Aerospace Blockset[™] 3 User's Guide

MATLAB[®] SIMULINK[®]

How to Contact The MathWorks

(a)

www.mathworks.comWebcomp.soft-sys.matlabNewsgroupwww.mathworks.com/contact_TS.htmlTechnical Support

suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7000 (Phone) 508-647-7001 (Fax)

The MathWorks, Inc. 3 Apple Hill Drive Natick. MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Blockset[™] User's Guide

© COPYRIGHT 2002–2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

July 2002 July 2003 June 2004 October 2004 March 2005 May 2005 September 2005 March 2006 September 2006 March 2007 September 2007 March 2008 October 2008 March 2009 September 2009 March 2010

Online only Online only Online only Online only Online only Online only First printing Online only Online only Online only Second printing Online only Online only Online only Online only Online only

New for Version 1.0 (Release 13) Revised for Version 1.5 (Release 13SP1) Revised for Version 1.6 (Release 14) Revised for Version 1.6.1 (Release 14SP1) Revised for Version 1.6.2 (Release 14SP2) Revised for Version 2.0 (Release 14SP2+) Revised for Version 2.0.1 (Release 14SP3) Revised for Version 2.1 (Release 2006a) Revised for Version 2.2 (Release 2006b) Revised for Version 2.3 (Release 2007a) Revised for Version 3.0 (Release 2007b) Revised for Version 3.1 (Release 2008a) Revised for Version 3.2 (Release 2008b) Revised for Version 3.3 (Release 2009a) Revised for Version 3.4 (Release 2009b) Revised for Version 3.5 (Release 2010a)

Contents

Getting Started

Product Overview Real-Time Workshop Code Generation Support Embedded MATLAB Function Support	1-2 1-2 1-2
Related Products Requirements for the Aerospace Blockset Product	1-4 1-4
Other Related Products	1-4
Running a Demo Model	1-5
Introduction	1-5
What This Demo Illustrates	1-5
Opening the Model	1-6
Key Subsystems	1-7
Running the Demo	1-10
Modifying the Model	1-12
Learning More Using the MATLAB Help System for Documentation and	1-17
Demos	1-17
Finding Aerospace Blockset Help	1-17

Using the Aerospace Blockset Software

2

Introducing the Aerospace Blockset Libraries	2-2
Introduction Opening the Aerospace Blockset Library Summary of Aerospace Blockset Libraries	2-2 2-2 2-4
Creating Aerospace Models	2-8

Basic Steps	2-8 2-9
Building a Simple Actuator System Building the Model Running the Simulation	2-10 2-10 2-14
About Aerospace Coordinate Systems	2-16 2-16 2-18 2-20 2-23 2-24
Introducing the Flight Simulator InterfaceAbout the FlightGear InterfaceObtaining FlightGearConfiguring Your Computer for FlightGearInstalling and Starting FlightGear	2-26 2-26 2-27 2-30
Working with the Flight Simulator InterfaceIntroductionAbout Aircraft Geometry ModelsWorking with Aircraft Geometry ModelsRunning FlightGear with the Simulink ModelsRunning the NASA HL-20 Demo with FlightGear	2-32 2-32 2-33 2-35 2-38 2-48

Case Studies

Ideal Airspeed Correction	:
Introduction	÷
Airspeed Correction Models	
Measuring Airspeed	
Modeling Airspeed Correction	
Simulating Airspeed Correction	;
1903 Wright Flyer	÷

Introduction	3-9
Wright Flyer Model	3-10
Airframe Subsystem	3-10
Environment Subsystem	3-14
Pilot Subsystem	3-15
Running the Simulation	3-16
References	3-17
NASA HL-20 Lifting Body Airframe	3-19
Introduction	3-19
NASA HL-20 Lifting Body	3-19
The HL-20 Airframe and Controller Model	3-20
References	3-33
Missile Guidance System	3-34
Introduction	3-34
Missile Guidance System Model	3-34
Modeling Airframe Dynamics	3-35
Modeling a Classical Three-Loop Autopilot	3-42
Modeling the Homing Guidance Loop	3-44
Simulating the Missile Guidance System	3-50
Extending the Model	3-52
References	3-53

Block Reference

Actuators	4-2
Aerodynamics	4-2
AnimationMATLAB-Based AnimationFlight Simulator InterfacesAnimation Support Utilities	4-2 4-3 4-3 4-3
Environment	4-4 4-4

Gravity & Magnetism	4-5
Wind	4-5
Flight Parameters	4-6
Equations of Motion	4-7
Three DoFs	4-7
Six DoFs	4-8
Point Masses	4-10
Cuidance Newigation and Control	4 10
Control	4-10
Cuidance	4-11
Newigetien	4-12
	4-12
Mass Properties	4-13
Propulsion	4-13
Utilities	4-13
Axes Transformations	4-13
Math Operations	4-15
Unit Conversions	4-16

 ${\bf Blocks-Alpha betical\ List}$

Aerospace Units

Index

5

A

Getting Started

- "Product Overview" on page 1-2
- "Related Products" on page 1-4
- "Running a Demo Model" on page 1-5
- "Learning More" on page 1-17

Product Overview

The Aerospace Blockset[™] product lets you model aerospace systems in the Simulink[®] and MATLAB[®] environments. The Aerospace Blockset product brings the full power of Simulink to aerospace system design, integration, and simulation by providing key aerospace subsystems and components in the adaptable Simulink block format. From environmental models to equations of motion, from gain scheduling to animation, the blockset gives you the core components to assemble a broad range of large aerospace system architectures rapidly and efficiently.

You can use the Aerospace Blockset and Simulink products to develop your aerospace system concepts and to efficiently revise and test your models throughout the life cycle of your design. Animate your aerospace motion simulations with MATLAB Graphics or the optional Simulink[®] 3D Animation[™] viewer.

Real-Time Workshop Code Generation Support

Use the Aerospace Blockset software with the Real-Time Workshop[®] software to automatically generate code for real-time execution in rapid prototyping and for hardware-in-the-loop systems.

Embedded MATLAB Function Support

The Aerospace Blockset product supports the following Aerospace Toolbox quaternion functions in the Embedded MATLAB Function block:

quatconj quatinv quatmod quatmultiply quatdivide quatnorm quatnormalize

For further information on using the Embedded MATLAB Function block, see:

• "Using the Embedded MATLAB® Function Block" in Simulink User's Guide

 \bullet <code>asbQuatEML</code> demo, which demonstrates quaternions and models the equations

Related Products

In this section...

"Requirements for the Aerospace Blockset Product" on page 1-4

"Other Related Products" on page 1-4

Requirements for the Aerospace Blockset Product

In particular, the Aerospace Blockset product requires current versions of these products:

- MATLAB
- Aerospace Toolbox
- Simulink

Other Related Products

The related products listed on the Aerospace Blockset product page at the MathWorks Web site include toolboxes and blocksets that extend the capabilities of the MATLAB and Simulink products. These products will enhance your use of the Aerospace Blockset product in various applications.

For More Information About MathWorks Products

For more information about any MathWorks[™] software products, see either

- The online documentation for that product if it is installed
- The MathWorks Web site at www.mathworks.com; see the "Products" section

Running a Demo Model

"Introduction" on page 1-5 "What This Demo Illustrates" on page 1-5

"Opening the Model" on page 1-6

"Key Subsystems" on page 1-7

"Running the Demo" on page 1-10

"Modifying the Model" on page 1-12

Introduction

This section introduces a missile guidance model that uses blocks from the Aerospace Blockset software to simulate a three-degree-of-freedom missile guidance system, in conjunction with other Simulink blocks.

The model simulates a missile guidance system with a target acquisition and interception subsystem. The model implements a nonlinear representation of the rigid body dynamics of the missile airframe, including aerodynamic forces and moments. The missile autopilot is based on the trimmed and linearized missile airframe. The missile homing guidance system regulates missile acceleration and measures the distance between the missile and its target.

For more information on this model, see Chapter 3, "Case Studies".

What This Demo Illustrates

The missile guidance demo illustrates the following features of the blockset:

- Representing bodies and degrees of freedom with the Equations of Motion library blocks
- Using the Aerospace Blockset blocks with other Simulink blocks
- Using the Aerospace Blockset blocks in the Stateflow® charts
- Feeding in and feeding out Simulink signals to and from Aerospace Blockset blocks with Actuator and Sensor blocks

1

- Encapsulating groups of blocks into subsystems
- Visualizing and animating an aircraft with the Animation library blocks

Note The Stateflow module in this demo is precompiled and does not require Stateflow software to be installed.

Opening the Model

To open the missile guidance demo, type the demo name, aeroblk_guidance, at the MATLAB command line. The model opens.

A Stateflow chart for the guidance control processor also appears.

Alternatively, you can open demos through the MATLAB Help browser. To do this, click the **Help** button on the MATLAB Command Window. The MATLAB Help browser displays. In this browser, you can select **Aerospace Blockset > Demos > Vehicle System Modeling > Air > Three Degree of Freedom Guided Missile**.

Key Subsystems

The model implements the missile environment, airframe, autopilot, and homing guidance system in subsystems.

• The Airframe & Autopilot subsystem implements the ISA Atmosphere Model block, the Incidence & Airspeed block, and the 3DoF (Body Axes) block, along with other Simulink blocks.

The airframe model is a nonlinear representation of rigid body dynamics. The aerodynamic forces and moments acting on the missile body are generated from coefficients that are nonlinear functions of both incidence and Mach number. 1

• The model implements the missile autopilot as a classical three-loop design using measurements from an accelerometer located ahead of the missile's center of gravity and from a rate gyro to provide additional damping.

- The model implements the homing guidance system as two subsystems: the Guidance subsystem and the Seeker/Tracker subsystem.
 - The Guidance subsystem uses a Stateflow chart to control the tracker directly by sending demands to the seeker gimbals.

• The Seeker/Tracker subsystem consists of Simulink blocks that control the seeker gimbals to keep the seeker dish aligned with the target and provide the guidance law with an estimate of the sight line rate.

Running the Demo

Running a demo lets you observe the model simulation in real time. After you run the demo, you can examine the resulting data in plots, graphs, and other visualization tools. To run the missile guidance model, follow these steps:

- 1 If it is not already open, open the aeroblk_guidance demo.
- 2 From the Simulation menu, select Start. On Microsoft[®] Windows[®] systems, you can also click the start button in the model window toolbar.

The simulation proceeds until the missile intercepts the target, which takes approximately 3 seconds. Once the interception has occurred, four scope figures open to display the following data:

a A three-dimensional animation of the missile and target interception course

b Plots that measure flight parameters over time, including Mach number, fin demand, acceleration, and degree of incidence

c A plot that measures gimbal versus true look angles

1

d A plot that measures missile and target trajectories

Modifying the Model

You can adjust the missile guidance model settings and examine the effects on simulation performance. Here are two modifications that you can try. The first modification adjusts the missile engine thrust. The second modification changes the camera point of view for the interception animation.

Adjusting the Thrust

As in any Simulink model, you can adjust aerospace model parameters from the MATLAB workspace. To demonstrate this, change the Thrust variable in the model workspace and evaluate the results in the simulation.

- 1 Open the aeroblk_guidance model.
- 2 In the MATLAB desktop, find the Thrust variable in the Workspace pane.

Lirectory Workspa	ace 🖛 🗖 🛪 ≯
1 🗹 🐿 🛍 🔤	* B 💌 🕷
Name 🛆	Value
Η Mach_vec	[2,2.5000,3,3 📥
🗄 Miss_pos	<1x1 struct>
🗄 Mode	<1x1 struct>
田 P0	101325
田 R	287.2600
Η S_ref	0.0409
田 то	288.1600
🔁 Tgt_pos	<1x1 struct>
Η Thrust	10000
💾 al	<41x5 double
Η alpha_ini	0
Η alpha_sch	[0,0.0698,0.1
Η alpha_vec	<41x1 double
Η am	2.1500e-04

The Thrust variable is defined in the aeroblk_guid_dat.m file, which the aeroblk_guidance model uses to populate parameter and variable values. By default, the Thrust variable should be set to 10000.

3 Single-click the Thrust variable to select it. To edit the value, right-click the Thrust variable and select **Edit Value**. Change the value to 4500.

Before you run the demo again, locate the Miss Distance (Display) block display in the aeroblk_guidance model.

Start the demo, and after it finishes, note the miss distance display again. The miss distance should become greater than the original distance. You can experiment with different values in the Thrust variable and assess the effects on missile accuracy.

Changing the Animation Point of View

By default, the missile animation view is Fly Alongside, which means the view tracks with the missile's flight path. You can easily change the animation point of view by adjusting a parameter of the 3DoF Animation block:

1 Open the aeroblk_guidance model, and double-click the 3DoF Animation block. The **Block Parameters** dialog box appears.

Block Parameters: 3DoF Animation	
3DoF_Animation (mask) (link)	
Create a 3-D animated view of a three-degrees-of-freedom craft and its target, where X and Z target position [Xeze], and craft attitude are inputs.	
Display parameters are in the same units of length as the input parameters.	
Parameters	
Axes limits [xmin xmax ymin ymax zmin zmax]:	
[0 5000 -2000 2000 -5050 -3050]	
Time interval between updates:	
0.03	
Size of craft displayed:	
1.8	
Enter view: Fly alongside	Enter view
Position of camera [xc yc zc]:	
[200 200 -50]	
View angle:	
20	
Enable animation	
OK Cancel Help Apply	

- 2 Change the view to Cockpit.
- **3** Click the **OK** button.

Run the demo again, and watch the animation. Instead of moving alongside the missile's flight path, the animation point of view lies in the cockpit. Upon target interception, the screen fills with blue, the target's color.

You can experiment with different views to watch the animation from different perspectives.

Learning More

In this section ...

"Using the MATLAB Help System for Documentation and Demos" on page 1-17

"Finding Aerospace Blockset Help" on page 1-17

Using the MATLAB Help System for Documentation and Demos

The MATLAB Help browser allows you to access the documentation and demo models for all the MathWorks products that you have installed. The online help includes an online search system.

Consult the Help for Using MATLAB section of the MATLAB Desktop Tools and Development Environment documentation for more about the MATLAB help system.

Opening Aerospace Demos

To open an Aerospace Blockset demo from the Help browser, open the MATLAB Command Window and select **Aerospace Blockset > Demos**.

You can also open the Aerospace Blockset demos from the **Start** button of the MATLAB desktop:

1 Click the **Start** button.

2 Select Blocksets, then Aerospace, and then Demos.

This opens the Help browser with **Demos** selected in the **Help Navigator** pane.

Alternatively, you can open the **Demos** window by entering **demos** at the MATLAB command line.

Finding Aerospace Blockset Help

This user's guide also includes a reference chapter.

• Appendix A, "Aerospace Units" explains the unit systems used by the blockset.

2

Using the Aerospace Blockset Software

- "Introducing the Aerospace Blockset Libraries" on page 2-2
- "Creating Aerospace Models" on page 2-8
- "Building a Simple Actuator System" on page 2-10
- "About Aerospace Coordinate Systems" on page 2-16
- "Introducing the Flight Simulator Interface" on page 2-26
- "Working with the Flight Simulator Interface" on page 2-32

Introducing the Aerospace Blockset Libraries

In this section...

"Introduction" on page 2-2

"Opening the Aerospace Blockset Library" on page 2-2

"Summary of Aerospace Blockset Libraries" on page 2-4

Introduction

Constructing a simple Aerospace Blockset model is easy to learn if you know how to create Simulink models. If you are not familiar with the Simulink product, please see the Simulink documentation. The Aerospace Blockset library is organized into hierarchical libraries of closely related blocks for use in the Simulink library.

Opening the Aerospace Blockset Library

You can open the Aerospace Blockset library from the Simulink Library Browser. The procedure is the same on Windows and UNIX[®] platforms.

Opening the Simulink Library Browser

To start the Simulink Library Browser, click the ab button in the MATLAB toolbar, or enter

simulink

at the command line.

Simulink Libraries

The libraries in the Simulink library Browser contain all the basic elements you need to construct a model. Look here for basic math operations, switches, connectors, simulation control elements, and other items that do not have a specific aerospace orientation.

Opening the Aerospace Blockset Library

The Simulink Library Browser opens when you type simulink in the MATLAB

Command Window or click the *button*. The left pane contains a list of all the blocksets that you currently have installed.

The first item in the list is the Simulink library itself, which is already expanded to show the available Simulink libraries. Click the \pm symbol to the left of any blockset name to expand the hierarchical list and display that blockset's libraries within the browser.

To open the Aerospace Blockset window from the MATLAB command line, enter

aerolib

Double-click any library in the window to display its contents. The following figure shows the Aerospace Blockset library window.

For a complete list of all the blocks in the Aerospace Blockset library, see "Summary of Aerospace Blockset Libraries" on page 2-4.

See the Simulink documentation for a complete description of the Simulink Library Browser.

Summary of Aerospace Blockset Libraries

The blocks of the Aerospace Blockset library are organized into these libraries.

Actuators Library

The Actuators library provides blocks for representing linear and nonlinear actuators with saturation and rate limits.

Aerodynamics Library

The Aerodynamics library provides the Aerodynamic Forces and Moments block using the aerodynamic coefficients, dynamic pressure, center of gravity, and center of pressure.

Animation Library

The Animation library provides the animation blocks for visualizing flight paths and trajectories and for working with a flight simulator interface. The Animation library contains the MATLAB-Based Animation, Flight Simulator Interfaces, and Animation Support Utilities sublibraries.

MATLAB-Based Animation Sublibrary. The MATLAB-Based Animation sublibrary provides the 3DoF Animation block and the 6DoF Animation block. Using the animation blocks, you can visualize flight paths and trajectories.

Flight Simulator Interfaces Sublibrary. The Flight Simulator Interfaces sublibrary provides the interface blocks to connect the Aerospace Blockset product to the third-party FlightGear flight simulator.

Animation Support Utilities Sublibrary. The Animation Support Utilities sublibrary provides additional blocks for running the FlightGear flight simulator. It contains a joystick interface for Windows platform and a block that lets you set the simulation pace.

Environment Library

The Environment library provides blocks that simulate aspects of an aircraft and spacecraft environment, such as atmospheric conditions, gravity, magnetic fields, and wind. The Environment library contains the Atmosphere, Gravity, and Wind sublibraries.

Atmosphere Sublibrary. The Atmosphere sublibrary provides general atmospheric models, such as ISA and COESA, and other blocks, including nonstandard day simulations, lapse rate atmosphere, and pressure altitude.

Gravity Sublibrary. The Gravity sublibrary provides blocks that calculate the gravity and magnetic fields for any point on the Earth.

Wind Sublibrary. The Wind sublibrary provides blocks for wind-related simulations, including turbulence, gust, shear, and horizontal wind.

Equations of Motion Library

The Equations of Motion library provides blocks for implementing the equations of motion to determine body position, velocity, attitude, and related values. The Equations of Motion library contains the 3DoF, 6DoF, and Point Mass sublibraries.

3DoF Sublibrary. The 3DoF sublibrary provides blocks for implementing three-degrees-of-freedom equations of motion in your simulations, including custom variable mass models.

6DoF Sublibrary. The 6DoF sublibrary provides blocks for implementing six-degrees-of-freedom equations of motion in your simulations, using Euler angles and quaternion representations.

Point Mass Sublibrary. The Point Mass sublibrary provides blocks for implementing point mass equations of motion in your simulations.

Flight Parameters Library

The Flight Parameters library provides blocks for various parameters, including ideal airspeed correction, Mach number, and dynamic pressure.

GNC Library

The GNC library provides blocks for creating control and guidance systems, including various controller models. The GNC library contains the Control, Guidance, and Navigation sublibraries.

Control Sublibrary. The Control sublibrary provides blocks for simulating various control types, such as one-dimensional, two-dimensional, and three-dimensional models.

Guidance Sublibrary. The Guidance sublibrary provides the Calculate Range block, which computes the range between two vehicles.

Navigation Sublibrary. The Navigation sublibrary provides blocks for three-axis measurement of accelerations, angular rates, and inertias.

Mass Properties Library

The Mass Properties library provides blocks for simulating the center of gravity and inertia tensors.

Propulsion Library

The Propulsion library provides the Turbofan Engine System block, which simulates an engine system and controller.

Utilities Library

The Utilities library contains miscellaneous blocks useful in building models. The library contains the Axes Transformations, Math Operations, and Unit Conversions sublibraries.

Axes Transformations Sublibrary. The Axes Transformations sublibrary provides blocks for transforming axes of coordinate systems to different types, such as Euler angles to quaternions and vice versa.

Math Operations Sublibrary. The Math Operations sublibrary provides blocks for common mathematical and matrix operations, including sine and cosine generation and various 3-by-3 matrix operations.

Unit Conversions Sublibrary. The Unit Conversions sublibrary provides blocks for converting common measurement units from one system to another, such as converting velocity from feet per second to meters per second and vice versa.

Creating Aerospace Models

In this section...

"Basic Steps" on page 2-8

"Model Referencing Limitations" on page 2-9

Basic Steps

Regardless of the model's complexity, you use the same essential steps for creating an aerospace model as you would for creating any other Simulink model. For general model-building rules, see the Simulink documentation.

- Select and position the blocks. You must first select the blocks that you need to build your model, and then position the blocks in the model window. For the majority of Simulink models, you select one or more blocks from each of the following categories:
 - **a** Source blocks generate or import signals into the model, such as a sine wave, a clock, or limited-band white noise.
 - **b** Simulation blocks can consist of almost any type of block that performs an action in the simulation. A simulation block represents a part of the model functionality to be simulated, such as an actuator block, a mathematical operation, a block from the Aerospace Blockset library, and so on.
 - Signal Routing blocks route signals from one point in a model to another. If you need to combine or redirect two or more signals in your model, you will probably use a Simulink Signal Routing block, such as Mux and Demux.

As an alternative to the Mux block, you can use the Vector option of the Concatenate block **Mode** parameter (also known as the Vector Concatenate block). This block provides a more general way for you to route signals from one point in the a model to another. The Vector mode takes as input a vector of signals of the same data type and creates a contiguous output signal. Depending on the input, this block outputs a row or column vector if any of the inputs are row or column vectors, respectively.

- **d** Sink blocks display, write, or save model output. To see the results of the simulation, you must use a Sink block.
- **2** *Configure the blocks.* Most blocks feature configuration options that let you customize block functionality to specific simulation parameters. For example, the ISA Atmosphere Model block provides configuration options for setting the height of the troposphere, tropopause, and air density at sea level.
- **3** *Connect the blocks.* To create signal pathways between blocks, you connect the blocks to each other. You can do this manually by clicking and dragging, or you can connect blocks automatically.
- **4** *Encapsulate subsystems*. Systems made with Aerospace Blockset blocks can function as subsystems of larger, more complex models, like subsystems in any Simulink model.

Model Referencing Limitations

The Model block allows you to include a model as a block in another model. If you include a model that contains continuous blocks from the Aerospace Blockset library, the referenced model containing the Aerospace Blockset blocks will not inherit its sample time from the parent model of the Model block. The referenced model will have intrinsic sample times. See "Inheriting Sample Times" in the *Simulink User's Guide* guide about this limitation. If you want to use the Real-Time Workshop software to generate code, do not use the following Aerospace Blockset blocks in referenced models. Because they are noninlined S-functions, Real-Time Workshop cannot generate standalone executables (Real-Time Workshop targets) for referenced models that include these blocks:

- WGS84 Gravity Model
- COESA Atmosphere Model
- Non-Standard Day 210C, Non-Standard Day 310
- Pressure Altitude

If you are only interested in simulation, see "Simulink Model Referencing Limitations" in the Simulink user's guide documentation for additional limitations for simulating noninlined functions.

Building a Simple Actuator System

In this section ...

"Building the Model" on page 2-10 $\,$

"Running the Simulation" on page 2-14

Building the Model

The Simulink product is a software environment for modeling, simulating, and analyzing dynamic systems. Try building a simple model that drives an actuator with a sine wave and displays the actuator's position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of building it, enter aeroblktutorial at the MATLAB command line.

The following section ("Creating a Model" on page 2-11) explains how to build a model on Windows platforms. You can use this same procedure to build a model on UNIX platforms.

The section describes how to build the model. It does not describe how to set the configuration parameters for the model. See "Configuration Parameters Dialog Box" in the *Simulink Graphical User Interface* documentation. That section describes setting configuration parameters for models. If you do not set any configuration parameters, simulating models might cause warnings like:

Warning: Using a default value of 0.2 for maximum step size.
The simulation step size will be equal to or less than this value. You can disable this diagnostic by setting 'Automatic solver parameter selection' diagnostic to 'none' in the Diagnostics page of the configuration parameters dialog

Creating a Model

1 Click the *button* in the MATLAB toolbar or enter simulink at the MATLAB command line. The Simulink library browser appears.

- 2 Select New > Model from the File menu in the Library Browser. A new model window appears on your screen.
- **3** Add a Sine Wave block to the model.
 - **a** Click **Sources** in the Library Browser to view the blocks in the Simulink Sources library.
 - **b** Drag the Sine Wave block from the Sources library into the new model window.
- **4** Add a Second Order Linear Actuator to the model.

