2-7

V
Velocity Conversion block 5-527
Von K\x87 rm\x87 n Wind Turbulence Model

(Continuous) block 5-529

W
WGS84 Gravity Model block 5-544
Wind Angles to Direction Cosine Matrix

block 5-549
Wind Angular Rates block 5-551
wind coordinates 2-19
Wind Shear Model block 5-553
World Magnetic Model 2000 block 5-556
World Magnetic Model 2005 block 5-560
World Magnetic Model 2010 block 5-565
Wright Flyer 3-9

Index-4

	toc
	Getting Started
	Product Overview
	Real-Time Workshop Code Generation Support
	Embedded MATLAB Function Support

	Related Products
	Requirements for the Aerospace Blockset Product
	Other Related Products
	For More Information About MathWorks Products

	Running a Demo Model
	Introduction
	What This Demo Illustrates
	Opening the Model
	Key Subsystems
	Running the Demo
	Modifying the Model
	Adjusting the Thrust
	Changing the Animation Point of View

	Learning More
	Using the MATLAB Help System for Documentation and Demos
	Opening Aerospace Demos

	Finding Aerospace Blockset Help

	Using the Aerospace Blockset Software
	Introducing the Aerospace Blockset Libraries
	Introduction
	Opening the Aerospace Blockset Library
	Opening the Simulink Library Browser
	Simulink Libraries
	Opening the Aerospace Blockset Library

	Summary of Aerospace Blockset Libraries
	Actuators Library
	Aerodynamics Library
	Animation Library
	Environment Library
	Equations of Motion Library
	Flight Parameters Library
	GNC Library
	Mass Properties Library
	Propulsion Library
	Utilities Library

	Creating Aerospace Models
	Basic Steps
	Model Referencing Limitations

	Building a Simple Actuator System
	Building the Model
	Creating a Model

	Running the Simulation
	Running a Simulation from a MATLAB File

	About Aerospace Coordinate Systems
	Fundamental Coordinate System Concepts
	Definitions
	Approximations
	Motion with Respect to Other Planets

	Coordinate Systems for Modeling
	Body Coordinates
	Wind Coordinates

	Coordinate Systems for Navigation
	Geocentric and Geodetic Latitudes
	NED Coordinates
	ECI Coordinates
	ECEF Coordinates

	Coordinate Systems for Display
	MATLAB Graphics Coordinates
	FlightGear Coordinates
	AC3D Coordinates

	References

	Introducing the Flight Simulator Interface
	About the FlightGear Interface
	Obtaining FlightGear
	Configuring Your Computer for FlightGear
	Graphics Recommendations for Windows
	Setting Up OpenGL Graphics on Windows
	Setup on Linux, Macintosh, and Other Platforms
	Using MATLAB Graphics Controls to Configure Your OpenGL Settings

	Installing and Starting FlightGear

	Working with the Flight Simulator Interface
	Introduction
	About Aircraft Geometry Models
	Aircraft Geometry Editors and Formats
	Aircraft Model Structure and Requirements
	Required Flight Dynamics Model Specification
	Obtaining and Modifying Existing Aircraft Models
	Hardware Requirements for Aircraft Geometry Rendering

	Working with Aircraft Geometry Models
	Importing Aircraft Models into FlightGear
	Example: Animating Vehicle Geometries

	Running FlightGear with the Simulink Models
	Setting the Flight Dynamics Model to Network in the Aircraft Dat
	Obtaining the Destination IP Address
	Adding and Connecting Interface Blocks
	Creating a FlightGear Run Script
	Starting FlightGear
	Improving Performance
	Running FlightGear and Simulink Software on Different Computers

	Running the NASA HL-20 Demo with FlightGear

	Case Studies
	Ideal Airspeed Correction
	Introduction
	Airspeed Correction Models
	Measuring Airspeed
	Calibration Error
	Compressibility Error
	Density Error

	Modeling Airspeed Correction
	COESA Atmosphere Model Block
	Ideal Airspeed Correction Block

	Simulating Airspeed Correction

	1903 Wright Flyer
	Introduction
	Wright Flyer Model
	Airframe Subsystem
	Elevator Angle of Attack Subsystem
	Aerodynamic Coefficients Subsystem
	Forces and Moments Subsystem
	3DoF (Body Axes) Block

	Environment Subsystem
	Pilot Subsystem
	Running the Simulation
	Virtual Reality Visualization of the Wright Flyer

	References
	Additional Information About the 1903 Wright Flyer

	NASA HL-20 Lifting Body Airframe
	Introduction
	NASA HL-20 Lifting Body
	The HL-20 Airframe and Controller Model
	Modeling Assumptions and Limitations
	6DoF (Euler Angles) Subsystem
	Environmental Models Subsystem
	Alpha, Beta, Mach Subsystem
	Aerodynamic Coefficients Subsystem
	Completing the Model

	References
	Additional Information About the HL-20 Lifting Body

	Missile Guidance System
	Introduction
	Missile Guidance System Model
	Modeling Airframe Dynamics
	ISA Atmosphere Model Block
	Aerodynamics & Equations of Motion Subsystem

	Modeling a Classical Three-Loop Autopilot
	Trimming and Linearizing an Airframe Model
	Autopilot Design

	Modeling the Homing Guidance Loop
	Guidance Subsystem
	Seeker/Tracker Subsystem

	Simulating the Missile Guidance System
	Extending the Model
	References

	Block Reference
	Actuators
	Aerodynamics
	Animation
	MATLAB-Based Animation
	Flight Simulator Interfaces
	Animation Support Utilities

	Environment
	Atmosphere
	Gravity & Magnetism
	Wind

	Flight Parameters
	Equations of Motion
	Three DoFs
	Six DoFs
	Point Masses

	Guidance, Navigation, and Control
	Control
	Guidance
	Navigation

	Mass Properties
	Propulsion
	Utilities
	Axes Transformations
	Math Operations
	Unit Conversions

	Blocks — Alphabetical List
	Aerospace Units
	Index

	tables
	Four Axis Mode (All Double Precision Values)
	All Outputs Mode (All Values Double Precision, Except for Button
	Four Axis Mode (All Double Precision Values)
	All Outputs Mode (All Values Double Precision, Except for Button