- a Click the [★] symbol next to Aerospace Blockset in the Library Browser to expand the hierarchical list of the aerospace blocks.
- **b** In the expanded list, click **Actuators** to view the blocks in the Actuator library.
- c Drag the Second Order Linear Actuator block into the model window.
- **5** Add a Mux block to the model.
 - **a** Click **Signal Routing** in the Library Browser to view the blocks in the Simulink Signals & Systems library.
 - **b** Drag the Mux block from the Signal Routing library into the model window.
- **6** Add a Scope block to the model.
 - **a** Click **Sinks** in the Library Browser to view the blocks in the Simulink Sinks library.
 - **b** Drag the Scope block from the Sinks library into the model window.
- 7 Resize the Mux block in the model.
 - **a** Click the Mux block to select the block.
 - **b** Hold down the mouse button and drag a corner of the Mux block to change the size of the block.
- 8 Connect the blocks.
 - **a** Position the pointer near the output port of the Sine Wave block. Hold down the mouse button and drag the line that appears until it touches the input port of the Second Order Linear Actuator block. Release the mouse button.
 - **b** Using the same technique, connect the output of the Second Order Linear Actuator block to the second input port of the Mux block.
 - Using the same technique, connect the output of the Mux block to the input port of the Scope block.
 - **d** Position the pointer near the first input port of the Mux block. Hold down the mouse button and drag the line that appears over the line from the output port of the Sine Wave block until double crosshairs

appear. Release the mouse button. The lines are connected when a knot is present at their intersection.

- 9 Set the block parameters.
 - **a** Double-click the Sine Wave block. The dialog box that appears allows you to set the block's parameters.

For this example, configure the block to generate a 10 rad/s sine wave by entering 10 for the **Frequency** parameter. The sinusoid has the default amplitude of 1 and phase of 0 specified by the **Amplitude** and **Phase offset** parameters.

b Click **OK**.

Block Parameters: Sine Wave					
Sine Wave					
Output a sine wave:					
O(t) = Amp*Sin(2*pi*Freq*t+Phase) + Bias					
Sine type determines the computational technique used. The parameters in the two types are related through:					
Samples per period = 2*pi / (Frequency * Sample time)					
Number of offset samples = Phase * Samples per period / (2*pi)					
Use the sample-based sine type if numerical problems due to running for large times (e.g. overflow in absolute time) occur.					
Parameters					
Sine type: Time based					
Time (t): Use simulation time					
Amplitude:					
1					
Bias:					
Frequency (rad/sec):					
10					
Phase (rad):					
Jo					
Sample time:					
0					
✓ Interpret vector parameters as 1-D					
<u> </u>					

c Double-click the Second Order Linear Actuator block.

In this example, the actuator has the default natural frequency of 150 rad/s, a damping ratio of 0.7, and an initial position of 0 radians specified by the **Natural frequency**, **Damping ratio**, and **Initial position** parameters.

d Click OK.

Block Parameters: Second Order Linear Actuator	×
Second Order Linear Actuator (mask) (link)	
Implement a second-order actuator model	
Parameters	_
Natural frequency:	
150	
Damping ratio:	
0.7	
Initial position:	
0	
OK Cancel Help Apply	

Running the Simulation

You can now run the model that you built to see how the system behaves in time:

- **1** Double-click the Scope block if the Scope window is not already open on your screen. The Scope window appears.
- **2** Select **Start** from the **Simulation** menu in the model window. The signal containing the 10 rad/s sinusoid and the signal containing the actuator position are plotted on the scope.
- **3** Adjust the Scope block's display. While the simulation is running, right-click the *y*-axis of the scope and select **Autoscale**. The vertical range of the scope is adjusted to better fit the signal.
- 4 Vary the Sine Wave block parameters.
 - **a** While the simulation is running, double-click the Sine Wave block to open its parameter dialog box. This causes the simulation to pause.
 - b You can then change the frequency of the sinusoid. Try entering 1 or20 in the Frequency field. Close the Sine Wave dialog box to enter

your change and allow the simulation to continue. You can then observe the changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters *cannot* be changed while a simulation is running. This is usually the case for parameters that directly or indirectly alter a signal's dimensions or sample rate. However, there are some parameters, like the Sine Wave **Frequency** parameter, that you can *tune* without stopping the simulation.

Note Opening a dialog box for a source block causes Simulink to pause. While Simulink is paused, you can edit the parameter values. You must close the dialog box to have the changes take effect and allow Simulink to continue.

Running a Simulation from a MATLAB File

You can also modify and run a Simulink simulation from a MATLAB MATLAB file. By doing this, you can automate the variation of model parameters to explore a large number of simulation conditions rapidly and efficiently. For information on how to do this, see the Simulink documentation.

About Aerospace Coordinate Systems

In this section ...

"Fundamental Coordinate System Concepts" on page 2-16

"Coordinate Systems for Modeling" on page 2-18

"Coordinate Systems for Navigation" on page 2-20

"Coordinate Systems for Display" on page 2-23

"References" on page 2-24

Fundamental Coordinate System Concepts

Coordinate systems allow you to keep track of an aircraft or spacecraft's position and orientation in space. The Aerospace Blockset coordinate systems are based on these underlying concepts from geodesy, astronomy, and physics.

Definitions

The blockset uses *right-handed* (RH) *Cartesian* coordinate systems. The *right-hand rule* establishes the *x-y-z* sequence of coordinate axes.

An *inertial frame* is a nonaccelerating motion reference frame. In an inertial frame, Newton's second law holds: force = mass•acceleration. Loosely speaking, acceleration is defined with respect to the distant cosmos, and an inertial frame is often said to be nonaccelerated with respect to the "fixed stars." Because the Earth and stars move so slowly with respect to one another, this assumption is a very accurate approximation.

Strictly defined, an inertial frame is a member of the set of all frames not accelerating relative to one another. A *noninertial frame* is any frame accelerating relative to an inertial frame. Its acceleration, in general, includes both translational and rotational components, resulting in *pseudoforces* (*pseudogravity*, as well as *Coriolis* and *centrifugal forces*).

The blockset models the Earth's shape (the *geoid*) as an oblate spheroid, a special type of ellipsoid with two longer axes equal (defining the *equatorial plane*) and a third, slightly shorter (*geopolar*) axis of symmetry. The equator is the intersection of the equatorial plane and the Earth's surface. The

geographic poles are the intersection of the Earth's surface and the geopolar axis. In general, the Earth's geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The *zero longitude* or *prime meridian* passes through Greenwich, England.

Approximations

The blockset makes three standard approximations in defining coordinate systems relative to the Earth.

- The Earth's surface or geoid is an oblate spheroid, defined by its longer equatorial and shorter geopolar axes. In reality, the Earth is slightly deformed with respect to the standard geoid.
- The Earth's rotation axis and equatorial plane are perpendicular, so that the rotation and geopolar axes are identical. In reality, these axes are slightly misaligned, and the equatorial plane wobbles as the Earth rotates. This effect is negligible in most applications.
- The only noninertial effect in Earth-fixed coordinates is due to the Earth's rotation about its axis. This is a *rotating*, *geocentric* system. The blockset ignores the Earth's acceleration around the Sun, the Sun's acceleration in the Galaxy, and the Galaxy's acceleration through the cosmos. In most applications, only the Earth's rotation matters.

This approximation must be changed for spacecraft sent into deep space, i.e., outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets

The blockset uses the standard WGS-84 geoid to model the Earth. You can change the equatorial axis length, the flattening, and the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body that is well approximated by an oblate spheroid by changing the spheroid size, flattening, and rotation rate. If the celestial body is rotating westward (retrogradely), make the rotation rate negative.

Coordinate Systems for Modeling

Modeling aircraft and spacecraft is simplest if you use a coordinate system fixed in the body itself. In the case of aircraft, the forward direction is modified by the presence of wind, and the craft's motion through the air is not the same as its motion relative to the ground.

See the "Equations of Motion" on page 4-7 for further details on how the Aerospace Blockset product implements body and wind coordinates.

Body Coordinates

The noninertial body coordinate system is fixed in both origin and orientation to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

- The *x*-axis points through the nose of the craft.
- The *y*-axis points to the right of the *x*-axis (facing in the pilot's direction of view), perpendicular to the *x*-axis.
- The *z*-axis points down through the bottom the craft, perpendicular to the *xy* plane and satisfying the RH rule.

Translational Degrees of Freedom. Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles *P*, *Q*, *R* or Φ , Θ , Ψ . They are:

$P \text{ or } \Phi$	Roll about the <i>x</i> -axis
$Q ext{ or } \Theta$	Pitch about the y-axis
$R ext{ or } \Psi$	Yaw about the <i>z</i> -axis

Wind Coordinates

The noninertial wind coordinate system has its origin fixed in the rigid aircraft. The coordinate system orientation is defined relative to the craft's velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

- The *x*-axis points in the direction of *V*.
- The y-axis points to the right of the x-axis (facing in the direction of V), perpendicular to the x-axis.
- The *z*-axis points perpendicular to the *xy* plane in whatever way needed to satisfy the RH rule with respect to the *x* and *y*axes.

Translational Degrees of Freedom. Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles Φ , γ , χ . They are:

Φ	Bank angle about the <i>x</i> -axis
Y	Flight path about the <i>y</i> -axis
Х	Heading angle about the z-axis

Coordinate Systems for Navigation

Modeling aerospace trajectories requires positioning and orienting the aircraft or spacecraft with respect to the rotating Earth. Navigation coordinates are defined with respect to the center and surface of the Earth.

Geocentric and Geodetic Latitudes

The geocentric latitude λ on the Earth's surface is defined by the angle subtended by the radius vector from the Earth's center to the surface point with the equatorial plane.

The *geodetic latitude* μ on the Earth's surface is defined by the angle subtended by the surface normal vector n and the equatorial plane.

NED Coordinates

The north-east-down (NED) system is a noninertial system with its origin fixed at the aircraft or spacecraft's center of gravity. Its axes are oriented along the geodetic directions defined by the Earth's surface.

- The *x*-axis points north parallel to the geoid surface, in the polar direction.
- The *y*-axis points east parallel to the geoid surface, along a latitude curve.
- The z-axis points downward, toward the Earth's surface, antiparallel to the surface's outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth's surface.

ECI Coordinates

The Earth-centered inertial (ECI) system is a mixed inertial system. It is oriented with respect to the Sun. Its origin is fixed at the center of the Earth. (See figure following.)

- The *z*-axis points northward along the Earth's rotation axis.
- The *x*-axis points outward in the Earth's equatorial plane exactly at the Sun. (This rule ignores the Sun's oblique angle to the equator, which varies with season. The actual Sun always remains in the *xz* plane.)

• The *y*-axis points into the eastward quadrant, perpendicular to the *xz* plane so as to satisfy the RH rule.

Earth-Centered Coordinates

ECEF Coordinates

The Earth-center, Earth-fixed (ECEF) system is a noninertial system that rotates with the Earth. Its origin is fixed at the center of the Earth. (See figure preceding.)

- The z'-axis points northward along the Earth's rotation axis.
- The *x*'-axis points outward along the intersection of the Earth's equatorial plane and prime meridian.
- The *y*'-axis points into the eastward quadrant, perpendicular to the *x*-*z* plane so as to satisfy the RH rule.

Coordinate Systems for Display

Several display tools are available for use with the Aerospace Blockset product. Each has a specific coordinate system for rendering motion.

MATLAB Graphics Coordinates

See the MATLAB 3-D Visualization documentation for more information about the MATLAB Graphics coordinate axes.

MATLAB Graphics uses this default coordinate axis orientation:

- The *x*-axis points out of the screen.
- The *y*-axis points to the right.
- The z-axis points up.

FlightGear Coordinates

FlightGear is an open-source, third-party flight simulator with an interface supported by the blockset.

- "Working with the Flight Simulator Interface" on page 2-32 discusses the blockset interface to FlightGear.
- See the FlightGear documentation at www.flightgear.org for complete information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the standard body coordinate system about the *y*-axis by -180 degrees:

- The *x*-axis is positive toward the back of the vehicle.
- The *y*-axis is positive toward the right of the vehicle.
- The *z*-axis is positive upward, e.g., wheels typically have the lowest *z* values.

AC3D Coordinates

AC3D is a low-cost, widely used, geometry editor available from www.ac3d.org. Its body-fixed coordinates are formed by inverting the three standard body coordinate axes:

- The *x*-axis is positive toward the back of the vehicle.
- The *y*-axis is positive upward, e.g., wheels typically have the lowest *y* values.
- The *z*-axis is positive to the left of the vehicle.

References

Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems, R-004-1992, ANSI/AIAA, February 1992.

Mapping Toolbox User's Guide, The MathWorks, Inc., Natick, Massachusetts. www.mathworks.com/access/helpdesk/help/toolbox/map/.

Rogers, R. M., *Applied Mathematics in Integrated Navigation Systems*, AIAA, Reston, Virginia, 2000.

Sobel, D., Longitude, Walker & Company, New York, 1995.

Stevens, B. L., and F. L. Lewis, *Aircraft Control and Simulation*, 2nd ed., *Aircraft Control and Simulation*, Wiley-Interscience, New York, 2003.

Thomson, W. T., *Introduction to Space Dynamics*, John Wiley & Sons, New York, 1961/Dover Publications, Mineola, New York, 1986.

World Geodetic System 1984 (WGS 84), http://earth-info.nga.mil/GandG/wgs84/.

Introducing the Flight Simulator Interface

In this section ...

"About the FlightGear Interface" on page 2-26

"Obtaining FlightGear" on page 2-26

"Configuring Your Computer for FlightGear" on page 2-27

"Installing and Starting FlightGear" on page 2-30

About the FlightGear Interface

The Aerospace Blockset product supports an interface to the third-party FlightGear flight simulator, an open source software package available through a GNU General Public License (GPL). The FlightGear flight simulator interface included with the blockset is a unidirectional transmission link from the Simulink interface to FlightGear using FlightGear's published net_fdm binary data exchange protocol. Data is transmitted via UDP network packets to a running instance of FlightGear. The blockset supports multiple standard binary distributions of FlightGear. See "Running FlightGear with the Simulink Models" on page 2-38 for interface details.

FlightGear is a separate software entity neither created, owned, nor maintained by The MathWorks.

- To report bugs in or request enhancements to the Aerospace Blockset FlightGear interface, use this form http://www.mathworks.com/contact_TS.html.
- To report bugs or request enhancements to FlightGear itself, visit www.flightgear.org and use the contact page.

Obtaining FlightGear

You can obtain FlightGear from www.flightgear.org in the download area or by ordering CDs from FlightGear. The download area contains extensive documentation for installation and configuration. Because FlightGear is an open source project, source downloads are also available for customization and porting to custom environments.

Configuring Your Computer for FlightGear

You must have a high performance graphics card with stable drivers to use FlightGear. For more information, see the FlightGear CD distribution or the hardware requirements and documentation areas of the FlightGear Web site, www.flightgear.org.

MathWorks tests of FlightGear's performance and stability indicate significant sensitivity to computer video cards, driver versions, and driver settings. You need OpenGL[®] support with hardware acceleration activated. The OpenGL settings are particularly important. Without proper setup, performance can drop from about a 30 frames-per-second (fps) update rate to less than 1 fps.

Graphics Recommendations for Windows

The MathWorks recommends the following for Windows users:

- Choose a graphics card with good OpenGL performance.
- Always use the latest tested and stable driver release for your video card. Test the driver thoroughly on a few computers before deploying to others.

For Microsoft Windows XP systems running on x86 (32-bit) or AMD-64/EM64T chip architectures, the graphics card operates in the unprotected kernel space known as Ring Zero. This means that glitches in the driver can cause Windows to lock or crash. Before buying a large number of computers for 3-D applications, test, with your vendor, one or two computers to find a combination of hardware, operating system, drivers, and settings that are stable for your applications.

Setting Up OpenGL Graphics on Windows

For complete information on OpenGL settings, refer to the documentation at the OpenGL Web site: www.opengl.org.

Follow these steps to optimize your video card settings. Your driver's panes might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on your video card. On Windows, access this configuration through Start > **Settings > Control Panel > Display**, which opens the following dialog box. Select the **Settings** tab.

Display Properties	<u>? ×</u>
Background Screen Saver Appearance	Web Effects Settings
Colors	Screen area Less More 1280 by 1024 pixels
	Cancel Apply

2 Click the **Advanced** button in the lower right of the dialog box, which brings up the graphics card's custom configuration dialog box, and go to the **OpenGL** tab. For an ATI Mobility Radeon 9000 video card, the **OpenGL** pane looks like this:

neral Adapter Monitor	Troubleshooting	Color Management	reen Displays Displays Displays C Cverlay
Main Settings			OpenGI
<- Performance	Optimal Que Performance	ulity-> 「Qustom	Settings
Custom Settings			
Application Preferen	Sampi	es:	 8× 16×
Anti-aliasing	ice Sempl	es: C Performanc	e © Quality 4× 5× 6×
		<- Performa	nce Quality ->
Texture Preference:	Performanc	e/	
Mipmap Detail Level:	Performanc	e	
Wait for Vertical Sync:	Always Off	C Application	on Preference
	(Compatibility Settings	Defaults

- **3** For best performance, move the **Main Settings** slider near the top of the dialog box to the **Performance** end of the slider.
- **4** If stability is a problem, try other screen resolutions, other color depths in the **Displays** pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known as 65536 color mode, 16-bit color). For example, on an ATI Mobility Radeon 9000 running a given model, 30 fps are achieved in 16-bit color mode, while 2 fps are achieved in 32-bit color mode.

Setup on Linux, Macintosh, and Other Platforms

FlightGear distributions are available for Linux[®], Macintosh[®], and other UNIX platforms from the FlightGear Web site, www.flightgear.org. Installation on these platforms, like Windows, requires careful configuration of graphics cards and drivers. Consult the documentation and hardware requirements sections at the FlightGear Web site.

Using MATLAB Graphics Controls to Configure Your OpenGL Settings

You can also control your OpenGL rendering from the MATLAB command line with the MATLAB Graphics opengl command. Consult the opengl command reference for more information.

Installing and Starting FlightGear

The extensive FlightGear documentation guides you through the installation in detail. Consult the documentation section of the FlightGear Web site for complete installation instructions: www.flightgear.org.

Keep the following points in mind:

• Generous central processor speed, system and video RAM, and virtual memory are essential for good flight simulator performance.

The MathWorks recommends a minimum of 512 megabytes of system RAM and 128 megabytes of video RAM for reasonable performance.

- Be sure to have sufficient disk space for the FlightGear download and installation.
- The MathWorks recommends configuring your computer's graphics card before you install FlightGear. See the preceding section, "Configuring Your Computer for FlightGear" on page 2-27.
- Shutting down all running applications (including the MATLAB interface) before installing FlightGear is recommended.
- MathWorks tests indicate that the operational stability of FlightGear is especially sensitive during startup. It is best to not move, resize, mouse over, overlap, or cover up the FlightGear window until the initial simulation scene appears after the startup splash screen fades out.
- The current releases of FlightGear are optimized for flight visualization at altitudes below 100,000 feet. FlightGear does work not well or at all with very high altitude and orbital views.

Aerospace Toolbox supports FlightGear on a number of platforms (http://www.mathworks.com/products/aerotb/requirements.html). The following table lists the properties you should be aware of before you start to use FlightGear.

FlightGear Property	Folder Description	Platforms	Typical Location		
FlightGearBase- Directory	FlightGear installation folder.	Windows	C:\Program Files\FlightGear (default)		
		Solaris™ or Linux	Folder into which you installed FlightGear		
		Mac®	/Applications (directory to which you dragged the FlightGear icon)		
GeometryModelName	Model geometry folder	Windows	C:\Program Files\- FlightGear\data\- Aircraft\HL20 (default)		
		Solaris or Linux	<pre>\$FlightGearBaseDirectory/- data/Aircraft/HL20</pre>		
		Mac	\$FlightGearBaseDirectory/- FlightGear.app/Contents/- Resources/data/Aircraft/HL20		

Working with the Flight Simulator Interface

In this section...

"Introduction" on page 2-32

"About Aircraft Geometry Models" on page 2-33

"Working with Aircraft Geometry Models" on page 2-35

"Running FlightGear with the Simulink Models" on page 2-38

"Running the NASA HL-20 Demo with FlightGear" on page 2-48

Introduction

Use this section to learn how to use the FlightGear flight simulator and the Aerospace Blockset software to visualize your Simulink aircraft models. If you have not yet installed FlightGear, see "Introducing the Flight Simulator Interface" on page 2-26 first.

Simulink[®] Driven HL-20 Model in a Landing Flare at KSFC

About Aircraft Geometry Models

Before you can visualize your aircraft's dynamics, you need to create or obtain an aircraft model file compatible with FlightGear. This section explains how to do this.

Aircraft Geometry Editors and Formats

You have a competitive choice of over twelve 3-D geometry file formats supported by FlightGear.

Currently, the most popular 3-D geometry file format is the AC3D format, which has the suffix *.ac. AC3D is a low-cost geometry editor available from www.ac3d.org. Another popular 3-D editor for aircraft models is Flight Sim Design Studio, distributed by Abacus Publications at www.abacuspub.com.

Aircraft Model Structure and Requirements

Aircraft models are contained in the *FlightGearRoot*/data/Aircraft/ folder and subfolders. A complete aircraft model must contain a folder linked through the required aircraft master file named *model*-set.xml.

All other model elements are optional. This is a partial list of the optional elements you can put in an aircraft data folder:

- Vehicle objects and their shapes and colors
- Vehicle objects' surface bitmaps
- Variable geometry descriptions
- Cockpit instrument 3-D models
- Vehicle sounds to tie to events (e.g., engine, gear, wind noise)
- Flight dynamics model
- Simulator views
- Submodels (independently movable items) associated with the vehicle

Model behavior reverts to defaults when these elements are not used. For example,

• Default sound: no vehicle-related sounds are emitted.

• Default instrument panel: no instruments are shown.

Models can contain some, all, or even none of the above elements. If you always run FlightGear from the cockpit view, the aircraft geometry is often secondary to the instrument geometries.

A how-to document for including optional elements is included in the FlightGear documentation at:

```
http://www.flightgear.org/Docs/fgfs-model-howto.html
```

Required Flight Dynamics Model Specification

The flight dynamics model (FDM) specification is a required element for an aircraft model. To set the Simulink software as the source of the flight dynamics model data stream for a given geometry model, you put this line in data/Aircraft/model.model.set.xml:

```
<flight-model>network</flight-model>
```

Obtaining and Modifying Existing Aircraft Models

You can quickly build models from scratch by referencing instruments, sounds, and other optional elements from existing FlightGear models. Such models provide examples of geometry, dynamics, instruments, views, and sounds. It is simple to copy an aircraft folder to a new name, rename the *model*-set.xml file, modify it for network flight dynamics, and then run FlightGear with the aircraft flag set to the name in *model*-set.xml.

Many existing 3-D aircraft geometry models are available for use with FlightGear. Visit the download area of www.flightgear.org to see some of the aircraft models available. Additional models can be obtained via Web search. Search key words such as "flight gear aircraft model" are a good starting point. Be sure to comply with copyrights when distributing these files.

Hardware Requirements for Aircraft Geometry Rendering

When creating your own geometry files, keep in mind that your graphics card can efficiently render a limited number of surfaces. Some cards can efficiently render fewer than 1000 surfaces with bitmaps and specular reflections at the nominal rate of 30 frames per second. Other cards can easily render on the order of 10,000 surfaces.

If your performance slows while using a particular geometry, gauge the effect of geometric complexity on graphics performance by varying the number of aircraft model surfaces. An easy way to check this is to replace the full aircraft geometry file with a simple shape, such as a single triangle, then test FlightGear with this simpler geometry. If a geometry file is too complex for smooth display, use a 3-D geometry editor to simplify your model by reducing the number of surfaces in the geometry.

Working with Aircraft Geometry Models

Once you have obtained, modified, or created an aircraft data file, you need to put it in the correct folder for FlightGear to access it.

Importing Aircraft Models into FlightGear

To install a compatible model into FlightGear, use one of the following procedures. Choose the one appropriate for your platform. This section assumes that you have read "Installing and Starting FlightGear" on page 2-30.

If your platform is Windows:

- 1 Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder: \FlightGear\data\Aircraft\.
- 2 Make a subfolder *model* here for your aircraft data.
- 3 Put model-set.xml in that subfolder, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files (\model\), instruments (\instruments\), and sounds (\sounds\).

If your platform is UNIX or Linux:

- 1 Go to your installed FlightGear directory. Open the data directory, then the Aircraft directory: \$FlightGearBaseDirectory/data/Aircraft/.
- 2 Make a subdirectory model/ here for your aircraft data.

3 Put model-set.xml in that subdirectory, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files (/model/), instruments (/instruments/), and sounds (/sounds/).

If your platform is Mac:

- 1 Open a terminal.
- **2** Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder:

\$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/

- 3 Make a subfolder *mode1*/ here for your aircraft data.
- **4** Put *model*-set.xml in that subfolder, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files (/model/), instruments (/instruments/), and sounds (/sounds/).

Example: Animating Vehicle Geometries

This example illustrates how to prepare hinge line definitions for animated elements such as vehicle control surfaces and landing gear. To enable animation, each element must be a named entity in a geometry file. The resulting code forms part of the HL20 lifting body model presented in "Running the NASA HL-20 Demo with FlightGear" on page 2-48.

- 1 The standard body coordinates used in FlightGear geometry models form a right-handed system, rotated from the standard body coordinate system in Y by -180 degrees:
 - *X* = positive toward the back of the vehicle
 - *Y* = positive toward the right of the vehicle
 - *Z* = positive is up, e.g., wheels typically have the lowest *Z* values.

See "About Aerospace Coordinate Systems" on page 2-16 for more details.

2 Find two points that lie on the desired named-object hinge line in body coordinates and write them down as *XYZ* triplets or put them into a MATLAB calculation like this:

a = [2.98, 1.89, 0.53]; b = [3.54, 2.75, 1.46];

3 Calculate the difference between the points:

pdiff = b - a pdiff = 0.5600 0.8600 0.9300

4 The hinge point is either of the points in step 2 (or the midpoint as shown here):

mid = a + pdiff/2 mid = 3.2600 2.3200 0.9950

5 Put the hinge point into the animation scope in *model*-set.xml:

6 Use the difference from step 3 to define the relative motion vector in the animation axis:

```
<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>
</axis>
```

7 Put these steps together to obtain the complete hinge line animation used in the HL20 demo model:

<animation>

```
<type>rotate</type>
<object-name>RightAileron</object-name>
<property>/surface-positions/right-aileron-pos-norm</property>
<factor>30</factor>
<offset-deg>0</offset-deg>
<center>
 <x-m>3.26</x-m>
 <v-m>2.32</v-m>
 <z-m>1.00</z-m>
</center>
<axis>
 <x>0.56</x>
 <v>0.86</v>
 <z>0.93</z>
</axis>
</animation>
```

Running FlightGear with the Simulink Models

To run a Simulink model of your aircraft and simultaneously animate it in FlightGear with an aircraft data file *model*-set.xml, you need to configure the aircraft data file and modify your Simulink model with some new blocks.

These are the main steps to connecting and using FlightGear with the Simulink software:

- "Setting the Flight Dynamics Model to Network in the Aircraft Data File" on page 2-39 explains how to create the network connection you need.
- "Obtaining the Destination IP Address" on page 2-39 starts by determining the IP address of the computer running FlightGear.
- "Adding and Connecting Interface Blocks" on page 2-40 shows how to add and connect interface and pace blocks to your Simulink model.
- "Creating a FlightGear Run Script" on page 2-43 shows how to write a FlightGear run script compatible with your Simulink model.
- "Starting FlightGear" on page 2-45 guides you through the final steps to making the Simulink software work with FlightGear.
- "Improving Performance" on page 2-47 helps you speed your model up.

• "Running FlightGear and Simulink Software on Different Computers" on page 2-47 explains how to connect a simulation from the Simulink software running on one computer to FlightGear running on another computer.

Setting the Flight Dynamics Model to Network in the Aircraft Data File

Be sure to

- Remove any pre-existing flight dynamics model (FDM) data from the aircraft data file.
- Indicate in the aircraft data file that its FDM is streaming from the network by adding this line:

```
<flight-model>network</flight-model>
```

Obtaining the Destination IP Address

You need the destination IP address for your Simulink model to stream its flight data to FlightGear.

• If you know your computer's name, enter at the MATLAB command line:

```
java.net.InetAddress.getByName('www.mathworks.com')
```

• If you are running FlightGear and the Simulink software on the same computer, get your computer's name by entering at the MATLAB command line:

java.net.InetAddress.getLocalHost

• If you are working in Windows, get your computer's IP address by entering at the DOS prompt:

ipconfig /all

Examine the IP address entry in the resulting output. There is one entry per Ethernet device.

Adding and Connecting Interface Blocks

The easiest way to connect your model to FlightGear with the blockset is to use the FlightGear Preconfigured 6DoF Animation block:

FlightGear Preconfigured 6DoF Animation Block

The FlightGear Preconfigured 6DoF Animation block is a subsystem containing the Pack net_fdm Packet for FlightGear and Send net_fdm Packet to FlightGear blocks:

These blocks transmit data to a FlightGear session. The blocks are separate for maximum flexibility and compatibility.

• The Pack net_fdm Packet for FlightGear block formats a binary structure compatible with FlightGear from model inputs. In the default configuration, the block displays only the 6DoF ports, but you can configure the full FlightGear interface supporting more than 50 distinct signals from the block dialog box:

🙀 untitled * 📃 🗖 🗙						
File Edit View Simulation						
Format Tools Help						
D 😂 🖬 😂 🕺 🖻 🛍						
<pre>it b b b b c c c c c c c c c c c c c c c</pre>						

- The Send net_fdm Packet to FlightGear block transmits this packet via UDP to the specified IP address and port where a FlightGear session awaits an incoming datastream. Use the IP address you found in "Obtaining the Destination IP Address" on page 2-39.
- The Simulation Pace block, available in the "Animation Support Utilities Sublibrary" on page 2-5, slows the simulation so that its aggregate run rate is 1 second of simulation time per second of clock time. You can also use it to specify other ratios of simulation time to clock time.

Creating a FlightGear Run Script

To start FlightGear with the desired initial conditions (location, date, time, weather, operating modes), it is best to create a run script by "Using the Generate Run Script Block" on page 2-43 or "Using the Interface Provided with FlightGear" on page 2-45.

If you make separate run scripts for each model you intend to link to FlightGear and place them in separate directories, run the appropriate script from the MATLAB interface just before starting your Simulink model.

Using the Generate Run Script Block. The easiest way to create a run script is by using the Generate Run Script block. Use the following procedure:

- 1 Open the "Flight Simulator Interfaces Sublibrary" on page 2-5.
- 2 Create a new Simulink model or open an existing model.
- 3 Drag a Generate Run Script block into the Simulink diagram.
- 4 Double-click the Generate Run Script block. Its dialog opens.

🙀 Block Parameters: Generate Run Sc	ript					
Generate FlightGear Run Script						
Generate a custom FlightGear run script file on the current platform.						
To generate the run script, fill in the inform marked with an asterisk (*) are evaluated a fields are literal text.	ation then press Generate Script. Items is MATLAB expressions, the rest of the					
Parameters						
Generate Script						
Output file name:						
runfg.bat						
FlightGear base directory:						
C:\Program Files\FlightGear						
FlightGear geometry model name:						
HL20						
Destination port:						
5502						
Airport ID:						
KSFO						
Runway ID:						
10L						
Initial altitude (ft)*:						
7224						
Initial heading (deg)*:						
113						
Offset distance (miles)*:						
4.72						
Offset azimuth (deg)*:						
0						
<u> </u>						
ОК Са	ncel Help Apply					

5 In the **Output file name** field, type the name of the output file. This name should be the name of the command, with the .bat extension, you want to use to start FlightGear with these initial parameters.

For example, if your filename is runfg.bat, use the runfg command to execute the run script and start FlightGear.

6 In the **FlightGear base directory** field, specify the name of your FlightGear installation folder.

- 7 In the FlightGear geometry model name field, specify the name of the subfolder, in the FlightGear/data/Aircraft folder, containing the desired model geometry.
- **8** Specify the initial conditions as needed.
- 9 Click the Generate Script button at the top of the Parameters area.

The Aerospace Blockset software generates the run script, and saves it in your MATLAB working folder under the filename that you specified in the **Output file name** field.

- 10 Repeat steps 5 through 9 to generate other run scripts, if needed.
- 11 Click **OK** to close the dialog box. You do not need to save the Generate Run Script block with the Simulink model.

The Generate Run Script block saves the run script as a text file in your working folder. This is an example of the contents of a run script file:

```
>> cd D:\Applications\FlightGear-1.9.1
>> SET FG_R00T=D:\Applications\FlightGear-1.9.1\data
>> cd \bin\Win32\
>> fgfs --aircraft=HL20 --fdm=network,localhost,5501,5502,5503
--fog-fastest --disable-clouds --start-date-lat=2004:06:01:09:00:00
--disable-sound --in-air --enable-freeze --airport=KSF0 --runway=10L
--altitude=7224 --heading=113 --offset-distance=4.72 --offset-azimuth=0
```

Using the Interface Provided with FlightGear. The FlightGear launcher GUI (part of FlightGear, not the Aerospace Blockset product) lets you build simple and advanced options into a visible FlightGear run command.

Starting FlightGear

If your computer has enough computational power to run both the Simulink software and FlightGear at the same time, a simple way to start FlightGear on a Windows system is to create a MATLAB desktop button containing the following command to execute a run script like the one created above:

```
system('runfg &')
```

To create a desktop button:

- From the Start button on your MATLAB desktop, click Shortcuts > New Shortcut. The Shortcut Editor dialog opens.
- 2 Set the Label, Callback, Category, and Icon fields as shown in the following figure.

📣 Sho	rtcut Editor
Label:	FlightGear
Callback:	dos('runfg &');
Category:	Toolbar Shortcuts
lcon:	🕅 Simulink icon
Saves to Sho	shortcut to Start button. Selecting "Toolbar Shortcuts" category also saves rtcuts toolbar.
	Save Cancel <u>H</u> elp

3 Click Save.

The **FlightGear** toolbar button appears in your MATLAB desktop. If you click it, the runfg.bat file runs in the current folder.

							Flight	Gear button
								/
File	Edit	Debug	Parallel	Desktop	Window	Help		
: 🗅	đ	1 % E	h 🛍	26	گ 🐔		Ourrent	pirectory:
: She	ortouts	; 🛃 Hov	v to Add	🛃 What's	s New 🛛 🔁	Add De	evUtils 👌 F	lightGear

Once you have completed the setup, start FlightGear and run your model:

- 1 Make sure your model is in a writable folder. Open the model, and update the diagram. This step ensures that any referenced block code is compiled and that the block diagram is compiled before running. Once you start FlightGear, it uses all available processor power while it is running.
- 2 Click the FlightGear button or run the FlightGear run script manually.
- **3** When FlightGear starts, it displays the initial view at the initial coordinates specified in the run script. If you are running the Simulink software and FlightGear on different computers, arrange to view the two displays at the same time.
- 4 Now begin the simulation and view the animation in FlightGear.

Improving Performance

If your Simulink model is complex and cannot run at the aggregate rate needed for the visualization, you might need to

- Use the Accelerator mode in Simulink ("Accelerating Models" in *Simulink User's Guide*) to speed up your model execution.
- Free up processor power by running the Simulink model on one computer and FlightGear on another computer. Use the **Destination IP Address** parameter of the Send net_fdm Packet to FlightGear block to specify the network address of the computer where FlightGear is running.
- Simulate the Simulink model first, then save the resulting translations (*x*-axis, *y*-axis, *z*-axis) and positions (latitude, longitude, altitude), and use the FlightGear Animation object in Aerospace Toolbox to visualize this data.

Running FlightGear and Simulink Software on Different Computers

It is possible to simulate an aerospace system in the Simulink environment on one computer (the source) and use its simulation output to animate FlightGear on another computer (the target). The steps are similar to those already explained, with certain modifications.

- **1** Obtain the IP address of the computer running FlightGear. See "Obtaining the Destination IP Address" on page 2-39.
- **2** Enter this target computer's IP address in the Send net_fdm Packet to FlightGear block. See "Adding and Connecting Interface Blocks" on page 2-40.

3 Update the Generate Run Script block in your model with the target computer's FlightGear base folder. Regenerate the run script to reflect the target computer's separate identity.

See "Creating a FlightGear Run Script" on page 2-43.

- **4** Copy the generated run script to the target computer. Start FlightGear there. See "Starting FlightGear" on page 2-45.
- **5** Start your Simulink model on the source computer. FlightGear running on the target displays the simulation motion.

Running the NASA HL-20 Demo with FlightGear

The Aerospace Blockset software contains a demo model of the NASA HL-20 lifting body that uses the FlightGear interface.

You need to have FlightGear installed and configured before attempting to simulate this model. See "Introducing the Flight Simulator Interface" on page 2-26. This section assumes that you have read "Installing and Starting FlightGear" on page 2-30. Before you start, perform the following, depending on your platform.

Windows

Copy the HL20 folder from matlabroot\toolbox\aeroblks\aerodemos\ folder to FlightGear\data\Aircraft\ folder. This folder contains the preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file matlabroot\toolbox\aeroblks\aerodemos\HL20\models\HL20.xml defines the geometry.

For more about this step, see "Importing Aircraft Models into FlightGear" on page 2-35.

UNIX/Linux

Copy the HL20 directory from matlabroot/toolbox/aeroblks/aerodemos/ directory to \$FlightGearBaseDirectory/data/Aircraft/ directory. This directory contains the preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file matlabroot/toolbox/aeroblks/aerodemos/HL20/models/HL20.xml
defines the geometry.

For more about this step, see "Importing Aircraft Models into FlightGear" on page 2-35.

Mac

Copy the HL20 folder from matlabroot/toolbox/aeroblks/aerodemos/ folder to \$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/ folder. This folder contains the preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file matlabroot\toolbox\aeroblks\aerodemos\HL20\models\HL20.xml defines the geometry.

For more about this step, see "Importing Aircraft Models into FlightGear" on page 2-35.

1 Start the MATLAB interface. Open the demo either by entering asbh120 in the MATLAB Command Window or by finding the demo entry (NASA HL-20 with FlightGear Interface) in Aerospace Blockset > Demos and clicking Open this model on its demo page. The model opens.

- 2 If this is your first time running FlightGear for this model, double-click the Generate Run Script block to create a run script. Make sure to specify your FlightGear installation folder in the **FlightGear base directory** field. For more information, see "Creating a FlightGear Run Script" on page 2-43.
- **3** Execute the script you just created manually by entering the following at the MATLAB command line:

dos('runfg &')

If you created a **FlightGear** desktop button, you can click it instead to start the run script and start FlightGear. For more information, see "Starting FlightGear" on page 2-45.

4 Now start the simulation and view the animation in FlightGear.

Note With the FlightGear window in focus, press the V key to alternate between the different aircraft views: cockpit view, helicopter view, chase view, and so on.

Case Studies

- "Ideal Airspeed Correction" on page 3-2
- "1903 Wright Flyer" on page 3-9
- "NASA HL-20 Lifting Body Airframe" on page 3-19
- "Missile Guidance System" on page 3-34

Ideal Airspeed Correction

In this section...

"Introduction" on page 3-2

"Airspeed Correction Models" on page 3-2

"Measuring Airspeed" on page 3-3

"Modeling Airspeed Correction" on page 3-5

"Simulating Airspeed Correction" on page 3-7

Introduction

This case study simulates indicated and true airspeed. It constitutes a fragment of a complete aerodynamics problem, including only measurement and calibration.

Airspeed Correction Models

To view the airspeed correction models, enter the following at the MATLAB command line:

```
aeroblk_indicated
aeroblk_calibrated
```


aeroblk_indicated Model

aeroblk_calibrated Model

Measuring Airspeed

To measure airspeed, most light aircraft designs implement pitot-static airspeed indicators based on Bernoulli's principle. Pitot-static airspeed indicators measure airspeed by an expandable capsule that expands and contracts with increasing and decreasing dynamic pressure. This is known as *calibrated airspeed* (CAS). It is what a pilot sees in the cockpit of an aircraft. To compensate for measurement errors, it helps to distinguish three types of airspeed. These types are explained more completely in the following.

Airspeed Type	Description
Calibrated	Indicated airspeed corrected for calibration error
Equivalent	Calibrated airspeed corrected for compressibility error
True	Equivalent airspeed corrected for density error

Calibration Error

An airspeed sensor features a static vent to maintain its internal pressure equal to atmospheric pressure. Position and placement of the static vent with respect to the angle of attack and velocity of the aircraft determines the pressure inside the airspeed sensor and therefore the calibration error. Thus, a calibration error is specific to an aircraft's design.

An airspeed calibration table, which is usually included in the pilot operating handbook or other aircraft documentation, helps pilots convert the indicated airspeed to the calibrated airspeed.

Compressibility Error

The density of air is not constant, and the compressibility of air increases with altitude and airspeed, or when contained in a restricted volume. A pitot-static airspeed sensor contains a restricted volume of air. At high altitudes and high airspeeds, calibrated airspeed is always higher than equivalent airspeed. Equivalent airspeed can be derived by adjusting the calibrated airspeed for compressibility error.

Density Error

At high altitudes, airspeed indicators read lower than true airspeed because the air density is lower. True airspeed represents the compensation of equivalent airspeed for the density error, the difference in air density at altitude from the air density at sea level, in a standard atmosphere.

Modeling Airspeed Correction

The aeroblk_indicated and aeroblk_calibrated models show how to take true airspeed and correct it to indicated airspeed for instrument display in a Cessna 150M Commuter light aircraft. The aeroblk_indicated model implements a conversion to indicated airspeed. The aeroblk_calibrated model implements a conversion to true airspeed.

Each model consists of two main components:

- "COESA Atmosphere Model Block" on page 3-5 calculates the change in atmospheric conditions with changing altitude.
- "Ideal Airspeed Correction Block" on page 3-5 transforms true airspeed to calibrated airspeed and vice versa.

COESA Atmosphere Model Block

The COESA Atmosphere Model block is a mathematical representation of the U.S. 1976 COESA (Committee on Extension to the Standard Atmosphere) standard lower atmospheric values for absolute temperature, pressure, density, and speed of sound for input geopotential altitude. Below 32,000 meters (104,987 feet), the U.S. Standard Atmosphere is identical with the Standard Atmosphere of the ICAO (International Civil Aviation Organization).

The aeroblk_indicated and aeroblk_calibrated models use the COESA Atmosphere Model block to supply the speed of sound and air pressure inputs for the Ideal Airspeed Correction block in each model.

Ideal Airspeed Correction Block

The Ideal Airspeed Correction block compensates for airspeed measurement errors to convert airspeed from one type to another type. The following table contains the Ideal Airspeed Correction block's inputs and outputs.

Airspeed Input	Airspeed Output
True Airspeed	Equivalent airspeed
	Calibrated airspeed

Airspeed Input	Airspeed Output
Equivalent Airspeed	True airspeed
	Calibrated airspeed
Calibrated Airspeed	True airspeed
	Equivalent airspeed

In the aeroblk_indicated model, the Ideal Airspeed Correction block transforms true to calibrated airspeed. In the aeroblk_calibrated model, the Ideal Airspeed Correction block transforms calibrated to true airspeed.

The following sections explain how the Ideal Airspeed Correction block mathematically represents airspeed transformations:

- "True Airspeed Implementation" on page 3-6
- "Calibrated Airspeed Implementation" on page 3-6
- "Equivalent Airspeed Implementation" on page 3-7

True Airspeed Implementation. True airspeed (TAS) is implemented as an input and as a function of equivalent airspeed (EAS), expressible as

$$TAS = \frac{EAS \times a}{a_0 \sqrt{\delta}}$$

where

- α Speed of sound at altitude in m/s
- δ Relative pressure ratio at altitude
- a_0 Speed of sound at mean sea level in m/s

Calibrated Airspeed Implementation. Calibrated airspeed (CAS), derived using the compressible form of Bernoulli's equation and assuming isentropic conditions, can be expressed as

$$CAS = \sqrt{\frac{2\gamma P_0}{(\gamma - 1)\rho_0} \left[\left(\frac{q}{P_0} + 1\right)^{(\gamma - 1)/\gamma} - 1 \right]}$$

where

P ₀	Air density at mean sea level in kg/m ³
P_0	Static pressure at mean sea level in $\rm N/m^2$
γ	Ratio of specific heats
9	Dynamic pressure at mean sea level in N/m ²

Equivalent Airspeed Implementation. Equivalent airspeed (EAS) is the same as CAS, except static pressure at sea level is replaced by static pressure at altitude.

$$EAS = \sqrt{\frac{2\gamma P}{(\gamma - 1)\rho_0}} \left[\left(\frac{q}{P} + 1\right)^{(\gamma - 1)/\gamma} - 1 \right]$$

The symbols are defined as follows:

P ₀	Air density at mean sea level in kg/m ³
Р	Static pressure at altitude in $\ensuremath{N/m^2}$
γ	Ratio of specific heats
9	Dynamic pressure at mean sea level in N/m^2

Simulating Airspeed Correction

In the aeroblk_indicated model, the aircraft is defined to be traveling at a constant speed of 72 knots (true airspeed) and altitude of 500 feet. The flaps are set to 40 degrees. The COESA Atmosphere Model block takes the altitude as input and outputs the speed of sound and air pressure. Taking the speed of sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction block converts true airspeed to calibrated airspeed. Finally, the Calculate IAS subsystem uses the flap setting and calibrated airspeed to calculate indicated airspeed.

The model's Display block shows both indicated and calibrated airspeeds.

In the aeroblk_calibrated model, the aircraft is defined to be traveling at a constant speed of 70 knots (indicated airspeed) and altitude of 500 feet. The flaps are set to 10 degrees. The COESA Atmosphere Model block takes the altitude as input and outputs the speed of sound and air pressure. The Calculate CAS subsystem uses the flap setting and indicated airspeed to calculate the calibrated airspeed. Finally, using the speed of sound, air pressure, and true calibrated airspeed as inputs, the Ideal Airspeed Correction block converts calibrated airspeed back to true airspeed.

The model's Display block shows both calibrated and true airspeeds.

1903 Wright Flyer

In this section...

"Introduction" on page 3-9

"Wright Flyer Model" on page 3-10

"Airframe Subsystem" on page 3-10

"Environment Subsystem" on page 3-14

"Pilot Subsystem" on page 3-15

"Running the Simulation" on page 3-16

```
"References" on page 3-17
```

Introduction

Note The final section of this study requires the Simulink 3D Animation software.

This case study describes a model of the 1903 Wright Flyer. Built by Orville and Wilbur Wright, the Wright Flyer took to the skies in December 1903 and opened the age of controlled flight. The Wright brothers' flying machine achieved the following goals:

- Left the ground under its own power
- Moved forward and maintained its speed
- Landed at an elevation no lower than where it started

This model is based on an earlier simulation [1] that explored the longitudinal stability of the Wright Flyer and therefore modeled only forward and vertical motion along with the pitch angle. The Wright Flyer suffered from numerous engineering challenges, including dynamic and static instability. Laterally, the Flyer tended to overturn in crosswinds and gusts, and longitudinally, its pitch angle would undulate [2].

Under these constraints, the model recreates the longitudinal flight dynamics that pilots of the Wright Flyer would have experienced. Because they were able to control lateral motion, Orville and Wilbur Wright were able to maintain a relatively straight flight path.

Note, running this model generates assertion messages in the MATLAB Command Window. This is because the model illustrates the use of the Assertion block to indicate that the flyer is hitting the ground when landing.

Wright Flyer Model

Open the Wright Flyer model by entering <code>aeroblk_wf_3dof</code> at the MATLAB command line.

Airframe Subsystem

The Airframe subsystem simulates the rigid body dynamics of the Wright Flyer airframe, including elevator angle of attack, aerodynamic coefficients, forces and moments, and three-degrees-of-freedom equations of motion.

The Airframe subsystem consists of the following parts:

- "Elevator Angle of Attack Subsystem" on page 3-11
- "Aerodynamic Coefficients Subsystem" on page 3-12
- "Forces and Moments Subsystem" on page 3-12
- "3DoF (Body Axes) Block" on page 3-13

Elevator Angle of Attack Subsystem

The Elevator Angle of Attack subsystem calculates the effective elevator angle for the Wright Flyer airframe and feeds its output to the Pilot subsystem.

Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and equations for calculating the aerodynamic coefficients, which are summed and passed to the Forces and Moments subsystem. Stored in data sets, the aerodynamic coefficients are determined by interpolation using Prelookup blocks.

Forces and Moments Subsystem

The aerodynamic forces and moments acting on the airframe are generated from aerodynamic coefficients. The Forces and Moments subsystem calculates the body forces and body moments acting on the airframe about the center of gravity. These forces and moments depend on the aerodynamic coefficients, thrust, dynamic pressure, and reference airframe parameters.

3DoF (Body Axes) Block

The 3DoF (Body Axes) block use equations of motion to define the linear and angular motion of the Wright Flyer airframe. It also performs conversions from the original model's axis system and the body axes.

🙀 Function Block Parameters: 3DoF (Body Axes)
- 3DoF EoM (mask) (link)
Integrate the three-degrees-of-freedom equations of motion to determine body position, velocity, attitude, and related values.
Parameters
Units: English (Velocity in ft/s)
Mass type: Fixed
Initial velocity:
47.26
Initial body attitude:
-(wf_alphaa-wf_incidence)*pi/180
Initial incidence:
wf_alphaa*pi/180
Initial body rotation rate:
wf_q
Initial position (x z):
[0-0.1]
Initial mass:
wf_weight/wf_gravity
Inertia:
wf_inertia
Gravity source: External
QK <u>C</u> ancel <u>H</u> elp <u>Apply</u>

3DoF (Body Axes) Block Parameters

Environment Subsystem

The first and final flights of the Wright Flyer occurred on December 17, 1903. Orville and Wilbur Wright chose an area near Kitty Hawk, North Carolina, situated near the Atlantic coast. Wind gusts of more than 25 miles per hour were recorded that day. After the final flight on that blustery December day, a wind gust caught and overturned the Wright Flyer, damaging it beyond repair.

The Environment subsystem of the Wright Flyer model contains a variety of blocks from the Environment sublibrary of the Aerospace Blockset software, including wind, atmosphere, and gravity, and calculates airspeed and dynamic pressure. The Discrete Wind Gust Model block provides wind gusts to the simulated environment. The other blocks are

- The Incidence & Airspeed block calculates the angle of attack and airspeed.
- The COESA Atmosphere Model block calculates the air density.
- The Dynamic Pressure block computes the dynamic pressure from the air density and velocity.
- The WGS84 Gravity Model block produces the gravity at the Wright Flyer's latitude, longitude, and height.

Pilot Subsystem

The Pilot subsystem controls the aircraft by responding to both pitch angle (attitude) and angle of attack. If the angle of attack differs from the set angle of attack by more than one degree, the Pilot subsystem responds with a correction of the elevator (canard) angle. When the angular velocity exceeds +/- 0.02 rad/s, angular velocity and angular acceleration are also taken into consideration with additional corrections to the elevator angle.

Pilot reaction time largely determined the success of the flights [1]. Without an automatic controller, a reaction time of 0.06 seconds is optimal for successful flight. The Delay of Pilot (Variable Time Delay) block recreates this effect by producing a delay of no more than 0.08 second.

Running the Simulation

The default values for this simulation allow the Wright Flyer model to take off and land successfully. The pilot reaction time (wf_B3) is set to 0.06 seconds, the desired angle of attack (wf_alphaa) is constant, and the altitude attained is low. The Wright Flyer model reacts similarly to the actual Wright Flyer. It leaves the ground, moves forward, and lands on a point as high as that from which it started. This model exhibits the longitudinal undulation in attitude of the original aircraft.

Attitude Scope (Measured in Radians)

A pilot with quick reaction times and ideal flight conditions makes it possible to fly the Wright Flyer successfully. The Wright Flyer model confirms that controlling its longitudinal motion was a serious challenge. The longest recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Virtual Reality Visualization of the Wright Flyer

Note This section requires the Simulink 3D Animation.

The Wright Flyer model also provides a virtual world visualization, coded in Virtual Reality Modeling Language (VRML) [3]. The VR Sink block in the main model allows you to view the flight motion in three dimensions.

1903 Wright Flyer Virtual Reality World

References

[1] Hooven, Frederick J., "Longitudinal Dynamics of the Wright Brothers' Early Flyers: A Study in Computer Simulation of Flight," from *The Wright Flyer: An Engineering Perspective*, ed. Howard S. Wolko, Smithsonian Institution Press, 1987. [2] Culick, F. E. C. and H. R. Jex, "Aerodynamics, Stability, and Control of the 1903 Wright Flyer," from *The Wright Flyer: An Engineering Perspective*, ed. Howard S. Wolko, Smithsonian Institution Press, 1987.

[3] Thaddeus Beier created the initial Wright Flyer model in Inventor format, and Timothy Rohaly converted it to VRML.

Additional Information About the 1903 Wright Flyer

- http://www.wrightexperience.com
- http://wright.nasa.gov

NASA HL-20 Lifting Body Airframe

In this section ...

"Introduction" on page 3-19

"NASA HL-20 Lifting Body" on page 3-19

"The HL-20 Airframe and Controller Model" on page 3-20

"References" on page 3-33

Introduction

This case study models the airframe of a NASA HL-20 lifting body, a low-cost complement to the Space Shuttle orbiter. The HL-20 is unpowered, but the model includes both airframe and controller.

For most flight control designs, the airframe, or plant model, needs to be modeled, simulated, and analyzed. Ideally, this airframe should be modeled quickly, reusing blocks or model structure to reduce validation time and leave more time available for control design. In this study, the Aerospace Blockset software efficiently models portions of the HL-20 airframe. The remaining portions, including calculation of the aerodynamic coefficients, are modeled with the Simulink software. This case study examines the HL-20 airframe model and touches on how the aerodynamic data are used in the model.

NASA HL-20 Lifting Body

The HL-20, also known as the Personnel Launch System (PLS), is a lifting body reentry vehicle designed to complement the Space Shuttle orbiter. It was developed originally as a low-cost solution for getting to and from low Earth orbit. It can carry up to 10 people and a limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically with booster rockets or by transporting it in the payload bay of the Space Shuttle orbiter. The HL-20 lifting body deorbits using a small onboard propulsion system. Its reentry profile is nose first, horizontal, and unpowered.

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:

- Rapid turnaround between landing and launch reduces operating costs.
- The HL-20 has exceptional flight safety.
- It can land conventionally on aircraft runways.

Potential uses for the HL-20 include

- Orbital rescue of stranded astronauts
- International Space Station crew exchanges
- Observation missions
- Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data from HL-20 tests are being used in current NASA projects [2].

The HL-20 Airframe and Controller Model

You can open the HL-20 airframe and controller model by entering aeroblk_HL20 at the MATLAB command line.

Modeling Assumptions and Limitations

Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

- The airframe is assumed to be rigid and have constant mass, center of gravity, and inertia, since the model represents only the unpowered reentry portion of a mission.
- HL-20 is assumed to be a laterally symmetric vehicle.
- Compressibility (Mach) effects are assumed to be negligible.
- Control effectiveness is assumed to vary nonlinearly with angle of attack and linearly with angle of deflection. Control effectiveness is not dependent on sideslip angle.
- The nonlinear six-degrees-of-freedom aerodynamic model is a representation of an early version of the HL-20. Therefore, the model is not intended for realistic performance simulation of later versions of the HL-20.

The typical airframe model consists of a number of components, such as

- Equations of motion
- Environmental models
- Calculation of aerodynamic coefficients, forces, and moments

The airframe subsystem of the HL-20 model contains five subsystems, which model the typical airframe components:

- "6DoF (Euler Angles) Subsystem" on page 3-23
- "Environmental Models Subsystem" on page 3-24
- "Alpha, Beta, Mach Subsystem" on page 3-26
- "Aerodynamic Coefficients Subsystem" on page 3-27
- "Forces and Moments Subsystem" on page 3-32

HL-20 Airframe Subsystem

6DoF (Euler Angles) Subsystem

The 6DoF (Euler Angles) subsystem contains the six-degrees-of-freedom equations of motion for the airframe. In the 6DoF (Euler Angles) subsystem, the body attitude is propagated in time using an Euler angle representation. This subsystem is one of the equations of motion blocks from the Aerospace Blockset library. A quaternion representation is also available. See the 6DoF (Euler Angles) and 6DoF (Quaternion) block reference pages for more information on these blocks.

Environmental Models Subsystem

The Environmental Models subsystem contains the following subsystems and blocks:

• The WGS84 Gravity Model block implements the mathematical representation of the geocentric equipotential ellipsoid of the World Geodetic System (WGS84).

See the WGS84 Gravity Model block reference page for more information on this block.

• The COESA Atmosphere Model block implements the mathematical representation of the 1976 Committee on Extension to the Standard Atmosphere (COESA) standard lower atmospheric values for absolute temperature, pressure, density, and speed of sound, given the input geopotential altitude.

See the COESA Atmosphere Model block reference page for more information on this block.

- The Wind Models subsystem contains the following blocks:
 - The Wind Shear Model block adds wind shear to the model.

See the Wind Shear Model block reference page for more information on this block.

• The Discrete Wind Gust Model block implements a wind gust of the standard "1 - cosine" shape.

See the Discrete Wind Gust Model block reference page for more information on this block.

 The Dryden Wind Turbulence Model (Continuous) block uses the Dryden spectral representation to add turbulence to the aerospace model by passing band-limited white noise through appropriate forming filters.

See the Dryden Wind Turbulence Model (Continuous) block reference page for more information on this block.

The environmental models implement mathematical representations within standard references, such as U.S. Standard Atmosphere, 1976.

Environmental Models in HL-20 Airframe Model

Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem

The Alpha, Beta, Mach subsystem calculates additional parameters needed for the aerodynamic coefficient computation and lookup. These additional parameters include

- Mach number
- Incidence angles $(^{\alpha}, \beta)$

- Airspeed
- Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity and corrects the body rates for wind angular acceleration.

Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta, Mach Subsystem)

Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and equations for calculating the six aerodynamic coefficients, which are implemented as in reference [1]. The six aerodynamic coefficients follow.

- $C_{\rm x}$ Axial-force coefficient
- $C_{\rm v}$ Side-force coefficient
- C_z Normal-force coefficient
- C_1 Rolling-moment coefficient

$C_{\rm m}$	Pitching-moment coefficient
C _n	Yawing-moment coefficient

Ground and landing gear effects are not included in this model.

The contribution of each of these coefficients is calculated in the subsystems (body rate, actuator increment, and datum), and then summed and passed to the Forces and Moments subsystem.

Aerodynamic Coefficients in HL-20 Airframe Model

The aerodynamic data was gathered from wind tunnel tests, mainly on scaled models of a preliminary subsonic aerodynamic model of the HL-20. The data was curve fitted, and most of the aerodynamic coefficients are described by polynomial functions of angle of attack and sideslip angle. In-depth details about the aerodynamic data and the data reduction can be found in reference [1].

The polynomial functions contained in the aeroblk_init_hl20.m file are used to calculate lookup tables used by the model's preload function. Lookup tables substitute for polynomial functions. Depending on the order and implementation of the function, using lookup tables can be more efficient than recalculating values at each time step with functions. To further improve efficiency, most tables are implemented as PreLook-up Index Search and Interpolation (n-D) using PreLook-up blocks. These blocks improve performance most when the model has a number of tables with identical breakpoints. These blocks reduce the number of times the model has to search for a breakpoint in a given time step. Once the tables are populated by the preload function, the aerodynamic coefficient can be computed.

The equations for calculating the six aerodynamic coefficients are divided among three subsystems:

- "Datum Coefficients Subsystem" on page 3-29
- "Body Rate Damping Subsystem" on page 3-30
- "Actuator Increment Subsystem" on page 3-31

Summing the Datum Coefficients, Body Rate Damping, and Actuator Increments subsystem outputs generates the six aerodynamic coefficients used to calculate the airframe forces and moments [1].

Datum Coefficients Subsystem. The Datum Coefficients subsystem calculates coefficients for the basic configuration without control surface deflection. These datum coefficients depend only on the incidence angles of the body.

Body Rate Damping Subsystem. Dynamic motion derivatives are computed in the Body Rate Damping subsystem.

Actuator Increment Subsystem. Lookup tables determine the incremental changes to the coefficients due to the control surface deflections in the Actuator Increment subsystem. Available control surfaces include symmetric wing flaps (elevator), differential wing flaps (ailerons), positive body flaps, negative body flaps, differential body flaps, and an all-movable rudder.

Forces and Moments Subsystem. The Forces and Moments subsystem calculates the body forces and body moments acting on the airframe about the center of gravity. These forces and moments depend on the aerodynamic coefficients, thrust, dynamic pressure, and reference airframe parameters.

3-32
Completing the Model

These subsystems that you have examined complete the HL-20 airframe. The next step in the flight control design process is to analyze, trim, and linearize the HL-20 airframe so that a flight control system can be designed for it. You can see an example of an auto-land flight control for the HL-20 airframe in the aeroblk_HL20 demo.

References

[1] Jackson, E. B., and C. L. Cruz, "Preliminary Subsonic Aerodynamic Model for Simulation Studies of the HL-20 Lifting Body," NASA TM4302 (August 1992).

This document is included in the HL-20 Lifting Body .zip file available from MATLAB Central.

[2] Morring, F., Jr., "ISS 'Lifeboat' Study Includes ELVs," Aviation Week & Space Technology (May 20, 2002).

Additional Information About the HL-20 Lifting Body

http://www.astronautix.com/craft/hl20.htm

http://www.aviationnow.com/content/publication/awst/20020520/aw46.htm
(requires subscription)

Missile Guidance System

In this section ...

"Introduction" on page 3-34 "Missile Guidance System Model" on page 3-34 "Modeling Airframe Dynamics" on page 3-35 "Modeling a Classical Three-Loop Autopilot" on page 3-42 "Modeling the Homing Guidance Loop" on page 3-44 "Simulating the Missile Guidance System" on page 3-50 "Extending the Model" on page 3-52 "References" on page 3-53

Introduction

This case study explains the design and simulation of a guidance system for a three-degrees-of-freedom missile. The model includes all aspects of the system, from the missile airframe (plant) and environment to the controller.

Note The Stateflow module in this demo is precompiled and does not require Stateflow to be installed.

Missile Guidance System Model

To view the missile guidance system model, enter aeroblk_guidance at the MATLAB command line.

The missile airframe and autopilot are contained in the Airframe & Autopilot subsystem. The Seeker/Tracker and Guidance subsystems model the homing guidance loop.

Modeling Airframe Dynamics

The model of the missile airframe in this demo uses advanced control methods applied to missile autopilot design [1], [2], [3]. The model represents a tail-controlled missile traveling between Mach 2 and Mach 4, at altitudes ranging between 3,050 meters (10,000 feet) and 18,290 meters (60,000 feet), and with typical angles of attack in the range of ± 20 degrees.

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body dynamics of the airframe. The aerodynamic forces and moments acting on the missile body are calculated from coefficients that are nonlinear functions of both incidence and Mach number. You can model these dynamics easily with the Aerospace Blockset blocks.

The model of the missile airframe consists of two main components:

- "ISA Atmosphere Model Block" on page 3-37 calculates the change in atmospheric conditions with changing altitude.
- "Aerodynamics & Equations of Motion Subsystem" on page 3-39 calculates the magnitude of the forces and moments acting on the missile body and integrates the equations of motion.

To view the missile airframe model, enter aeroblk_guidance_airframe+ at the MATLAB command line.

ISA Atmosphere Model Block

The ISA Atmosphere Model block is an approximation of the International Standard Atmosphere (ISA). This block implements two sets of equations. The troposphere requires one set of equations, and the lower stratosphere requires the other set. The troposphere lies between sea level and 11,000 meters (36,089 feet). The ISA model assumes a linear temperature drop with increasing altitude in the troposphere. The lower stratosphere ranges between 11,000 meters (36,089 feet) and 20,000 meters (65,617 feet). The ISA models the lower stratosphere by assuming that the temperature remains constant.

Variation of Sound Speed and Air Density with Altitude

The following equations define the troposphere.

$$T = T_o - Lh$$

$$\rho = \rho_o \cdot \left(\frac{T}{T_o}\right)^{\frac{g}{LR} - 1}$$

$$P = P_o \cdot \left(\frac{T}{T_o}\right)^{\frac{g}{LR}}$$

$$a = \sqrt{\gamma R T}$$

The following equations define the lower stratosphere.

$$T = T_o - L \cdot hts$$

$$\begin{split} P &= P_o \cdot \left(\frac{T}{T_o}\right)^{\frac{g}{LR}} \cdot e^{\frac{g}{RT}(hts-h)} \\ \rho &= \rho_o \cdot \left(\frac{T}{T_o}\right)^{\frac{g}{LR}-1} \cdot e^{\frac{g}{RT}(hts-h)} \\ a &= \sqrt{\gamma RT} \end{split}$$

The symbols are defined as follows:

T_0	Absolute temperature at mean sea level in kelvin (K)
ρ ₀	Air density at mean sea level in kg/m ³
P_0	Static pressure at mean sea level in N/m^2
h	Altitude in m
hts	Height of the troposphere in m
Т	Absolute temperature at altitude h in kelvin (K)
ρ	Air density at altitude h in kg/m ³
Р	Static pressure at altitude h in N/m ²
a	Speed of sound at altitude h in m/s ²
L	Temperature lapse rate in K/m
R	Characteristic gas constant J/kg-K
γ	Ratio of specific heats
g	Acceleration due to gravity in m/s^2

You can look under the mask of the ISA Atmosphere Model block to see how these equations are implemented.

Aerodynamics & Equations of Motion Subsystem

The Aerodynamics & Equations of Motion subsystem generates the forces and moments applied to the missile in the body axes and integrates the equations of motion that define the linear and angular motion of the airframe. The aerodynamic coefficients are stored in data sets. During the simulation, the value at the current operating condition is determined by interpolation using the Interpolation (n-D) using PreLook-Up blocks.

These are the three-degrees-of-freedom body axis equations of motion, which are defined in the 3DoF (Body Axes) block.

$$\begin{split} U &= (T+F_x)/m - qW - g\sin\theta \\ \dot{W} &= F_z/m + qU + g\cos\theta \\ \dot{q} &= M/I_{yy} \\ \dot{\theta} &= q \end{split}$$

These are the aerodynamic forces and moments equations, which are defined in the Aerodynamics subsystem.

$$\begin{split} F_x &= \overline{q} S_{ref} C_x(Mach, \alpha) \\ F_z &= \overline{q} S_{ref} C_z(Mach, \alpha, \eta) \\ M &= \overline{q} S_{ref} d_{ref} C_M(Mach, \alpha, \eta, q) \\ \overline{q} &= \frac{1}{2} \rho V^2 \end{split}$$

These are the stability axes variables, which are calculated in the Incidence & Airspeed block.

$$V = \sqrt{U^2 + W^2}$$

$$\alpha = \operatorname{atan}(W/U)$$

The symbols are defined as follows:

θ	Attitude in radians
9	Body rotation rate in rad/s
Μ	Missile mass in kg
g	Acceleration due to gravity in m/s ²
I _{yy}	Moment of inertia about the y-axis in kg-m ²
Ŵ	Acceleration in the Z body axis in m/s^2
ġ	Change in body rotation rate in rad/s ²
Т	Thrust in the <i>X</i> body axis in N
ρ	Air density in kg/m ³
S _{ref}	Reference area in m ²
C_X	Coefficient of aerodynamic force in the X body axis
C_Z	Coefficient of aerodynamic force in the Z body axis
C_M	Coefficient of aerodynamic moment about the Y body axis

d _{ref}	Reference length in m
T]	Fin angle in rad
F_X	Aerodynamic force in the X body axis in N
F_Z	Aerodynamic force in the Z body axis in N
Μ	Aerodynamic moment along the Y body axis
\overline{q}	Dynamic pressure in Pa
V	Airspeed in m/s
α	Incidence in rad
U	Velocity in the X body axis in m/s
W	Velocity in the Z body axis in m/s

Modeling a Classical Three-Loop Autopilot

The missile autopilot controls the acceleration normal to the missile body. The autopilot structure of this case study is a three-loop design using measurements from an accelerometer located ahead of the missile's center of gravity and from a rate gyro to provide additional damping. The controller gains are scheduled on incidence and Mach number and tuned for robust performance at an altitude of 3,050 meters (10,000 feet).

Classical Autopilot

Designing an autopilot requires the following:

- "Trimming and Linearizing an Airframe Model" on page 3-43 explains how to model the airframe pitch dynamics for several trimmed flight conditions.
- "Autopilot Design" on page 3-44 summarizes the autopilot design process.

Trimming and Linearizing an Airframe Model

Designing the autopilot with classical design techniques requires linear models of the airframe pitch dynamics for several trimmed flight conditions. The MATLAB software can determine the trim conditions and derive linear state-space models directly from the nonlinear Simulink model. This step saves time and helps to validate the model. The functions provided by Simulink Control Design or Control System Toolbox allow you to visualize the behavior of the airframe in terms of open-loop frequency or time response.

The airframe trim demos show how to trim and linearize an airframe model.

- To run the demo based on the Control System Toolbox[™] product, enter asbguidance_trimlinearize_cst. The results of this demo are displayed as a Bode diagram in the LTI Viewer.
- The alternative demo, asbguidance_trimlinearize, uses the Simulink[®] Control Design[™] product instead and produces identical results.

Autopilot Design

Autopilot design can begin after the missile airframe has been linearized at a number of flight conditions. Autopilot designs are typically carried out on a number of linear airframe models derived at varying flight conditions across the expected flight envelope. Implementing the autopilot in the nonlinear model involves storing the autopilot gains in two-dimensional lookup tables and incorporating an antiwindup gain to prevent integrator windup when the fin demands exceed the maximum limits. Testing the autopilot in the nonlinear model is the best way to demonstrate satisfactory performance in the presence of nonlinearities, such as actuator fin and rate limits and dynamically changing gains.

The Autopilot subsystem is an implementation of the classical three-loop autopilot design.

Modeling the Homing Guidance Loop

The complete homing guidance loop consists of these two subsystems:

- The "Guidance Subsystem" on page 3-45 generates the normal acceleration demands that are passed to the autopilot and uses the Stateflow software.
- The "Seeker/Tracker Subsystem" on page 3-48 returns measurements of the relative motion between the missile and the target.

The autopilot is part of an inner loop within the overall homing guidance system. Consult reference [4] for information on different types of guidance systems and on the analysis techniques that are used to quantify guidance loop performance.

Guidance Subsystem

Initially, the Guidance subsystem searches to locate the target's position and then generates demands during closed-loop tracking. A Stateflow chart controls the transfer between the different modes of these operations. The Stateflow product is the ideal tool for rapidly defining all the operational modes, both during normal operation and during unusual situations.

Guidance Processor State Chart. Mode switching is triggered by events generated in the Simulink software or in the Stateflow chart. The variable Mode is passed to the Simulink software and is used to control the Simulink model's behavior and response. For example, the Guidance Processor state chart, which is part of the Guidance subsystem, shows how the system reacts in response to either losing the target lock or failing to acquire the target's position during the target search.

During the target search, this Stateflow state chart controls the tracker directly by sending demands to the seeker gimbals (Sigma_d). Target acquisition is flagged by the tracker once the target lies within the beam width of the seeker (Acquire) and, after a short delay, closed-loop guidance begins.

Proportional Navigation Guidance. Once the seeker has acquired the target, a proportional navigation guidance (PNG) law guides the missile until impact. This form of guidance law is the most basic, used in guided missiles since the 1940s, and can be applied to radar-, infrared-, or television-guided missiles. The navigation law requires measurements of the closing velocity between the missile and target, which for a radar-guided missile can be obtained with a Doppler tracking device, and an estimate for the rate of change of the inertial sight line angle.

Proportional Navigation Guidance Measurements

The diagram symbols are defined as follows:

λ	Navigation gain (> 2)
V_{c}	Closing velocity
$\Theta_{ m b}$	Body attitude
ė _s	Sight line rate
σ_{g}	Gimbal angle
$\sigma_{\rm L}$	Look angle
σ_{d}	Dish angle
$a_{z dem} = \lambda V_c \dot{\theta}_s$	Demanded normal acceleration

Seeker/Tracker Subsystem

The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker dish aligned with the target and provides the guidance law with an estimate of the sight line rate.

Tracker and Sightline Rate Estimator. The Tracker and Sightline Rate Estimator is the most elaborate subsystem of the Seeker/Tracker subsystem because of its complex error modeling.

3-48

The subsystem contains a number of feedback loops, estimated parameters, and parasitic effects for the homing guidance.

- The tracker loop time constant tors is set to 0.05 second, a compromise between maximizing speed of response and keeping the noise transmission within acceptable levels.
- The stabilization loop compensates for body rotation rates. The gain Ks, which is the loop crossover frequency, is set as high as possible subject to the limitations of the stabilizing rate gyro's bandwidth.
- The sight line rate estimate is a filtered value of the sum of the rate of change of the dish angle measured by the stabilizing rate gyro and an estimated value for the rate of change of the angular tracking error (e) measured by the receiver. In this model, the bandwidth of the estimator filter is set to half that of the bandwidth of the autopilot.

Radome Aberration. The Tracker and Sightline Rate Estimator subsystem also models the radome aberration.

Radome aberration is a parasitic feedback effect commonly modeled in radar-guided missile designs and occurs because the shape of the protective covering over the seeker distorts the returning signal and gives a false reading of the look angle to the target. The distortion is, in general, a nonlinear function of the current gimbal angle. A common approximation is to assume a linear relationship between the gimbal angle and the magnitude of the distortion. The approximation is valid for a limited range of angle. Other parasitic effects, such as sensitivity to normal acceleration in the rate gyros, are often modeled as well to test the robustness of the target tracker and estimator filters.

Simulating the Missile Guidance System

Running the guidance simulation demonstrates the performance of the overall system. The target is defined to be traveling at a constant speed of 328 m/s on a reciprocal course to the initial missile heading and 500 meters above the initial missile position. The data, shown in the following figure, can be used to determine if the missile can withstand the flight demands and complete the mission to target.

Target acquisition occurs 0.69 second after search initiation, with closed-loop guidance starting after 0.89 second. Impact with the target occurs at 3.46 seconds, with the range to target at the point of closest approach calculated to be 0.26 meter.

Extending the Model

Modeling the airframe and guidance loop in a single plane is only the start of the design process. Extending the model to a full six-degrees-of-freedom representation requires the implementation of the full equations of motion for a rigid body.

Six degrees of freedom can be represented using a quaternion or Euler angles.

- The first implementation uses a quaternion to represent the angular orientation of the body in space. The quaternion is appropriate when the standard Euler angle definitions become singular as the pitch attitude tends to ± 90 degrees.
- The second implementation uses the standard Euler angle equations of motion. Euler angles are appropriate when obtaining trim conditions and modeling linear airframes. This model contains one of the six-degrees-of-freedom equations of motion blocks.

References

[1] Bennani, S., D. M. C. Willemsen, and C. W. Scherer, "Robust LPV control with bounded parameter rates," AIAA-97-3641, August 1997.

[2] Mracek, C. P. and J. R. Cloutier, "Full Envelope Missile Longitudinal Autopilot Design Using the State-Dependent Riccati Equation Method," AIAA-97-3767, August 1997.

[3] Shamma, J. S. and J. R. Cloutier, "Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations," *Journal of Guidance, Control and Dynamics*, Vol. 16, No. 2, March-April 1993.

[4] Lin, Ching-Fang, Modern Navigation, Guidance, and Control Processing, Vol. 2, Prentice Hall, 1991.

Block Reference

Actuators (p. 4-2)	Imp
Aerodynamics (p. 4-2)	Aer
Animation (p. 4-2)	Dis
Environment (p. 4-4)	Flig
Flight Parameters (p. 4-6)	Aer
Equations of Motion (p. 4-7)	Veh
Guidance, Navigation, and Control (p. 4-10)	Aer cont
Mass Properties (p. 4-13)	Mas
Propulsion (p. 4-13)	Eng
Utilities (p. 4-13)	Mis

Impose motions Aerodynamic forces and moments Display aerospace motion Flight environment Aerospace parameters Vehicle dynamics Aerospace guidance, navigation, and control Mass and moment distributions Engines Miscellaneous useful blocks

Actuators

Second Order Linear Actuator	Implement second-order linear actuator
Second Order Nonlinear Actuator	Implement second-order actuator with rate and deflection limits

Aerodynamics

Aerodynamic Forces and Moments	Compute aerodynamic forces and moments using aerodynamic coefficients, dynamic pressure, center of gravity, center of pressure, and velocity
Digital DATCOM Forces and Moments	Compute aerodynamic forces and moments using Digital DATCOM static and dynamic stability derivatives

Animation

MATLAB-Based Animation (p. 4-3)	Display aerospace motion with MATLAB Graphics
Flight Simulator Interfaces (p. 4-3)	Display aerospace motion with flight simulators
Animation Support Utilities (p. 4-3)	Additional animation support

MATLAB-Based Animation

3DoF Animation	Create 3-D MATLAB Graphics animation of three-degrees-of-freedom object
6DoF Animation	Create 3-D MATLAB Graphics animation of six-degrees-of-freedom object
MATLAB Animation	Create six–degrees-of-freedom multibody custom geometry block

Flight Simulator Interfaces

FlightGear Preconfigured 6DoF Animation	Connect model to FlightGear flight simulator
Generate Run Script	Generate FlightGear run script on current computer
Pack net_fdm Packet for FlightGear	Generate net_fdm packet for FlightGear
Send net_fdm Packet to FlightGear	Transmit net_fdm packet to destination IP address and port for FlightGear session

Animation Support Utilities

Pilot Joystick	Provide joystick interface on Windows platform
Pilot Joystick All	Provide joystick interface on Windows platform
Simulation Pace	Set simulation rate for improved animation viewing

Environment

Atmosphere (p. 4-4)	Atmospheric profiles
Gravity & Magnetism (p. 4-5)	Gravity and magnetic fields
Wind (p. 4-5)	Atmospheric winds

Atmosphere

CIRA-86 Atmosphere Model	Implement mathematical representation of 1986 CIRA atmosphere
COESA Atmosphere Model	Implement 1976 COESA lower atmosphere
ISA Atmosphere Model	Implement International Standard Atmosphere (ISA)
Lapse Rate Model	Implement lapse rate model for atmosphere
Non-Standard Day 210C	Implement MIL-STD-210C climatic data
Non-Standard Day 310	Implement MIL-HDBK-310 climatic data
NRLMSISE-00 Atmosphere Model	Implement mathematical representation of 2001 United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere
Pressure Altitude	Calculate pressure altitude based on ambient pressure

Gravity & Magnetism

Centrifugal Effect Model	Implement mathematical representation of centrifugal effect for planetary gravity
EGM96 Geoid	Calculate geoid height as determined from EGM96 Geopotential Model
Spherical Harmonic Gravity Model	Implement spherical harmonic representation of planetary gravity
WGS84 Gravity Model	Implement 1984 World Geodetic System (WGS84) representation of Earth's gravity
World Magnetic Model 2000	Calculate Earth's magnetic field at specific location and time using World Magnetic Model 2000 (WMM2000)
World Magnetic Model 2005	Calculate Earth's magnetic field at specific location and time using World Magnetic Model 2005 (WMM2005)
World Magnetic Model 2010	Calculate Earth's magnetic field at specific location and time using World Magnetic Model 2010 (WMM2010)
Zonal Harmonic Gravity Model	Calculate zonal harmonic representation of planetary gravity

Wind

Discrete Wind Gust Model	Generate discrete wind gust
Dryden Wind Turbulence Model (Continuous)	Generate continuous wind turbulence with Dryden velocity spectra

Dryden Wind Turbulence Model (Discrete)	Generate discrete wind turbulence with Dryden velocity spectra
Horizontal Wind Model	Transform horizontal wind into body-axes coordinates
Von Karman Wind Turbulence Model (Continuous)	Generate continuous wind turbulence with Von Kármán velocity spectra
Wind Shear Model	Calculate wind shear conditions

Flight Parameters

Dynamic Pressure	Compute dynamic pressure using velocity and air density
Ideal Airspeed Correction	Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS) from each other
Incidence & Airspeed	Calculate incidence and airspeed
Incidence, Sideslip & Airspeed	Calculate incidence, sideslip, and airspeed
Mach Number	Compute Mach number using velocity and speed of sound
Radius at Geocentric Latitude	Estimate radius of ellipsoid planet at geocentric latitude
Relative Ratio	$Calculate\ relative\ atmospheric\ ratios$
Wind Angular Rates	Calculate wind angular rates from body angular rates, angle of attack, sideslip angle, rate of change of angle of attack, and rate of change of sideslip

Equations of Motion

Three DoFs (p. 4-7)	Dynamics with one rotation and two translation axes
Six DoFs (p. 4-8)	Dynamics with three rotation and three translation axes
Point Masses (p. 4-10)	Dynamics of point masses

Three DoFs

3DoF (Body Axes)	Implement three-degrees-of-freedom equations of motion with respect to body axes
3DoF (Wind Axes)	Implement three-degrees-of-freedom equations of motion with respect to wind axes
Custom Variable Mass 3DoF (Body Axes)	Implement three-degrees-of-freedom equations of motion of custom variable mass with respect to body axes
Custom Variable Mass 3DoF (Wind Axes)	Implement three-degrees-of-freedom equations of motion of custom variable mass with respect to wind axes
Simple Variable Mass 3DoF (Body Axes)	Implement three-degrees-of-freedom equations of motion of simple variable mass with respect to body axes
Simple Variable Mass 3DoF (Wind Axes)	Implement three-degrees-of-freedom equations of motion of simple variable mass with respect to wind axes

Six DoFs

6DoF (Euler Angles)	Implement Euler angle representation of six-degrees-of-freedom equations of motion
6DoF (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to body axes
6DoF ECEF (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion in Earth-centered Earth-fixed (ECEF) coordinates
6DoF Wind (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to wind axes
6DoF Wind (Wind Angles)	Implement wind angle representation of six-degrees-of-freedom equations of motion
Custom Variable Mass 6DoF (Euler Angles)	Implement Euler angle representation of six-degrees-of-freedom equations of motion of custom variable mass
Custom Variable Mass 6DoF (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass with respect to body axes

Custom Variable Mass 6DoF ECEF (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass in Earth-centered Earth-fixed (ECEF) coordinates
Custom Variable Mass 6DoF Wind (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass with respect to wind axes
Custom Variable Mass 6DoF Wind (Wind Angles)	Implement wind angle representation of six-degrees-of-freedom equations of motion of custom variable mass
Simple Variable Mass 6DoF (Euler Angles)	Implement Euler angle representation of six-degrees-of-freedom equations of motion of simple variable mass
Simple Variable Mass 6DoF (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass with respect to body axes
Simple Variable Mass 6DoF ECEF (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass in Earth-centered Earth-fixed (ECEF) coordinates

Simple Variable Mass 6DoF Wind (Quaternion)	Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass with respect to wind axes
Simple Variable Mass 6DoF Wind (Wind Angles)	Implement wind angle representation of six-degrees-of-freedom equations of motion of simple variable mass

Point Masses

4th Order Point Mass (Longitudinal)	Calculate fourth-order point mass
4th Order Point Mass Forces (Longitudinal)	Calculate forces used by fourth-order point mass
6th Order Point Mass (Coordinated Flight)	Calculate sixth-order point mass in coordinated flight
6th Order Point Mass Forces (Coordinated Flight)	Calculate forces used by sixth-order point mass in coordinated flight

Guidance, Navigation, and Control

Control (p. 4-11) Guidance (p. 4-12) Navigation (p. 4-12) Controlling vehicles Guiding motion Navigating in space

Control

1D Controller Blend u=(1-L).K1.y+L.K2.y	Implement 1-D vector of state-space controllers by linear interpolation of their outputs
1D Controller [A(v),B(v),C(v),D(v)]	Implement gain-scheduled state-space controller depending on one scheduling parameter
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]	Implement gain-scheduled state-space controller in observer form depending on one scheduling parameter
1D Self-Conditioned $[A(v),B(v),C(v),D(v)]$	Implement gain-scheduled state-space controller in self-conditioned form depending on one scheduling parameter
2D Controller Blend	Implement 2-D vector of state-space controllers by linear interpolation of their outputs
2D Controller [A(v),B(v),C(v),D(v)]	Implement gain-scheduled state-space controller depending on two scheduling parameters
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]	Implement gain-scheduled state-space controller in observer form depending on two scheduling parameters
2D Self-Conditioned [A(v),B(v),C(v),D(v)]	Implement gain-scheduled state-space controller in self-conditioned form depending on two scheduling parameters
3D Controller [A(v),B(v),C(v),D(v)]	Implement gain-scheduled state-space controller depending on three scheduling parameters

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]	Implement gain-scheduled state-space controller in observer form depending on three scheduling parameters
3D Self-Conditioned [A(v),B(v),C(v),D(v)]	Implement gain-scheduled state-space controller in self-conditioned form depending on two scheduling parameters
Gain Scheduled Lead-Lag	Implement first-order lead-lag with gain-scheduled coefficients
Interpolate Matrix(x)	Return interpolated matrix for given input
Interpolate Matrix(x,y)	Return interpolated matrix for given inputs
Interpolate Matrix(x,y,z)	Return interpolated matrix for given inputs
Self-Conditioned [A,B,C,D]	Implement state-space controller in self-conditioned form

Guidance

Calculate Range	Calculate range between two crafts
	given their respective positions

Navigation

Three-Axis Accelerometer	Implement three-axis accelerometer
Three-Axis Gyroscope	Implement three-axis gyroscope
Three-Axis Inertial Measurement Unit	Implement three-axis inertial measurement unit (IMU)

Mass Properties

Estimate Center of Gravity	Calculate center of gravity location
Estimate Inertia Tensor	Calculate inertia tensor
Moments About CG Due to Forces	Compute moments about center of gravity due to forces applied at a point, not center of gravity
Symmetric Inertia Tensor	Create inertia tensor from moments and products of inertia

Propulsion

Turbofan Engine System	Implement first-order representation
	of turbofan engine with controller

Utilities

Axes Transformations (p. 4-13)	Geometric and kinematic transformations
Math Operations (p. 4-15)	Additional mathematical functions
Unit Conversions (p. 4-16)	Changing units

Axes Transformations

Besselian Epoch to Julian Epoch	Transform position and velocity components from discontinued Standard Besselian Epoch (B1950) to Standard Julian Epoch (J2000)
Direction Cosine Matrix Body to Wind	Convert angle of attack and sideslip angle to direction cosine matrix

Direction Cosine Matrix Body to Wind to Alpha and Beta	Convert direction cosine matrix to angle of attack and sideslip angle
Direction Cosine Matrix ECEF to NED	Convert geodetic latitude and longitude to direction cosine matrix
Direction Cosine Matrix ECEF to NED to Latitude and Longitude	Convert direction cosine matrix to geodetic latitude and longitude
Direction Cosine Matrix to Quaternions	Convert direction cosine matrix to quaternion vector
Direction Cosine Matrix to Rotation Angles	Convert direction cosine matrix to rotation angles
Direction Cosine Matrix to Wind Angles	Convert direction cosine matrix to wind angles
ECEF Position to LLA	Calculate geodetic latitude, longitude, and altitude above planetary ellipsoid from Earth-centered Earth-fixed (ECEF) position
Flat Earth to LLA	Estimate geodetic latitude, longitude, and altitude from flat Earth position
Geocentric to Geodetic Latitude	Convert geocentric latitude to geodetic latitude
Geodetic to Geocentric Latitude	Convert geodetic latitude to geocentric latitude
Julian Epoch to Besselian Epoch	Transform position and velocity components from Standard Julian Epoch (J2000) to discontinued Standard Besselian Epoch (B1950)
LLA to ECEF Position	Calculate Earth-centered Earth-fixed (ECEF) position from geodetic latitude, longitude, and altitude above planetary ellipsoid
Quaternions to Direction Cosine Matrix	Convert quaternion vector to direction cosine matrix
Quaternions to Rotation Angles	Determine rotation vector from quaternion
---	--
Rotation Angles to Direction Cosine Matrix	Convert rotation angles to direction cosine matrix
Rotation Angles to Quaternions	Calculate quaternion from rotation angles
Wind Angles to Direction Cosine Matrix	Convert wind angles to direction cosine matrix

Math Operations

3x3 Cross Product	Calculate cross product of two 3-by-1 vectors
Adjoint of 3x3 Matrix	Compute adjoint of matrix
Create 3x3 Matrix	Create 3-by-3 matrix from nine input values
Determinant of 3x3 Matrix	Compute determinant of matrix
Invert 3x3 Matrix	Compute inverse of 3-by-3 matrix
Quaternion Division	Divide quaternion by another quaternion
Quaternion Inverse	Calculate inverse of quaternion
Quaternion Modulus	Calculate modulus of quaternion
Quaternion Multiplication	Calculate product of two quaternions
Quaternion Norm	Calculate norm of quaternion
Quaternion Normalize	Normalize quaternion
Quaternion Rotation	Rotate vector by quaternion
SinCos	Compute sine and cosine of angle

Unit Conversions

Acceleration Conversion	Convert from acceleration units to desired acceleration units
Angle Conversion	Convert from angle units to desired angle units
Angular Acceleration Conversion	Convert from angular acceleration units to desired angular acceleration units
Angular Velocity Conversion	Convert from angular velocity units to desired angular velocity units
Density Conversion	Convert from density units to desired density units
Force Conversion	Convert from force units to desired force units
Length Conversion	Convert from length units to desired length units
Mass Conversion	Convert from mass units to desired mass units
Pressure Conversion	Convert from pressure units to desired pressure units
Temperature Conversion	Convert from temperature units to desired temperature units
Velocity Conversion	Convert from velocity units to desired velocity units

Blocks — Alphabetical List

1D Controller [A(v),B(v),C(v),D(v)]

Purpose	Implement gain-scheduled state-space controller depending on one scheduling parameter		
Library	GNC/Controls		
Description	The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller as defined by the equations		
v v	$\dot{x} = A(v)x + B(v)y$		
	u = C(v)x + D(v)y		

where v is a parameter over which A, B, C, and D are defined. This type of controller scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace applications.

StateSpaceABCD-1D (mask) (link)
Implement a state-space controller [A,B,C,D] where A, B, C, and D depend on one scheduling parameter, v.
Parameters
A-matrix(v):
A1
B-matrix(v):
B1
C-matrix(v):
C1
D-matrix(v):
D1
Scheduling variable breakpoints:
v_vec
 Initial state, x_initial:

Dialog Box

A-matrix(v)

A-matrix of the state-space implementation. In the case of 1-D scheduling, the A-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the A-matrix corresponding to the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)

B-matrix of the state-space implementation. In the case of 1-D scheduling, the *B*-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the *B*-matrix corresponding to the first entry of v is the identity matrix, then $B(:,:,1) = [1 \ 0; 0 \ 1];$.

C-matrix(v)

C-matrix of the state-space implementation. In the case of 1-D scheduling, the *C*-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the *C*-matrix corresponding to the first entry of v is the identity matrix, then $C(:,:,1) = [1 \ 0; 0 \ 1];$.

D-matrix(v)

D-matrix of the state-space implementation. In the case of 1-D scheduling, the *D*-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the *D*-matrix corresponding to the first entry of v is the identity matrix, then $D(:,:,1) = [1 \ 0; 0 \ 1];$.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Inputs and	Input	Dimension Type	Description
Outputs			
•	First	Any	Contains the measurements.
	Second		Contains the scheduling variable conforming to the dimensions of the state-space matrices.
	• • •		.
	Output	Dimension Type	Description
	First	Any	Contains the actuator demands.
Assumptions and Limitations	If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.		
Examples	See H-Infinity Controller (1 Dimensional Scheduling) in the aeroblk_lib_HL20 demo library for an example of this block.		
See Also	1D Controller Blend u=(1-L).K1.y+L.K2.y		
	1D Observer Form [A(v),B(v),C(v),F(v),H(v)]		
	1D Self-Conditioned [A(v),B(v),C(v),D(v)]		
	2D Controller [A(v),B(v),C(v),D(v)]		
	3D Control	ler $[A(v),B(v),C(v),D(v)]$	/)]

Purpose Implement 1-D vector of state-space controllers by linear interpolation of their outputs

Library GNC/Controls

Description

The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of state-space controller designs. The controllers are run in parallel, and their outputs interpolated according to the current flight condition or operating point. The advantage of this implementation approach is that the state-space matrices A, B, C, and D for the individual controller designs do not need to vary smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points $v=v_{\min}$ and $v=v_{\max}$. The 1D Controller Blend block implements

$$\begin{split} \dot{x}_1 &= A_1 x_1 + B_1 y \\ u_1 &= C_1 x_1 + D_1 y \\ \dot{x}_2 &= A_2 x_2 + B_2 y \\ u_2 &= C_2 x_2 + D_2 y \\ u &= (1 - \lambda) u_1 + \lambda u_2 \end{split}$$

 $\lambda = \begin{cases} 0 & v < v_{\min} \\ \frac{v - v_{\min}}{v_{\max} - v_{\min}} & v_{\min} \le v \le v_{\max} \\ 1 & v > v_{\max} \end{cases}$

For longer arrays of design points, the blocks only implement nearest neighbor designs. For the 1D Controller Blend block, at any given instant in time, three controller designs are being updated. This reduces computational requirements.

As the value of the scheduling parameter varies and the index of the controllers that need to be run changes, the states of the oncoming

1D Controller Blend u=(1-L).K1.y+L.K2.y

controller are initialized by using the self-conditioned form as defined for the Self-Conditioned [A,B,C,D] block.

Dialog Box

Block Parameters: 1D Controller Blend: u=(1-L).K1.y+L.K2.y 🛛 📕
Blend-1D (mask) (link)
Blend between outputs of a 1-D vector of state-space controllers. All controllers must have the same state dimension.
Parameters
A-matrix(v):
A1
B-matrix(v):
B1
C-matrix(v):
C1
D-matrix(v):
D1
Scheduling variable breakpoints:
[1 1.5 2]
Initial state, x_initial:
0
Poles of $A(v)$ · $H(v)$ * $C(v) = [w1 wn]$:
[-5 -2]
OK Cancel Help Apply

A-matrix(v)

A-matrix of the state-space implementation. In the case of 1-D blending, the A-matrix should have three dimensions, the last one corresponding to scheduling variable v. Hence, for example, if the A-matrix corresponding to the first entry of v is the identity matrix, then $A(:,:,1) = [1 \ 0; 0 \ 1];$.

B-matrix(v)

B-matrix of the state-space implementation.

C-matrix(v)

C-matrix of the state-space implementation.

D-matrix(v)

D-matrix of the state-space implementation.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)

For oncoming controllers, an observer-like structure is used to ensure that the controller output tracks the current block output, u. The poles of the observer are defined in this dialog box as a vector, the number of poles being equal to the dimension of the *A*-matrix. Poles that are too fast result in sensor noise propagation, and poles that are too slow result in the failure of the controller output to track u.

Inputs	and
Outpu	ts

Input	Dimension Type	Description
First	Any	Contains the measurements.
Second		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.

Output	Dimension Type	Description
First	Any	Contains the actuator demands.

1D Controller Blend u=(1-L).K1.y+L.K2.y

Assumptions and	ptions Note This block requires the Control System Toolbox product.		
Limitations			
Reference	Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, <i>Advances in Industrial Control Series</i> , 1995. ISBN 3-540-19960-8. See Chapter 5.		
See Also	1D Controller [A(v),B(v),C(v),D(v)]		
	1D Observer Form [A(v),B(v),C(v),F(v),H(v)]		
	1D Self-Conditioned [A(v),B(v),C(v),D(v)]		
	2D Controller Blend		

Purpose Implement gain-scheduled state-space controller in observer form depending on one scheduling parameter

Library GNC/Controls

Description

yy-y_d	2m	
×۷	u_dem þ	
}u_me	as	

The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space controller defined in the following observer form:

$$\begin{split} \dot{x} &= (A(v) + H(v)C(v))x + B(v)u_{meas} + H(v)(y - y_{dem}) \\ u_{dem} &= F(v)x \end{split}$$

The main application of this block is to implement a controller designed using H-infinity loop-shaping, one of the design methods supported by Robust Control Toolbox.

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog Box

Block Parameters: 1D Observer Form [A(v),B(v),C(v),F(v),H(v)]⊠
StateSpaceABCFH-1D (mask) (link)
Implement a state-space controller [A,B,C,F,H] in observer form where A, B, C, F, and H depend on one scheduling parameter.
Parameters
A-matrix(v):
A
B-matrix(v):
В
C-matrix(v):
C
F-matrix(v):
F
H-matrix(v):
Н
Scheduling variable breakpoints:
v_vec
Initial state, x_initial:
0
OK Cancel Help Apply

A-matrix(v)

A-matrix of the state-space implementation. The A-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the A-matrix corresponding to the first entry of v is the identity matrix, then $A(:,:,1) = [1 \ 0; 0 \ 1];$.

B-matrix(v)

B-matrix of the state-space implementation. The *B*-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the *B*-matrix corresponding to the first entry of v is the identity matrix, then $B(:,:,1) = [1 \ 0; 0 \ 1];$.

C-matrix(v)

C-matrix of the state-space implementation. The C-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the C-matrix corresponding to the first entry of v is the identity matrix, then $C(:,:,1) = [1 \ 0; 0 \ 1];.$

F-matrix(v)

State-feedback matrix. The F-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the *F*-matrix corresponding to the first entry of v is the identity matrix, then $F(:,:,1) = [1 \ 0; 0 \ 1];$.

H-matrix(v)

Observer (output injection) matrix. The H-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the H-matrix corresponding to the first entry of v is the identity matrix, then H(:,:,1) = [1]0;0 1];.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the set-point error.
	Second		Contains the scheduling variable.
	Third		Contains the measured actuator position.

	Output	Dimension Type	Description
	First		Contains the actuator demands.
Assumptions and Limitations	If the scheet they are cli of range.	duling parameter inpu ipped; i.e., the state-s	uts to the block go out of range, then pace matrices are not interpolated out
Examples	See H-Infin aeroblk_1	nity Controller (1 Din ib_HL20 demo library	nensional Scheduling) in the for an example of this block.
Reference	Hyde, R. A Application 1995. ISBN	., "H-infinity Aerospa n," Springer Verlag, <i>A</i> V 3-540-19960-8. See	ce Control Design - A VSTOL Flight dvances in Industrial Control Series, Chapter 6.
See Also	1D Control	ler [A(v),B(v),C(v),D(v	<i>v</i>)]
	1D Control	ler Blend u=(1-L).K1.	y+L.K2.y
	1D Self-Co	nditioned [A(v),B(v),C	2(v),D(v)]
	2D Observ	er Form [A(v),B(v),C(v	v),F(v),H(v)]
	3D Observ	er Form [A(v),B(v),C(v	v),F(v),H(v)]

Purpose Implement gain-scheduled state-space controller in self-conditioned form depending on one scheduling parameter

GNC/Controls

Description

u dem

Library

u meas

The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller as defined by the equations

$$\dot{x} = A(v)x + B(v)y$$
$$u = C(v)x + D(v)y$$

in the self-conditioned form

$$\dot{z} = (A(v) - H(v)C(v))z + (B(v) - H(v)D(V))e + H(v)u_{meas}$$
$$u_{dem} = C(v)z + D(v)e$$

For the rationale behind this self-conditioned implementation, refer to the Self-Conditioned [A,B,C,D] block reference. This block implements a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the parameter over which A, B, C, and D are defined. This type of controller scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace applications.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dial	og
Box	•

Block Parameters	1D Self-Conditioned [A(v),B(v),C(v),D(v)] 🗵
StateSpaceSelfCo	nd-1D (mask) (link)	
Implement a state-s self-conditioned forr is [A,B,C,D]. If u_me controller become th Control Systems To should be 3-D matri scheduling paramet given set of schedu	pace controller [A(v),B(v),C(v),D(v)] in a n. If u_meas = u_dem, then the implemented cor as is limited, e.g., rate limiting, then the poles of nose defined in the mask dialog box. Uses call to olbox function place, m when initializing, A, B, C, ces, the last dimension corresponding to the rer, and the first two corresponding to the matrix f ling parameter values.	ntroller the and D or a
- Parameters		
A-matrix(v):		
A		
B-matrix(v):		
В		
C-matrix(v):		
С		
D-matrix(v):		
D		
Scheduling variabl	e breakpoints:	
v_vec		
Initial state, x_initia	al:	
0		
Poles of A(v)-H(v)*	$\Gamma(v) = [w1 wn]$	
[-5-2]	-(-) [_
1.0 21		
ΟΚ	Cancel Help Appla	
OIX	төр төру	

A-matrix(v)

A-matrix of the state-space implementation. The A-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the A-matrix corresponding to the first entry of v is the identity matrix, then $A(:,:,1) = [1 \ 0; 0 \ 1];$.

B-matrix(v)

B-matrix of the state-space implementation. The *B*-matrix should have three dimensions, the last one corresponding to

the scheduling variable v. Hence, for example, if the *B*-matrix corresponding to the first entry of v is the identity matrix, then $B(:,:,1) = [1 \ 0; 0 \ 1];$.

C-matrix(v)

C-matrix of the state-space implementation. The *C*-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the *C*-matrix corresponding to the first entry of v is the identity matrix, then $C(:,:,1) = [1 \ 0; 0 \ 1];$.

D-matrix(v)

D-matrix of the state-space implementation. The *D*-matrix should have three dimensions, the last one corresponding to the scheduling variable v. Hence, for example, if the *D*-matrix corresponding to the first entry of v is the identity matrix, then $D(:,:,1) = [1 \ 0; 0 \ 1];$.

Scheduling variable breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)

Vector of the desired poles of A-HC. Note that the poles are assigned to the same locations for all values of the scheduling parameter v. Hence the number of pole locations defined should be equal to the length of the first dimension of the A-matrix.

Inputs and	Input	Dimension Type	Description
Outputs	First	Any	Contains the measurements.
	Second		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.
	Third		Contains the measured actuator position.
	Output	Dimension Type	Description
	First	Any	Contains the actuator demands.
Assumptions and Limitations	If the scheo they are cli of range.	duling parameter inpu pped; i.e., the state-s	uts to the block go out of range, then pace matrices are not interpolated out
	Note This	block requires the Co	ontrol System Toolbox product.
Reference	The algorit Nichols, an Feedback," 1129-1155,	hm used to determine d Van Dooren, "Robu <i>International Journa</i> 1985.	e the matrix H is defined in Kautsky, st Pole Assignment in Linear State al of Control, Vol. 41, No. 5, pages
See Also	1D Control	ler [A(v),B(v),C(v),D(v	v)]
	1D Control	ler Blend u=(1-L).K1.	.y+L.K2.y
	1D Observe	er Form [A(v),B(v),C(v	v),F(v),H(v)]
	2D Self-Co	nditioned [A(v),B(v),C	V(v),D(v)]
	3D Self-Co	nditioned [A(v),B(v),C	ζ(v),D(v)]

Purpose	Implement gain-scheduled state-space controller depending on two
-	scheduling parameters

Library GNC/Controls

Description

The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller as defined by the equations

>y >v1 u> >v2

 $\dot{x} = A(v)x + B(v)y$ u = C(v)x + D(v)y

where v is a vector of parameters over which A, B, C, and D are defined. This type of controller scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace applications.

2D Controller [A(v),B(v),C(v),D(v)]

Dialog Box

3lock Parameters: 2D Controller [A(v),B(v),C(v),D(v)]	×
StateSpaceABCD-2D (mask) (link)	
Implement a state-space controller [A,B,C,D] where A, B, C, and D depend on two scheduling parameters, v1 and v2.	
Parameters	
A-matrix(v1,v2):	
A	
B-matrix(v1,v2):	
В	
C-matrix(v1,v2):	
C	
D-matrix(v1,v2):	
D	
First scheduling variable (v1) breakpoints:	
v1_vec	
Second scheduling variable (v2) breakpoints:	
v2_vec	
Initial state, x_initial:	
0	
OK Cancel Help Apply	

A-matrix(v1,v2)

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the A-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)

B-matrix of the state-space implementation. In the case of 2-D scheduling, the *B*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *B*-matrix corresponding to the first entry of

v1 and first entry of v2 is the identity matrix, then B(:,:,1,1)
= [1 0;0 1];.

C-matrix(v1,v2)

C-matrix of the state-space implementation. In the case of 2-D scheduling, the *C*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *C*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $C(:,:,1,1) = [1 \ 0; 0 \ 1];$.

D-matrix(v1,v2)

D-matrix of the state-space implementation. In the case of 2-D scheduling, the *D*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *D*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $D(:,:,1,1) = [1 \ 0; 0 \ 1];$.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size of the third dimension of *A*, *B*, *C*, and *D*.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the size of the fourth dimension of *A*, *B*, *C*, and *D*.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

I			
Inputs and	Input	Dimension Type	Description
Outputs	First	Any	Contains the measurements.
	Second		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.
	Third		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.
	Output	Dimension Type	Description
	First	Any	Contains the actuator demands.
Assumptions and Limitations	If the sched they are cli of range.	luling parameter inpu pped; i.e., the state-sp	uts to the block go out of range, then pace matrices are not interpolated out
Examples	See H-Infir aeroblk_1:	ity Controller (Two l ib_HL20 demo library	Dimensional Scheduling) in the for an example of this block.
See Also	1D Control	ler [A(v),B(v),C(v),D(v	7)]
	2D Control	ler Blend	
	2D Observe	er Form [A(v),B(v),C(v	v),F(v),H(v)]
	2D Self-Con	nditioned [A(v),B(v),C	(v),D(v)]
	3D Control	ler [A(v),B(v),C(v),D(v	x)]

Purpose Implement 2-D vector of state-space controllers by linear interpolation of their outputs

Library GNC/Controls

Description

>y >v1 u >v2	}
--------------------	---

The 2D Controller Blend block implements an array of state-space controller designs. The controllers are run in parallel, and their outputs interpolated according to the current flight condition or operating point. The advantage of this implementation approach is that the state-space matrices A, B, C, and D for the individual controller designs do not need to vary smoothly from one design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller designs are updated.

As the value of the scheduling parameter varies and the index of the controllers that need to be run changes, the states of the oncoming controller are initialized by using the self-conditioned form as defined for the Self-Conditioned [A,B,C,D] block.

2D Controller Blend

Dialog Box

lock Parameters: 2D Controller Blend	×
-Blend-2D (mask) (link)	_
Blend between outputs of a 2-D vector of state-space controllers. All controllers must have the same state dimension.	
Parameters	
A-matrix(v1,v2):	
A	
B-matrix(v1,v2):	
В	ĺ
C-matrix(v1,v2):	
С	1
D-matrix(v1,v2):	
D	1
First scheduling variable (v1) breakpoints:	
v1_vec	1
Second scheduling variable (v2) breakpoints:	
v2_vec	1
Initial state, x_initial:	
0	1
Poles of A(v)-H(v)*C(v) = [w1 wn]:	
[-5-2]	1
OK Cancel Help Apply	

A-matrix(v1,v2)

A-matrix of the state-space implementation. In the case of 2-D blending, the A-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the A-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)

B-matrix of the state-space implementation.

C-matrix(v1,v2)

C-matrix of the state-space implementation.

D-matrix(v1,v2)

D-matrix of the state-space implementation.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size of the third dimension of *A*, *B*, *C*, and *D*.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the size of the fourth dimension of *A*, *B*, *C*, and *D*.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)

For oncoming controllers, an observer-like structure is used to ensure that the controller output tracks the current block output, u. The poles of the observer are defined in this dialog box as a vector, the number of poles being equal to the dimension of the *A*-matrix. Poles that are too fast result in sensor noise propagation, and poles that are too slow result in the failure of the controller output to track u.

Inputs and Outputs	Input	Dimension Type	Description		
	First	Any	Contains the measurements.		
	Second		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.		
	Third		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.		
	Output	Dimension Type	Description		
	First	Any	Contains the actuator demands.		
Accumptions					
and	Note This block requires the Control System Toolbox product.				
Limitations					
Reference	Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, <i>Advances in Industrial Control Series</i> , 1995. ISBN 3-540-19960-8. See Chapter 5.				
See Also	1D Controller Blend u=(1-L).K1.y+L.K2.y				
	2D Controller [A(v),B(v),C(v),D(v)]				
	2D Observer Form [A(v),B(v),C(v),F(v),H(v)]				
	2D Self-Conditioned [A(v),B(v),C(v),D(v)]				

Purpose Implement gain-scheduled state-space controller in observer form depending on two scheduling parameters

Library GNC/Controls

Description

>y-y_dem		
γv1	.	
×v2	u_dem þ	>
yu_meas		

The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space controller defined in the following observer form:

$$\begin{split} \dot{x} &= (A(v) + H(v)C(v))x + B(v)u_{meas} + H(v)\big(y - y_{dem}\big) \\ u_{dem} &= F(v)x \end{split}$$

The main application of these blocks is to implement a controller designed using H-infinity loop-shaping, one of the design methods supported by Robust Control Toolbox.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog Box

Block Parameters: 2D Observer Form [A(v),B(v),C(v),F(v),H(v)]			
StateSpaceABCFH-2D (mask) (link)			
Implement a state-space controller [A,B,C,F,H] in observer form where A, B, C, F, and H depend on two scheduling parameters.			
Parameters			
A-matrix(v1,v2):			
A			
B-matrix(v1,v2):			
В			
C-matrix(v1,v2):			
C			
F-matrix(v1,v2):			
F			
H-matrix(v1,v2):			
Н			
First scheduling variable (v1) breakpoints:			
v1_vec			
Second scheduling variable (v2) breakpoints:			
v2_vec			
Initial state, x_initial:			
0			
OK Cancel Help Apply			

A-matrix(v1,v2)

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the A-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)

B-matrix of the state-space implementation. In the case of 2-D scheduling, the *B*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence,

for example, if the *B*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $B(:,:,1,1) = [1 \ 0; 0 \ 1];$.

C-matrix(v1,v2)

C-matrix of the state-space implementation. In the case of 2-D scheduling, the *C*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *C*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $C(:,:,1,1) = [1 \ 0; 0 \ 1];$.

F-matrix(v1,v2)

State-feedback matrix. In the case of 2-D scheduling, the *F*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *F*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $F(:,:,1,1) = [1 \ 0; 0 \ 1];$.

H-matrix(v1,v2)

Observer (output injection) matrix. In the case of 2-D scheduling, the *H*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *H*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $H(:,:,1,1) = [1 \ 0; 0 \ 1];$.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size of the third dimension of *A*, *B*, *C*, *F*, and *H*.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Inputs and Outputs	Input	Dimension Type	Description
	Timot	Dimension type	Contains the set point amon
	First		Contains the set-point error.
	Second		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.
	Third		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.
	Fourth		Contains the measured actuator position.
	Output	Dimension Type	Description
	First		Contains the actuator demands.
Assumptions and Limitations	If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.		
Examples	See H-Infinity Controller (Two Dimensional Scheduling) in the aeroblk_lib_HL20 demo library for an example of this block.		
Reference	Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, <i>Advances in Industrial Control Series</i> , 1995. ISBN 3-540-19960-8. See Chapter 6.		
See Also	1D Controller $[A(v),B(v),C(v),D(v)]$		

- 2D Controller [A(v),B(v),C(v),D(v)]
- 2D Controller Blend
- 2D Self-Conditioned [A(v),B(v),C(v),D(v)]
- 3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose

Implement gain-scheduled state-space controller in self-conditioned form depending on two scheduling parameters

Library GNC/Controls

Description

u_dem þ

ν1

v2 u meas The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller as defined by the equations

 $\dot{x} = A(v)x + B(v)y$ u = C(v)x + D(v)y

in the self-conditioned form

$$\begin{split} \dot{z} &= \big(A(v) - H(v)C(v)\big)z + \big(B(v) - H(v)D(v)\big)e + H(v)u_{meas} \\ u_{dem} &= C(v)z + D(v)e \end{split}$$

For the rationale behind this self-conditioned implementation, refer to the Self-Conditioned [A,B,C,D] block reference. This block implements a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the vector of parameters over which A, B, C, and D are defined. This type of controller scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

Block Parameters: 2D Self-Conditioned [A(v),B(v),C(v),D(v)] 🛛 🗵
StateSpaceSelfCond-2D (mask) (link)
Implement a state-space controller [A(v1,v2),B(v1,v2),C(v1,v2),D(v1,v2)] in a self-conditioned form. If u_meas = u_dem, then the implemented controller is [A,B,C,D]. If u_meas is limited, e.g., rate limiting, then the poles of the controller become those defined in the mask dialog box. Uses call to Control Systems Toolbox function place, m when initializing. A, B, C, and D should be 4-D matrices, the last two dimensions corresponding to the scheduling parameters, and the first two corresponding to the matrix for a given set of scheduling parameter values.
Parameters
A-matrix(v1,v2):
A
B-matrix(v1,v2):
В
C-matrix(v1,v2):
C
D-matrix(v1,v2):
D
First scheduling variable (v1) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Initial state, x_initial:
0
Poles of $A(v)$ - $H(v)$ * $C(v) = [w1 wn]$:
[-5 -2]
OK Cancel Help Apply

A-matrix(v1,v2)

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the A-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)

B-matrix of the state-space implementation. In the case of 2-D scheduling, the *B*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *B*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $B(:,:,1,1) = [1 \ 0; 0 \ 1];$.

C-matrix(v1,v2)

C-matrix of the state-space implementation. In the case of 2-D scheduling, the *C*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *C*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $C(:,:,1,1) = [1 \ 0; 0 \ 1];$.

D-matrix(v1,v2)

D-matrix of the state-space implementation. In the case of 2-D scheduling, the *D*-matrix should have four dimensions, the last two corresponding to scheduling variables v1 and v2. Hence, for example, if the *D*-matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then $D(:,:,1,1) = [1 \ 0; 0 \ 1];$.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size of the third dimension of *A*, *B*, *C*, and *D*.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the size of the fourth dimension of *A*, *B*, *C*, and *D*.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)

Vector of the desired poles of A-HC. Note that the poles are assigned to the same locations for all values of the scheduling parameter, v. Hence, the number of pole locations defined should be equal to the length of the first dimension of the A-matrix.

Inputs and Outputs	Input	Dimension Type	Description	
	First		Contains the measurements.	
	Second		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.	
	Third		Contains the scheduling variable, conforming to the dimensions of the state-space matrices.	
	Fourth		Contains the measured actuator position.	
	-			
	Output	Dimension Type	Description	
	First		Contains the actuator demands.	
Assumptions and Limitations	If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.			
	Note This block requires the Control System Toolbox product.			
Reference	The algorithm used to determine the matrix H is defined in Kautsky, Nichols, and Van Dooren, "Robust Pole Assignment in Linear State Feedback," <i>International Journal of Control</i> , Vol. 41, No. 5, pages 1129-1155, 1985.			

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

- 2D Controller [A(v),B(v),C(v),D(v)]
- 2D Controller Blend

See Also

- 2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
- 3D Self-Conditioned [A(v),B(v),C(v),D(v)]
Purpose Implement gain-scheduled state-space controller depending on three scheduling parameters

Library GNC/Controls

Description

The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller as defined by the equations

X	У	
>	v1	
>	v2 ^u	P
×	v3	

 $\dot{x} = A(v)x + B(v)y$ u = C(v)x + D(v)y

where v is a vector of parameters over which A, B, C, and D are defined. This type of controller scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace applications.

3D Controller [A(v),B(v),C(v),D(v)]

Dialog Box

Block Parameters: 3D Controller [A(v),B(v),C(v),D(v)]	×
StateSpaceABCD-3D (mask) (link)	
Implement a state-space controller [A,B,C,D] where A, B, C, and D depend on three scheduling parameters, v1, v2, and v3.	
Parameters	
A-matrix(V1,V2,V3):	_
JA	
B-matrix(v1,v2,v3):	_
B	
C-matrix(v1,v2,v3):	
C	-
D-matrix(v1,v2,v3):	
D	-
First scheduling variable (v1) breakpoints:	
v1_vec	-
Second scheduling variable (v2) breakpoints:	
v2_vec	-
Third scheduling variable (v3) breakpoints:	
v3_vec	-
Initial state, x_initial:	
0	-
	_
OK Cancel Help Apply	

A-matrix(v1,v2,v3)

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)

B-matrix of the state-space implementation. In the case of 3-D scheduling, the *B*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence,

for example, if the *B*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $B(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

C-matrix(v1,v2,v3)

C-matrix of the state-space implementation. In the case of 3-D scheduling, the *C*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *C*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $C(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

D-matrix(v1,v2,v3)

D-matrix of the state-space implementation. In the case of 3-D scheduling, the *D*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *D*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $D(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size of the third dimension of *A*, *B*, *C*, and *D*.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the measurements.
	Second		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Third		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Fourth		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Output	Dimension Type	Description
	Output First	Dimension Type	Description Contains the actuator demands.
Assumptions and Limitations	Output First If the sched they are cli of range.	Dimension Type duling parameter inpu pped; i.e., the state-sp	Description Contains the actuator demands. ut to the block go out of range, then pace matrices are not interpolated out
Assumptions and Limitations See Also	Output First If the sched they are cli of range. 1D Control	Dimension Type duling parameter inpupped; i.e., the state-sp ler [A(v),B(v),C(v),D(v	Description Contains the actuator demands. ut to the block go out of range, then pace matrices are not interpolated out
Assumptions and Limitations See Also	Output First If the sched they are cli of range. 1D Control 2D Control	Dimension Type duling parameter inpupped; i.e., the state-sp ler [A(v),B(v),C(v),D(v) ler [A(v),B(v),C(v),D(v)]	Description Contains the actuator demands. ut to the block go out of range, then pace matrices are not interpolated out (v)]
Assumptions and Limitations See Also	Output First If the scheet they are cli of range. 1D Control 2D Control 3D Observe	Dimension Type luling parameter inpupped; i.e., the state-sp ler [A(v),B(v),C(v),D(v) ler [A(v),B(v),C(v),D(v) er Form [A(v),B(v),C(v),C(v)]	Description Contains the actuator demands. ut to the block go out of range, then pace matrices are not interpolated out v)] v)] v),F(v),H(v)]

Purpose Implement gain-scheduled state-space controller in observer form depending on three scheduling parameters

Library GNC/Controls

Description

> y-y_dem > v1 > v2 u_dem > > v3 > u_meas The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space controller defined in the following observer form:

$$\dot{x} = (A(v) + H(v)C(v))x + B(v)u_{meas} + H(v)(y - y_{dem})$$
$$u_{dem} = F(v)x$$

The main application of this block is to implement a controller designed using H-infinity loop-shaping, one of the design methods supported by Robust Control Toolbox.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog Box

Block Parameters: 3D Observer Form [A(v),B(v),C(v),F(v),H(v)]⊠
StateSpaceABCFH-3D (mask) (link)
Implement a state-space controller [A,B,C,F,H] in observer form where A, B, C, F, and H depend on three scheduling parameters.
- Parameters
A-matrix(v1,v2,v3):
A
B-matrix(v1,v2,v3):
В
C-matrix(v1,v2,v3):
C
F-matrix(v1,v2,v3):
F
H-matrix(v1,v2,v3):
Н
First scheduling variable (v1) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Third scheduling variable (v3) breakpoints:
v3_vec
Initial state, x_initial:
0
OK Cancel Help Apply

A-matrix(v1,v2,v3)

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)

B-matrix of the state-space implementation. In the case of 3-D scheduling, the *B*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *B*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $B(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

C-matrix(v1,v2,v3)

C-matrix of the state-space implementation. In the case of 3-D scheduling, the *C*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *C*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $C(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

F-matrix(v1,v2,v3)

State-feedback matrix. In the case of 3-D scheduling, the *F*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *F*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $F(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

H-matrix(v1,v2,v3)

Observer (output injection) matrix. In the case of 3-D scheduling, the *H*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *H*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $H(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size of the third dimension of *A*, *B*, *C*, *F*, and *H*.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial

First

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Contains the actuator demands.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the set-point error.
	Second		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Third		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Fourth		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Fifth		Contains the measured actuator position.
	Output	Dimension Type	Description

Assumptions and Limitations	If the scheduling parameter inputs to the block go out of range, then they are clipped; i.e., the state-space matrices are not interpolated out of range.
Reference	Hyde, R. A., "H-infinity Aerospace Control Design - A VSTOL Flight Application," Springer Verlag, <i>Advances in Industrial Control Series</i> , 1995. ISBN 3-540-19960-8. See Chapter 6.
See Also	1D Controller [A(v),B(v),C(v),D(v)]
	2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	3D Controller [A(v),B(v),C(v),D(v)]
	3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose Implement gain-scheduled state-space controller in self-conditioned form depending on two scheduling parameters

Library GNC/Controls

Description

The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller as defined by the equations

v1 v2 u_dem > v3 u_meas

 $\dot{x} = A(v)x + B(v)y$ u = C(v)x + D(v)y

in the self-conditioned form

$$\begin{split} \dot{z} &= \big(A(v) - H(v)C(v)\big)z + \big(B(v) - H(v)D(v)\big)e + H(v)u_{meas} \\ u_{dem} &= C(v)z + D(v)e \end{split}$$

For the rationale behind this self-conditioned implementation, refer to the Self-Conditioned [A,B,C,D] block reference. These blocks implement a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the vector of parameters over which A, B, C, and D are defined. This type of controller scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

Block Parameters: 3D Self-Conditioned [A(v),B(v),C(v),D(v)]
StateSpaceSelfCond-3D (mask) (link)
Implement a state-space controller [A(v1,v2,v3),B(v1,v2,v3),C(v1,v2,v3),D(v1,v2,v3)] in a self-conditioned form. If u_meas = u_dem, then the implemented controller is [A,B,C,D]. If u_meas is limited, e.g., rate limiting, then the poles of the controller become those defined in the mask dialog box. Uses call to Control Systems Toolbox function place.m when initializing. A, B, C, and D should be 5-D matrices, the last three dimensions corresponding to the scheduling parameters, and the first two corresponding to the matrix for a given set of scheduling parameter values.
Parameters
A-matrix(v1,v2,v3):
A
B-matrix(v1,v2,v3):
В
C-matrix(v1,v2,v3):
C
D-matrix(v1,v2,v3):
D
First scheduling variable (v1) breakpoints:
v1_vec
Second scheduling variable (v2) breakpoints:
v2_vec
Third scheduling variable (v3) breakpoints:
v3_vec
Initial state, x_initial:
0
Poles of A(v)·H(v)*C(v) = [w1 wn]:
[-5 -2]
OK Cancel Help Apply

A-matrix(v1,v2,v3)

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix corresponding to the first entry of

v1, the first entry of v2, and the first entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)

B-matrix of the state-space implementation. In the case of 3-D scheduling, the *B*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *B*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $B(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

C-matrix(v1,v2,v3)

C-matrix of the state-space implementation. In the case of 3-D scheduling, the *C*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *C*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $C(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

D-matrix(v1,v2,v3)

D-matrix of the state-space implementation. In the case of 3-D scheduling, the *D*-matrix should have five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. Hence, for example, if the *D*-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity matrix, then $D(:,:,1,1,1) = [1 \ 0; 0 \ 1];$.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size of the third dimension of *A*, *B*, *C*, and *D*.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the size of the fourth dimension of *A*, *B*, *C*, and *D*.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the size of the fifth dimension of *A*, *B*, *C*, and *D*.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)

Vector of the desired poles of A-HC. Note that the poles are assigned to the same locations for all values of the scheduling parameter v. Hence the number of pole locations defined should be equal to the length of the first dimension of the A-matrix.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the measurements.
	Second		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Third		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Fourth		Contains the scheduling variable, ordered conforming to the dimensions of the state-space matrices.
	Fifth		Contains the measured actuator position.

	Output	Dimension Type	Description
	First		Contains the measured actuator position.
	The first ir	put is the measurem	ents.
	The second ordered con	l, third, and fourth in nforming to the dimer	puts are the scheduling variables sions of the state-space matrices.
	The fifth ir	nput is the measured	actuator position.
	The output	t is the actuator dema	nds.
Assumptions and Limitations	If the sche they are cli of range.	duling parameter inp ipped; i.e., the state-s	uts to the block go out of range, then pace matrices are not interpolated out
	Note This	s block requires the Co	ontrol System Toolbox product.
Reference	The algorit Nichols, ar Feedback," 1129-1155,	chm used to determine ad Van Dooren, "Robu <i>International Journe</i> 1985.	e the matrix H is defined in Kautsky, st Pole Assignment in Linear State al of Control, Vol. 41, No. 5, pages
See Also	1D Self-Co	nditioned [A(v),B(v),C	(v),D(v)]
	2D Self-Co	nditioned [A(v),B(v),C	2(v),D(v)]
	3D Control	ller [A(v),B(v),C(v),D(v	7)]
	3D Observ	er Form [A(v),B(v),C(v	/),F(v),H(v)]

Purpose Create 3-D MATLAB Graphics animation of three-degrees-of-freedom object

Library

Animation

Description

The 3DoF Animation block displays a 3-D animated view of a three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using MATLAB Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to create and display the animation.

This block does not produce deployable code, but can be used with Real-Time Workshop external mode as a SimViewingDevice.

3DoF Animation

Dialog Box

Block Parameters: 3DoF Animation
GDoF_Animation (mask) (link)
Create a 3-D animated view of a three-degrees-of-freedom craft and its target, where X and Z target position (TargetPos), X and Z craft position (XeZe), and craft attitude are inputs.
Display parameters are in the same units of length as the input parameters.
Parameters
Axes limits [xmin xmax ymin ymax zmin zmax]:
[0 5000 -2000 2000 -5050 -3050]
Time interval between updates:
0.05
Size of craft displayed:
1.0
Enter view: Fixed position
Position of camera [xc yc zc]:
[2000 500 -3150]
View angle:
10
✓ Enable animation
OK Cancel Help Apply

Axes limits [xmin xmax ymin ymax zmin zmax]

Specifies the three-dimensional space to be viewed.

Time interval between updates

Specifies the time interval at which the animation is redrawn.

Size of craft displayed

Scale factor to adjust the size of the craft and target.

Enter view

Selects preset MATLAB Graphics parameters **CameraTarget** and **CameraUpVector** for the figure axes. The dialog parameters **Position of camera** and **View angle** are used to customize the position and field of view for the selected view. Possible views are

- Fixed position
- Cockpit
- Fly alongside

Position of camera [xc yc zc]

Specifies the MATLAB Graphics parameter CameraPosition for the figure axes. Used in all cases except for the Cockpit view.

View angle

Specifies the MATLAB Graphics parameter CameraViewAngle for the figure axes in degrees.

Enable animation

When selected, the animation is displayed during the simulation. If not selected, the animation is not displayed.

Inputs	Input	Dimension Type	Description
	First	Vector	Contains the altitude and the downrange position of the target in Earth coordinates.
	Second	Vector	Contains the altitude and the downrange position of the craft in Earth coordinates.
	Third		Contains the attitude of the craft.
Examples	See the a	aero_guidance	demo for an example of this block.
See Also	6DoF An	imation	
	FlightGe	ear Preconfigure	d 6DoF Animation
	The figu	re axes properti	\mathbf{es} CameraPosition and CameraViewAngle

3DoF (Body Axes)

Purpose Implement three-degrees-of-freedom equations of motion with respect to body axes

Library Equations of Motion/3DoF

Description

F_ (N)

F_ (N)

> M (N-m)

The 3DoF (Body Axes) block considers the rotation in the vertical plane of a body-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

$$\dot{u} = \frac{F_x}{m} - qw - g\sin\theta$$
$$\dot{w} = \frac{F_z}{m} + qu + g\cos\theta$$
$$\dot{q} = \frac{M}{I_{yy}}$$
$$\dot{\theta} = q$$

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box

3DoF EoM (mask) (link)	
Integrate the three-degrees-of-freedom equations of motion to determin velocity, attitude, and related values.	e body position,
Parameters	
Units: Metric (MKS)	•
Mass type: Fixed	•
Initial velocity:	
100	
Initial body attitude:	
0	
Initial incidence:	
10	
Initial body rotation rate:	
-	
0	
0 Initial position (x z):	
0 Initial position (x z): [(0 0]	
0 Initial position (x z): [[0 0]	_
0 Initial position (x z): [(0 0) Initial mass: 1.0	
0 Initial position (x z): [[0 0] Initial mass: [1.0	
0 Initial position (x z): [(0 0] Initial mass: [1.0 Inertia:	
0 Initial position (x z): [[0 0] Initial mass: [1.0 Inertia: [1.0]	
0 Initial position (x z): [0 0] Initial mass: 1.0 Inertia: 1.0 Gravity source: External	
0 Initial position (x z): [(0 0] Initial mass: 1.0 Inertia: 1.0 Gravity source: External	
0 Initial position (x z): [0 0] Initial mass: 1.0 Inertia: 1.0 Gravity source: External	

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton- meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot- pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot- pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of motion.

Initial velocity

A scalar value for the initial velocity of the body, (V_0) .

Initial body attitude

A scalar value for the initial pitch attitude of the body, (θ_0) .

Initial incidence

A scalar value for the initial angle between the velocity vector and the body, (a_0) .

Initial body rotation rate

A scalar value for the initial body rotation rate, (q_0) .

Initial position (x,z)

A two-element vector containing the initial location of the body in the Earth-fixed reference frame.

Initial Mass

A scalar value for the mass of the body.

Inertia

A scalar value for the inertia of the body.

Gravity Source

Specify source of gravity:

External	Variable gravity input to block
Internal	Constant gravity specified in mask

Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Inputs and	
Outputs	

Input	Dimension Type	Description
First		Contains the force acting along the body x-axis, (F_x) .
Second		Contains the force acting along the body <i>z</i> -axis, (F_z) .
Third		Contains the applied pitch moment, (M) .
Fourth (Optional)		Contains the block is gravity in the selected units.

Output	Dimension Type	Description
First		Contains the pitch attitude, in radians (θ) .
Second		Contains the pitch angular rate, in radians per second (q) .
Third		Contains the pitch angular acceleration, in radians per second
		squared (\dot{q}) .
Fourth	Two-element vector	Contains the location of the body, in the Earth-fixed reference frame, (<i>Xe</i> , <i>Ze</i>).
Fifth	Two-element vector	Contains the velocity of the body resolved into the body-fixed coordinate frame, (u, w) .
Sixth	Two-element vector	Contains the acceleration of the body resolved into the body-fixed coordinate frame, (Ax, Az) .

Examples

See the aero_guidance demo for an example of this block.

See Also 3DoF (Wind Axes)

4th Order Point Mass (Longitudinal) Custom Variable Mass 3DoF (Body Axes) Custom Variable Mass 3DoF (Wind Axes) Simple Variable Mass 3DoF (Body Axes) Simple Variable Mass 3DoF (Wind Axes)

Purpose Implement three-degrees-of-freedom equations of motion with respect to wind axes

Library

Equations of Motion/3DoF

Description

The 3DoF (Wind Axes) block considers the rotation in the vertical plane of a wind-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

$$\begin{split} \dot{V} &= \frac{F_{x_{wind}}}{m} - g \sin \gamma \\ \dot{\alpha} &= \frac{F_{z_{wind}}}{mV \cos \beta} + q + \frac{g}{V \cos \beta} \cos \gamma \\ \dot{q} &= \dot{\theta} = \frac{M_{y_{body}}}{I_{yy}} \\ \dot{\gamma} &= q - \dot{\alpha} \end{split}$$

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box

🙀 Function Block Parameters: 3DoF (Wind Axes)	×
- 3DoF Wind EoM (mask) (link)	
Integrate the three-degrees-of-freedom equations of motion in wind axes to determine position, velocity, attitude, and related values.	
Parameters	_
Units: Metric (MKS)	1
Mass type: Fixed	
Initial airspeed:	
100	
Initial flight path angle:	
0	
Initial incidence:	
Jo .	
Initial body rotation rate:	
Jo	
Initial position (x z):	
[[0 0]	
Initial mass:	
1.0	
Inertia body axes:	
1.0	
Gravity source: External	
Cancer Cancer Apply	

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	${\it Mass}$ is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The $\ensuremath{\texttt{Fixed}}$ selection conforms to the previously described equations of motion.

Initial airspeed

A scalar value for the initial velocity of the body, (V_0) .

Initial flight path angle

A scalar value for the initial flight path angle of the body, (γ_0) .

Initial incidence

A scalar value for the initial angle between the velocity vector and the body, (a_0) .

Initial body rotation rate

A scalar value for the initial body rotation rate, (q_0) .

Initial position (x,z)

A two-element vector containing the initial location of the body in the Earth-fixed reference frame.

Initial Mass

A scalar value for the mass of the body.

Inertia body axes

A scalar value for the inertia of the body.

Gravity Source

Specify source of gravity:

External	Variable gravity input to block
Internal	Constant gravity specified in mask

Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the force acting along the wind x-axis, (F_x) .
	Second		Contains the force acting along the wind z-axis, (F_z) .
	Third		Contains the applied pitch moment in body axes, (<i>M</i>).
	Fourth (Optional)		Contains the block is gravity in the selected units.

	Output	Dimension Type	Description
	First		Contains the flight path angle, in radians (γ) .
	Second		Contains the pitch angular rate, in radians per second (ω_y).
	Third		Contains the pitch angular acceleration, in radians per second squared $(d\omega_y/dt)$.
	Fourth	Two-element vector	Contains the location of the body, in the Earth-fixed reference frame, (Xe, Ze).
	Fifth	Two-element vector	Contains the velocity of the body resolved into the wind-fixed coordinate frame, $(V, 0)$.
	Sixth	Two-element vector	Contains the acceleration of the body resolved into the body-fixed coordinate frame, (Ax, Az) .
	Seventh	Scalar	Contains the angle of attack, (<i>a</i>).
Assumptions and Limitations	The block ass gravity of the	sumes that the applie body, and that the m	d forces are acting at the center of lass and inertia are constant.
Reference Stevens, B. L., and F. L. Lewis, <i>Aircraft Con</i> Wiley & Sons, New York, 1992.		rcraft Control and Simulation, John	

See Also 3DoF (Body Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes) Simple Variable Mass 3DoF (Wind Axes)

Purpose Calculate cross product of two 3-by-1 vectors

Library

Utilities/Math Operations

Description

The 3x3 Cross Product block computes cross (or vector) product of two vectors, A and B, by generating a third vector, C, in a direction normal to the plane containing A and B, and with magnitude equal to the product of the lengths of A and B multiplied by the sine of the angle between them. The direction of C is that in which a right-handed screw would move in turning from A to B.

$$A = a_{1}i + a_{2}j + a_{3}k$$

$$B = b_{1}i + b_{2}j + b_{3}k$$

$$C = A \times B = \begin{vmatrix} i & j & k \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{vmatrix}$$

$$= (a_{2}b_{3} - a_{3}b_{2})i + (a_{3}b_{1} - a_{1}b_{3})j + (a_{1}b_{2} - a_{2}b_{1})k$$

Dialog	n Slock Parameters: 3x3 Cross Product	<u>? ×</u>
Box	CrossProduct (mask) (link) Calculate the cross product of two 3-by-1 vectors.	
	<u>DK</u> <u>Cancel</u> <u>H</u> elp	Apply

Inputs and Outputs

Input	Dimension Type	Description	
First	3-by-1 vector		
Second	3-by-1 vector		
			_

Output	Dimension Type	Description	
First	3-by-1 vector		

4th Order Point Mass (Longitudinal)

Purpose Calculate fourth-order point mass

Library

Equations of Motion/Point Mass

Description

	5 . NU	4th Order	y (rad)
>	F _× (N)	Point Mass	V (m/s)
,	F_ (N)	Longitudinal	× _{East} (m)
	2		× _{Up} (m)

The 4th Order Point Mass (Longitudinal) block performs the calculations for the translational motion of a single point mass or multiple point masses.

The translational motions of the point mass $[X_{\text{East}} X_{\text{Up}}]^{\text{T}}$ are functions of airspeed (V) and flight path angle (γ),

$$\begin{split} F_x &= m \dot{V} \\ F_z &= m V \dot{\gamma} \\ \dot{X}_{East} &= V \cos \gamma \\ \dot{X}_{Up} &= V \sin \gamma \end{split}$$

where the applied forces $[F_x F_z]^T$ are in a system defined as follows: *x*-axis is in the direction of vehicle velocity relative to air, *z*-axis is upward, and *y*-axis completes the right-handed frame. The mass of the body *m* is assumed constant.

Function Block Parameters: 4th Order Point Mass (Longitudinal)
4th Order Point Mass (Longitudinal) (mask) (link)
Calculate fourth-order point mass.
- Parameters
Units: Metric (MKS)
Initial flight path angle:
0
Initial airspeed:
100
Initial downrange [East]:
0
Initial altitude [Up]:
0
Initial mass:
1.0
OK Cancel Hep Apply

Dialog Box

Units

Specifies the input and output units:

Units	Forces	Velocity	Position
Metric (MKS)	Newton	Meters per second	Meters
English (Velocity in ft/s)	Pound	Feet per second	Feet
English (Velocity in kts)	Pound	Knots	Feet

Initial flight path angle

The scalar or vector containing the initial flight path angle of the point mass(es).

Initial airspeed

The scalar or vector containing the initial airspeed of the point mass(es).

Initial downrange

The scalar or vector containing the initial downrange of the point mass(es).

Initial altitude

The scalar or vector containing the initial altitude of the point mass(es).

Initial mass

Inputs and Outputs The scalar or vector containing the mass of the point mass(es).

Input	Dimension Type	Description
First		Contains the force in <i>x</i> -axis in selected units.
Second	-	Contains the force in <i>z</i> -axis in selected units.

Output Dimension Type	Description
First	Contains the flight path angle in radians.
Second	Contains the airspeed in selected units.
Third	Contains the downrange or amount traveled East in selected units.
Fourth	Contains the altitude or amount traveled Up in selected units.

Assumptions and Limitations	The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.
See Also	4th Order Point Mass Forces (Longitudinal)
	3DoF (Body Axes)
	3DoF (Wind Axes)
	6th Order Point Mass (Coordinated Flight)
	6th Order Point Mass Forces (Coordinated Flight)
	Custom Variable Mass 3DoF (Body Axes)
	Custom Variable Mass 3DoF (Wind Axes)
	Simple Variable Mass 3DoF (Body Axes)
	Simple Variable Mass 3DoF (Wind Axes)

4th Order Point Mass Forces (Longitudinal)

Purpose Calculate forces used by fourth-order point mass

Library

Equations of Motion/Point Mass

Description

>Lift >Drag >Weight >Thrust >γ >μ F_z> >α The 4th Order Point Mass Forces (Longitudinal) block calculates the applied forces for a single point mass or multiple point masses.

The applied forces $[F_x F_z]^T$ are in a system defined as follows: *x*-axis is in the direction of vehicle velocity relative to air, *z*-axis is upward, and *y*-axis completes the right-handed frame. They are functions of lift (*L*), drag (*D*), thrust (*T*), weight (*W*), flight path angle (*y*), angle of attack (*a*), and bank angle (μ).

$$F_z = (L + T \sin \alpha) \cos \mu - W \cos \gamma$$
$$F_r = T \cos \alpha - D - W \sin \gamma$$

Dialog	🙀 Function Block Parameters: 4th Order Point Mass Forces (Longitudinal) 🗵
Box	4th Order Point Mass Forces (Longitudinal) (mask) (link) Calculate forces used by fourth-order point mass.
	Cancel Help Apply

Inputs and Outputs	Input	Dimension Type	Description
	First		Contains the lift in units of force.
	Second		Contains the drag in units of force.
	Third		Contains the weight in units of force.
	Fourth		Contains the thrust in units of force.
	Fifth		Contains the flight path angle in radians.
	Sixth		Contains the bank angle in radians.

Seventh	Contains the angle of attack in radians.

Output Dimension Type	Description
First	Contains the force in <i>x</i> -axis in units of force.
Second	Contains the force in <i>z</i> -axis in units of force.

AssumptionsThe flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth's motion relative
to the "fixed stars" to be neglected.

See Also4th Order Point Mass (Longitudinal)6th Order Point Mass (Coordinated Flight)6th Order Point Mass Forces (Coordinated Flight)

6DoF Animation

Purpose	Create 3-D MATLAB Graphics animation of six-degrees-of-freedom object
Library	Animation
Description	The 6DoF Animation block displays a 3-D animated view of a six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using MATLAB Graphics.
	The 6DoF Animation block uses the input values and the dialog parameters to create and display the animation.
	This block does not produce deployable code, but can be used with Real-Time Workshop external mode as a SimViewingDevice.
6DoF Animation

Dialog Box

Block Parameters: 6DoF Animation 🛛 🛛 🖄
6DoF_Animation (mask) (link)
Create a 3-D animated view of a six-degrees-of-freedom craft, where X, Y, and Z craft position (Position) and craft Euler angles (Euler) are inputs.
Display parameters are in the same units of length as the input parameters.
Parameters
Axes limits [xmin xmax ymin ymax zmin zmax]:
[0 4000 -2000 2000 -5000 -3000]
Time interval between updates:
0.1
Size of craft displayed:
1.0
Static object position [xp yp zp]:
[4000 0 -5000]
Enter view: Fixed position
Position of camera [xc yc zc]:
[2000 500 -3150]
View angle:
10
☑ Enable animation
OK Cancel Help Apply

Axes limits [xmin xmax ymin ymax zmin zmax]

Specifies the three-dimensional space to be viewed.

Time interval between updates

Specifies the time interval at which the animation is redrawn.

Size of craft displayed

Scale factor to adjust the size of the craft and target.

Static object position

Specifies the altitude, the crossrange position, and the downrange position of the target.

Enter view

Selects preset MATLAB Graphics parameters **CameraTarget** and **CameraUpVector** for the figure axes. The dialog parameters **Position of camera** and **View angle** are used to customize the position and field of view for the selected view. Possible views are

- Fixed position
- Cockpit
- Fly alongside

Position of camera [xc yc zc]

Specifies the MATLAB Graphics parameter CameraPosition for the figure axes. Used in all cases except for the Cockpit view.

View angle

Specifies the MATLAB Graphics parameter CameraViewAngle for the figure axes in degrees.

Enable animation

When selected, the animation is displayed during the simulation. If not selected, the animation is not displayed.

Inputs	Input	Dimension Type	Description
	First	Vector	Contains the altitude, the crossrange position, and the downrange position of the craft in Earth coordinates.
	Second	Vector	Contains the Euler angles of the craft.

Examples See the aeroblk_vmm demo for an example of this block.

See Also 3DoF Animation

FlightGear Preconfigured 6DoF Animation

The figure axes properties CameraPosition and CameraViewAngle

Purpose Implement Euler angle representation of six-degrees-of-freedom equations of motion

Library

Equations of Motion/6DoF

Description

The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate frame (X_b, Y_b, Z_b) about a flat Earth reference frame (X_e, Y_e, Z_e) . The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

Flat Earth reference frame

The translational motion of the body-fixed coordinate frame is given below, where the applied forces $[F_x F_y F_z]^T$ are in the body-fixed frame, and the mass of the body m is assumed constant.

$$\begin{split} \bar{F}_{b} &= \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m \left(\dot{\bar{V}}_{b} + \bar{\omega} \times \bar{V}_{b} \right) \\ \bar{V}_{b} &= \begin{bmatrix} u_{b} \\ v_{b} \\ w_{b} \end{bmatrix}, \bar{\omega} = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \end{split}$$

The rotational dynamics of the body-fixed frame are given below, where the applied moments are $[L M N]^{T}$, and the inertia tensor I is with respect to the origin O.

$$\begin{split} \bar{M}_B = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = I\dot{\varpi} + \bar{\varpi} \times (I\bar{\varpi}) \\ I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix} \end{split}$$

The relationship between the body-fixed angular velocity vector, $[p \ q \ r]^{T}$,

and the rate of change of the Euler angles, $[\dot{\phi} \ \dot{\theta} \ \dot{\psi}]^{T}$, can be determined by resolving the Euler rates into the body-fixed coordinate frame.

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \psi \end{bmatrix} \equiv J^{-1} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \psi \end{bmatrix}$$

Inverting ${\cal J}$ then gives the required relationship to determine the Euler rate vector.

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = J \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & (\sin\phi\tan\theta) & (\cos\phi\tan\theta) \\ 0 & \cos\phi & -\sin\phi \\ 0 & \frac{\sin\phi}{\cos\theta} & \frac{\cos\phi}{\cos\theta} \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

Dialog	Function Block Parameters: 6DoF (Euler Angles)					
Box	6DoF EoM (Body Axis) (mask) (link)					
	Integrate the six-degrees-of-freedom equations of motion in body axis.					
	Parameters					
	Units: Metric (MKS)					
	Mass type: Fixed					
	Representation: Euler Angles					
	Initial position in inertial axes [Xe,Ye,Ze]:					
	Initial velocity in body axes [U,v,w]: [0 0 0]					
	Initial Euler orientation [roll, pitch, yaw]: [0 0 0]					
	Initial body rotation rates (p,q,r):					
	Initial mass:					
	1.0					
	Inertia:					
	eye(3)					
	OK Cancel Help Apply					

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	${\it Mass}$ is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Euler	Use Euler angles within equations of motion.
Angles	
Quaternion	Use quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Initial Mass

The mass of the rigid body.

vector

Inertia

Inputs and Outputs The 3-by-3 inertia tensor matrix I.

Input	Dimension Type	Description
First	Vector	Contains the three applied forces in body-fixed coordinate frame.
Second	Vector	Contains the three applied moments in body-fixed coordinate frame.
Output	Dimension Type	Description
First	Three-element vector	Contains the velocity in the flat Earth reference frame.
Second	Three-element vector	Contains the position in the flat Earth reference frame.
m1 · 1	(T) 1 (

[roll, pitch, yaw], in radians.

	Output	Dimension Type	Description		
	Fourth	3-by-3 matrix	Contains the coordinate transformation from flat Earth axes to body-fixed axes.		
	Fifth	Three-element vector	Contains the velocity in the body-fixed frame.		
	Sixth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.		
	Seventh	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.		
	Eighth	Three-element vector	Contains the accelerations in body-fixed axes.		
Assumptions and Limitations	The block a gravity of th	ssumes that the appli ne body, and that the	ied forces are acting at the center of mass and inertia are constant.		
Examples	See the aer asbh120 dei	oblk_six_dof airfram mo for examples of th	ne in the aeroblk_HL20 demo and the is block.		
Reference	Mangiacasa Simulink H	le, L., <i>Flight Mechan</i> <i>Telper</i> , Edizioni Librer	ics of a μ-Airplane with a MATLAB ia CLUP, Milan, 1998.		
See Also	6DoF (Quat	ernion)			
	6DoF ECEB	F (Quaternion)			
	6DoF Wind (Quaternion)				
	6DoF Wind (Wind Angles)				
	6th Order P	oint Mass (Coordinat	ed Flight)		
	Custom Variable Mass 6DoF (Euler Angles)				

Custom Variable Mass 6DoF (Quaternion) Custom Variable Mass 6DoF ECEF (Quaternion) Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion)

6DoF (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to body axes

Library Equations of Motion/6DoF

Description

V_(m/s) -X_(m)

ψ (rad)

DGM V_b (m/s)

ω (rad/s)

dco/dt $A_{\rm b} \, ({\rm m/s}^2)$ For a description of the coordinate system and the translational dynamics, see the block description for the 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below. The gain *K* drives the norm of the quaternion state vector to 1.0 should ε become nonzero. You must choose the value of this gain with care, because a large value improves the decay rate of the error in the norm, but also slows the simulation because fast dynamics are introduced. An error in the magnitude in one element of the quaternion vector is spread equally among all the elements, potentially increasing the error in the state vector.

$$\begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -p & -q & -r \\ p & 0 & r & -q \\ q & -r & 0 & p \\ r & q & -p & 0 \end{bmatrix} \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix} + K\varepsilon \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix}$$

$$\varepsilon = 1 - (q_0^2 + q_1^2 + q_2^2 + q_3^2)$$

Dialog Box

🙀 Function Block Parameters: 6DoF (Quaternion)
6DoF EoM (Body Axis) (mask) (link)
Integrate the six-degrees-of-freedom equations of motion in body axis.
Parameters
Units: Metric (MKS)
Mass type: Fixed
Representation: Quaternion
Initial position in inertial axes [Xe,YeZe]:
Initial velocity in body axes [U,v,w]:
[[0 0 0]
Initial Euler orientation (roll, pitch, yaw):
[[0 0 0]
Initial mass:
1.0
Inertia:
eye(3)
Gain for quaternion normalization:
1.0
OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed		Mass is constant throughout the simulation.
Simple Va	ariable	Mass and inertia vary linearly as a function of mass rate.
Custom Va	ariable	Mass and inertia variations are customizable.

The $\ensuremath{\mbox{Fixed}}$ selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Euler Angles	Use Euler angles within equations of motion.
Quaternion	Use quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Initial Mass

The mass of the rigid body.

Inertia matrix

The 3-by-3 inertia tensor matrix I.

Gain for quaternion normalization

The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and Outputs

Input	Dimension Type	Description
First	Vector	Contains the three applied forces.
Second	Vector	Contains the three applied moments.

	Output	Dimension Type	Description	
	First	Three-element vector	Contains the velocity in the flat Earth reference frame.	
	Second	Three-element vector	Contains the position in the flat Earth reference frame.	
	Third	Three-element vector	Contains the Euler rotation angles [roll, pitch, yaw], in radians.	
	Fourth	3-by-3 matrix	Contains the coordinate transformation from flat Earth axes to body-fixed axes.	
	Fifth	Three-element vector	Contains the velocity in the body-fixed frame.	
	Sixth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.	
	Seventh	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.	
	Eight	Three-element vector	Contains the accelerations in body-fixed axes.	
Assumptions and Limitations	The block a gravity of t	assumes that the app he body, and that the	lied forces are acting at the center of mass and inertia are constant.	
Reference	Mangiacas Simulink I	ale, L., <i>Flight Mechar</i> Helper, Edizioni Libre	nics of a μ-Airplane with a MATLAB ria CLUP, Milan, 1998.	
See Also	6DoF (Eule	er Angles)		
	6DoF ECE	F (Quaternion)		
	6DoF Wind (Quaternion)			

6DoF Wind (Wind Angles) 6th Order Point Mass (Coordinated Flight) Custom Variable Mass 6DoF (Euler Angles) Custom Variable Mass 6DoF (Quaternion) Custom Variable Mass 6DoF ECEF (Quaternion) Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion)

Purpose

Library

Implement quaternion representation of six-degrees-of-freedom equations of motion in Earth-centered Earth-fixed (ECEF) coordinates

Equations of Motion/6DoF

Description

The 6DoF ECEF (Quaternion) block considers the rotation of a Earth-centered Earth-fixed (ECEF) coordinate frame (X_{ECEF} , Y_{ECEF} , Z_{ECEF}) about an Earth-centered inertial (ECI) reference frame (X_{ECI} , Y_{ECI} , Z_{ECI}). The origin of the ECEF coordinate frame is the center of the Earth, additionally the body of interest is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is simplified to consider only the constant rotation of the ellipsoid Earth (ω_e) including an initial celestial longitude ($L_G(0)$). This excellent approximation allows the forces due to the Earth's complex motion relative to the "fixed stars" to be neglected.

The translational motion of the ECEF coordinate frame is given below, where the applied forces $[F_x F_y F_z]^T$ are in the body frame, and the mass of the body *m* is assumed constant.

$$\vec{F}_{b} = \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m(\dot{\vec{V}_{b}} + \bar{\omega}_{b} \times \bar{V}_{b} + DCM_{bf}\bar{\omega}_{e} \times \bar{V}_{b}) + DCM_{bf}(\bar{\omega}_{e} \times (\bar{\omega}_{e} \times \bar{X}_{f}))$$

where the change of position in ECEF $\dot{\bar{x}}_f$ is calculated by

$$\dot{\overline{x}}_f = DCM_{fb}\overline{V}_b$$

and the velocity of the body with respect to ECEF frame, expressed in body frame (\bar{V}_b) , angular rates of the body with respect to ECI frame,

expressed in body frame $(\bar{\omega}_b)$. Earth rotation rate $(\bar{\omega}_e)$, and relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body frame $(\bar{\omega}_{rel})$ are defined as

$$\begin{split} \bar{V}_{b} &= \begin{bmatrix} u \\ v \\ w \end{bmatrix}, \bar{\varpi}_{rel} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}, \bar{\varpi}_{e} = \begin{bmatrix} 0 \\ 0 \\ \omega_{e} \end{bmatrix}, \bar{\varpi}_{b} = \bar{\varpi}_{rel} + DCM_{bf}\bar{\varpi}_{e} + DCM_{be}\bar{\varpi}_{ned} \\ \bar{\varpi}_{ned} &= \begin{bmatrix} \dot{l}\cos\mu \\ -\dot{\mu} \\ -\dot{l}\sin\mu \end{bmatrix} = \begin{bmatrix} V_{E}/(N+h) \\ -V_{N}/(M+h) \\ V_{E} \bullet \tan\mu/(N+h) \end{bmatrix} \end{split}$$

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied moments are $[L M N]^T$, and the inertia tensor I is with respect to the origin O.

$$\bar{M}_{b} = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = I \dot{\bar{\omega}}_{b} + \bar{\omega}_{b} \times (I \bar{\omega}_{b})$$

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}$$

The integration of the rate of change of the quaternion vector is given below.

$$\begin{bmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & \omega_b (1) & \omega_b (2) & \omega_b (3) \\ -\omega_b (1) & 0 & -\omega_b (3) & \omega_b (2) \\ -\omega_b (2) & \omega_b (3) & 0 & -\omega_b (1) \\ -\omega_b (3) & -\omega_b (2) & \omega_b (1) & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

6DoF ECEF (Quaternion)

Dialog Box

🙀 Function Block Parameters: 6DoF ECEF (Quaternion)
- 6DoF EoM (ECEF) (mask) (link)
Integrate the six-degrees-of-freedom equations of motion using a quaternion representation for the orientation of the body in space.
Main Planet
Units: Metric (MKS)
Mass type: Fixed
Initial position in geodetic latitude, longitude, altitude [mu,l,h]:
[[0 0 0]
Initial velocity in body axes [U,v,w]:
[0 0 0]
Initial Euler orientation (roll, pitch, yaw):
[0 0 0]
Initial body rotation rates [p,q,r]:
[0 0 0]
Initial mass:
1.0
Inertia:
eye(3)
OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate (see Simple Variable Mass 6DoF ECEF (Quaternion)).
Custom Variable	Mass and inertia variations are customizable (see Simple Variable Mass 6DoF (Quaternion)).

The Fixed selection conforms to the previously described equations of motion.

Initial position in geodetic latitude, longitude and altitude The three-element vector for the initial location of the body in the geodetic reference frame.

Initial velocity in body axes

The three-element vector containing the initial velocity of the body with respect to ECEF frame, expressed in body frame..

Initial Euler orientation

The three-element vector containing the initial Euler rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and north-east-down (NED) coordinate systems.

Initial body rotation rates

The three-element vector for the initial angular rates of the body with respect to NED frame, expressed in body frame, in radians per second.

Initial mass

The mass of the rigid body.

Inertia

The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

Flattening

Specifies the flattening of the planet. This option is only available when **Planet model** is set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for ECEF position. This option is only available when **Planet model** is set to **Custom**.

Rotational rate

Specifies the scalar rotational rate of the planet in rad/s. This option is only available when **Planet model** is set to **Custom**.

Celestial longitude of Greenwich source

Specifies the source of Greenwich meridian's initial celestial longitude:

Internal	Use celestial longitude value from mask dialog.
External	Use external input for celestial longitude value.

Celestial longitude of Greenwich

The initial angle between Greenwich meridian and the x-axis of the ECI frame.

Inputs and Outputs	Input	Dimension Type	Description
	First	Vector	Contains the three applied forces in body-fixed axes.
	Second	Vector	Contains the three applied moments in body-fixed axes.

Output	Dimension Type	Description
First	Vector	Contains the velocity of the body with respect to ECEF frame, expressed in ECEF frame.
Second	Three-element vector	Contains the position in ECEF reference frame.
Third	Three-element vector	Contains the position in geodetic latitude, longitude and altitude, in degrees, degrees and selected units of length respectively.

Output	Dimension Type	Description
Fourth	Three-element vector	Contains the body rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and north-east-down (NED) coordinate systems.
Fifth	3-by-3 matrix	Applies to the coordinate transformation from ECI axes to body-fixed axes
Sixth	3-by-3 matrix	Applies to the coordinate transformation from NED axes to body-fixed axes.
Seventh	3-by-3 matrix	Applies to the coordinate transformation from ECEF axes to NED axes.
Eighth	Three-element vector	Contains the velocity of the body with respect to ECEF frame, expressed in the body frame.
Ninth	Three-element vector	Contains the relative angular rates of the body with respect to NED frame, expressed in the body frame, in radians per second.
Tenth	Three-element vector	Contains the angular rates of the body with respect to the ECI frame, expressed in body frame, in radians per second.
Eleventh	Three-element vector	Contains the angular accelerations of the body with respect to ECI frame, expressed in the body frame, in radians per second.
Twelfth	Three-element vector	Contains the accelerations in body-fixed axes.

Assumptions	This implementation assumes that the applied forces are acting at the
and	center of gravity of the body, and that the mass and inertia are constant.
Limitations	This implementation generates a geodetic latitude that lies between ± 90 degrees, and longitude that lies between ± 180 degrees. Additionally, the MSL altitude is approximate.
	The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be achieved. The Earth's precession, nutation, and polar motion are neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough approximation to the sidereal time.
	The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the <i>x</i> -axis intersects the Greenwich meridian and the equator, the <i>z</i> -axis is the mean spin axis of the planet, positive to the north, and the <i>y</i> -axis completes the right-handed system.
	The implementation of the ECI coordinate system assumes that the origin is at the center of the planet, the <i>x</i> -axis is the continuation of the line from the center of the Earth through the center of the Sun toward the vernal equinox, the <i>z</i> -axis points in the direction of the mean equatorial plane's north pole, positive to the north, and the <i>y</i> -axis completes the right-handed system.
References	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation, Second Edition</i> , John Wiley & Sons, New York, 2003.
	McFarland, Richard E., A Standard Kinematic Model for Flight simulation at NASA-Ames, NASA CR-2497.
	"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2-A.
See Also	6DoF (Euler Angles)
	6DoF (Quaternion)
	6DoF Wind (Quaternion)

6DoF Wind (Wind Angles) 6th Order Point Mass (Coordinated Flight) Custom Variable Mass 6DoF (Euler Angles) Custom Variable Mass 6DoF (Quaternion) Custom Variable Mass 6DoF ECEF (Quaternion) Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion)

Purpose Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to wind axes

Library

Equations of Motion/6DoF

Description

The 6DoF Wind (Quaternion) block considers the rotation of a wind-fixed coordinate frame (X_w, Y_w, Z_w) about an flat Earth reference frame (X_e, Y_e, Z_e) . The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

Flat Earth reference frame

The translational motion of the wind-fixed coordinate frame is given below, where the applied forces $[F_x F_y F_z]^T$ are in the wind-fixed frame, and the mass of the body *m* is assumed constant.

$$\begin{split} \vec{F}_{w} &= \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m(\dot{\vec{V}}_{w} + \vec{\omega}_{w} \times \vec{V}_{w}) \\ \vec{V}_{w} &= \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix}, \vec{\omega}_{w} = \begin{bmatrix} p_{w} \\ q_{w} \\ r_{w} \end{bmatrix} = DMC_{wb} \begin{bmatrix} p_{b} - \dot{\beta} \sin \alpha \\ q_{b} - \dot{\alpha} \\ r_{b} + \dot{\beta} \cos \alpha \end{bmatrix}, \vec{\omega}_{b} = \begin{bmatrix} p_{b} \\ q_{b} \\ r_{b} \end{bmatrix} \end{split}$$

The rotational dynamics of the body-fixed frame are given below, where the applied moments are $[L \ M \ N]^T$, and the inertia tensor I is with respect to the origin O. Inertia tensor I is much easier to define in body-fixed frame.

$$\bar{M}_{b} = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = I \dot{\bar{\omega}}_{b} + \bar{\omega}_{b} \times (I \bar{\omega}_{b})$$

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}$$

The integration of the rate of change of the quaternion vector is given below.

$$\begin{bmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & p & q & r \\ -p & 0 & -r & q \\ -q & r & 0 & -p \\ -r & -q & p & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

Dialog	J
Box	

Function Block Parameters: 6DoF Wind (Quaternion)
GDoF EoM (Wind Axis) (mask) (link)
Integrate the six-degrees-of-freedom equations of motion in wind axis.
Parameters
Units: Metric (MKS)
Mass type: Fixed
Representation: Quaternion
Initial position in inertial axes [Xe,Ye,Ze]:
[0 0 0]
Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]: [0 0 0]
Initial wind orientation [bank angle,flight path angle,heading angle]:
[0 0 0]
Initial body rotation rates [p,q,r]:
[0 0 0]
Initial mass:
1.0
Inertia in body axis:
eye(3)
OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Wind Angles	Use wind angles within equations of motion.
Quaternion	Use quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial airspeed, angle of attack, and sideslip angle

The three-element vector containing the initial airspeed, initial angle of attack and initial sideslip angle.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

Initial body rotation rates

vector

The three-element vector for the initial body-fixed angular rates, in radians per second.

Initial mass

The mass of the rigid body.

Inertia matrix

The 3-by-3 inertia tensor matrix *I*, in body-fixed axes.

Inputs	and
Outpu	ts

Input	Dimension Type	Description
First	Vector	Contains the three applied forces in wind-fixed axes.
Second	Vector	Contains the three applied moments in body-fixed axes.
Output	Dimension Type	Description
First	Three-element vector	Contains the velocity in the flat Earth reference frame.
Second	Three-element	Contains the position in the flat

Earth reference frame.

Output	Dimension Type	Description
Third	Three-element vector	Contains the wind rotation angles [bank, flight path, heading], in radians.
Fourth	3-by-3 matrix	Contains the coordinate transformation from flat Earth axes to wind-fixed axes.
Fifth	Three-element vector	Contains the velocity in the wind-fixed frame.
Sixth	Two-element vector	Contains the angle of attack and sideslip angle, in radians.
Seventh	Two-element vector	Contains the rate of change of angle of attack and rate of change of sideslip angle, in radians per second.
Eight	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
Ninth	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.
Tenth	Three-element vector	Contains the accelerations in body-fixed axes.
The block gravity of	assumes that the app the body, and that the	blied forces are acting at the center of e mass and inertia are constant.

Reference Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & Sons, New York, 1992. See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion) 6DoF Wind (Wind Angles) 6th Order Point Mass (Coordinated Flight) Custom Variable Mass 6DoF (Euler Angles) Custom Variable Mass 6DoF (Quaternion) Custom Variable Mass 6DoF ECEF (Quaternion) Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion)

Purpose	Implement wind angle representation of six-degrees-of-freedom
-	equations of motion

Library Equations of Motion/6DoF

Description

> F_{xyz} (% Wind X (%) + F_{xyz} (% Wind Angles ++ x₁ (nd) s For a description of the coordinate system employed and the translational dynamics, see the block description for the 6DoF Wind (Quaternion) block.

The relationship between the wind angles, $[\mu \gamma \chi]^{T}$, can be determined by resolving the wind rates into the wind-fixed coordinate frame.

$\begin{bmatrix} p_w \end{bmatrix}$		[µ		[1	0	0	[0]	[1	0	0]	$\cos \gamma$	0	$-\sin\gamma$	[0]		[µ]	l
q_w	=	0	+	0	$\cos \mu$	$\sin \mu$	γ +	0	$\cos \mu$	$\sin \mu$	0	1	0	0	$\equiv J^{-1}$	Ϋ́	
$[r_w]$		0		0	$-\sin\mu$	$\cos \mu$	0	0	$-\sin\mu$	$\cos \mu$	$\sin \gamma$	0	$\cos \gamma$	Ż		χ	

Inverting J then gives the required relationship to determine the wind rate vector.

$$\begin{bmatrix} \dot{\mu} \\ \dot{\gamma} \\ \dot{\chi} \end{bmatrix} = J \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = \begin{bmatrix} 1 & (\sin\mu\tan\gamma) & (\cos\mu\tan\gamma) \\ 0 & \cos\mu & -\sin\mu \\ 0 & \frac{\sin\mu}{\cos\gamma} & \frac{\cos\mu}{\cos\gamma} \end{bmatrix} \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix}$$

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.

$$\begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = DMC_{wb} \begin{bmatrix} p_b - \dot{\beta} \sin \alpha \\ q_b - \dot{\alpha} \\ r_b + \dot{\beta} \cos \alpha \end{bmatrix}$$

Using this relationship in the wind rate vector equations, gives the relationship between the wind rate vector and the body-fixed angular rates.

$$\begin{bmatrix} \dot{\mu} \\ \dot{\gamma} \\ \dot{\chi} \end{bmatrix} = J \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = \begin{bmatrix} 1 & (\sin\mu\tan\gamma) & (\cos\mu\tan\gamma) \\ 0 & \cos\mu & -\sin\mu \\ 0 & \frac{\sin\mu}{\cos\gamma} & \frac{\cos\mu}{\cos\gamma} \end{bmatrix} DMC_{wb} \begin{bmatrix} p_b - \dot{\beta}\sin\alpha \\ q_b - \dot{\alpha} \\ r_b + \dot{\beta}\cos\alpha \end{bmatrix}$$

Dialog Box

Function Block Parameters: 6DoF Wind (Wind Angles)
- 6DoF EoM (Wind Axis) (mask) (link)
Integrate the six-degrees-of-freedom equations of motion in wind axis.
Parameters
Units: Metric (MKS)
Mass type: Fixed
Representation: Wind Angles
Initial position in inertial axes [Xe,YeZe]:
[0 0 0]
Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]:
[[0 0 0]
Initial wind orientation [bank angle,flight path angle,heading angle]:
In a line of
Initial body rotation rates (p,q,r):
[[0 0 0]
Initial mass:
1.0
Inertia in body axis:
eye(3)
OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass type

Select the type of mass to use:

Fixed		Mass is constant throughout the simulation.
Simple Varia	ole	Mass and inertia vary linearly as a function of mass rate.
Custom Varia	ole	Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of motion.

Representation

Select the representation to use:
	Wind Angles	Use wind angles within equations of motion.
	Quaternion	Use quaternions within equations of motion.
	The Wind Angles selec equations of motion.	tion conforms to the previously described
Initi	al position in inertial The three-element vect the flat Earth reference	axes for the initial location of the body in e frame.
Initi	al airspeed, angle of a The three-element vect angle of attack and init	attack, and sideslip angle for containing the initial airspeed, initial tial sideslip angle.
Initi	al wind orientation The three-element vect flight path, and headin	or containing the initial wind angles [bank, g], in radians.
Initi	al body rotation rates The three-element vect in radians per second.	s for for the initial body-fixed angular rates,
Initi	al mass The mass of the rigid b	oody.
Iner	tia The 3-by-3 inertia tens	or matrix <i>I</i> , in body-fixed axes.

Inputs and Outputs

Input	Dimension Type	Description
First	Vector	Contains the three applied forces in wind-fixed axes.
Second	Vector	Contains the three applied moments in body-fixed axes.

Output	Dimension Type	Description
First	Three-element vector	Contains the velocity in the flat Earth reference frame.
Second	Three-element vector	Contains the position in the flat Earth reference frame.
Third	Three-element vector	Contains the wind rotation angles [bank, flight path, heading], in radians.
Fourth	3-by-3 matrix	Contains the coordinate transformation from flat Earth axes to wind-fixed axes.
Fifth	Three-element vector	Contains the velocity in the wind-fixed frame.
Sixth	Two-element vector	Contains the angle of attack and sideslip angle, in radians.
Seventh	Two-element vector	Contains the rate of change of angle of attack and rate of change of sideslip angle, in radians per second.
Eighth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
Ninth	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.
Tenth	Three-element vector	Contains the accelerations in body-fixed axes.

Assumptions and Limitations

The block assumes that the applied forces are acting at the center of gravity of the body, and that the mass and inertia are constant.

Reference Stevens, B. L., and F. L. Lewis, *Aircraft Control and Simulation*, John Wiley & Sons, New York, 1992.

See Also 6DoF (Euler Angles) 6DoF (Quaternion) 6DoF ECEF (Quaternion) 6DoF Wind (Quaternion) 6th Order Point Mass (Coordinated Flight) Custom Variable Mass 6DoF (Euler Angles) Custom Variable Mass 6DoF (Quaternion) Custom Variable Mass 6DoF ECEF (Quaternion) Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Purpose Calculate sixth-order point mass in coordinated flight

Library

Equations of Motion/Point Mass

Description

>	F _x (N)	6th Order	y (rad)
>	F _γ (N)		% (nad) ⊭ V (nv/s) ⊧ X _{Fact} (m) ⊧
>	F _z (N)	Goordinated Flight	X _{North} (m) = X _{Up} (m) =

The 6th Order Point Mass (Coordinated Flight) block performs the calculations for the translational motion of a single point mass or multiple point masses.

The translational motion of the point mass $[X_{East} X_{North} X_{Up}]^{T}$ are functions of airspeed (V), flight path angle (γ), and heading angle (χ),

$$\begin{split} F_x &= mV \\ F_y &= (mV\cos\gamma)\dot{\chi} \\ F_z &= mV\dot{\gamma} \\ \dot{X}_{East} &= V\cos\chi\cos\gamma \\ \dot{X}_{North} &= V\sin\chi\cos\gamma \\ \dot{X}_{Up} &= V\sin\gamma \end{split}$$

where the applied forces $[F_x F_y F_h]^T$ are in a system is defined by *x*-axis in the direction of vehicle velocity relative to air, *z*-axis is upward, and

y-axis completes the right-handed frame, and the mass of the body m is assumed constant.

Dialog Box

🙀 Function Block Parameters: 6th Order Point Mass (Coordinated Flight) 🛛 본	۲
- 6th Order Point Mass (Coordinated Flight) (mask) (link)	1
Calculate sixth-order point mass in coordinated flight.	
- Parameters]
	l
Units: Metric (MKS)	l
Initial flight path angle:	l
0	l
Initial heading angle:	l
0	l
Initial airspeed:	l
100	l
Initial downrange [East]:	l
0	l
Initial crossrange [North]:	l
0	l
Initial altitude [Up]:	l
0	l
Initial mass:	l
1.0	l
,	
	i
UN Lancel Help Apply]

Units

Specifies the input and output units:

Units	Forces	Velocity	Position
Metric (MKS)	Newton	Meters per second	Meters
English (Velocity in ft/s)	Pound	Feet per second	Feet
English (Velocity in kts)	Pound	Knots	Feet

Initial flight path angle

The scalar or vector containing initial flight path angle of the point mass(es).

Initial heading angle

The scalar or vector containing initial heading angle of the point mass(es).

Initial airspeed

The scalar or vector containing initial airspeed of the point mass(es).

Initial downrange [East]

The scalar or vector containing initial downrange of the point mass(es).

Initial crossrange [North]

The scalar or vector containing initial crossrange of the point mass(es).

Initial altitude [Up]

The scalar or vector containing initial altitude of the point mass(es).

Initial mass

The scalar or vector containing mass of the point mass(es).

Inputs and Outputs	Input	Dimension Type	Description
	First		Contains the force in <i>x</i> -axis in selected units.
	Second		Contains the force in <i>y</i> -axis in selected units.
	Third		Contains the force in <i>z</i> -axis in selected units.

	Output Dimension Type	Description	
	First	Contains the flight path angle in radians.	
	Second	Contains the heading angle in radians.	
	Third	Contains the airspeed in selected units.	
	Fourth	Contains the downrange or amount traveled East in selected units.	
	Fifth	Contains the crossrange or amount traveled North in selected units.	
	Sixth	Contains the altitude or amount traveled Up in selected units.	
Assumptions and Limitations	The block assumes that side force (wind axes) ar The flat flat Earth refer	there is fully coordinated flight, i.e., there is no ad sideslip is always zero. ence frame is considered inertial, an excellent	
	approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.		
See Also	4th Order Point Mass (Longitudinal)		
	4th Order Point Mass F	orces (Longitudinal)	
	6DoF (Euler Angles)		
	6DoF (Quaternion)		
	6DoF ECEF (Quaternio	n)	
	6DoF Wind (Wind Angle	es)	
	6th Order Point Mass F	orces (Coordinated Flight)	
	Custom Variable Mass 6	BDoF (Euler Angles)	
	Custom Variable Mass 6	BDoF (Quaternion)	
	Custom Variable Mass 6DoF ECEF (Quaternion)		

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Wind Angles) **Purpose** Calculate forces used by sixth-order point mass in coordinated flight

Library

Equations of Motion/Point Mass

Description

>	Lift		
>	Drag	Fx	>
>	Weight		
>	Thrust	Fy	P
>	y		
>	њ	F_	Þ
>	a	1	

The 6th Order Point Mass Forces (Coordinated Flight) block calculates the applied forces for a single point mass or multiple point masses.

The applied forces $[F_x F_y F_h]^T$ are in a system is defined by *x*-axis in the direction of vehicle velocity relative to air, *z*-axis is upwards and *y*-axis completes the right-handed frame and are functions of lift (*L*), drag (*D*), thrust (*T*), weight (*W*), flight path angle (γ), angle of attack (*a*), and bank angle (μ).

$$\begin{split} F_x &= T\cos\alpha - D - W\sin\gamma \\ F\gamma &= (L + T\sin\alpha)\sin\mu \\ F_z &= (L + T\sin\alpha)\cos\mu - W\cos\gamma \end{split}$$

6th Order Point Mass Forces (Coordinated Flight)

 Like Linder Dough Missee Ference II. eerdu 	sated Elight) (ma	اللمان (الم	
- oth Urder Point Mass Porces (Coordin	iateo Filgritj (ma	iskj (iirik)	
Calculate forces used by sixth-order	point mass in co	oordinated flight.	

Inputs and Outputs	Input D Ty	Dimension ype	Description
	First		Contains the lift in units of force.
	Second		Contains the drag in units of force.
	Third		Contains the weight in units of force.
	Fourth		Contains the thrust in units of force.
	Fifth		Contains the flight path angle in radians.
	Sixth		Contains the bank angle in radians.
	Seventh		Contains the angle of attack in radians.
	Output D	vimension ype	Description
	First		Contains the force in <i>x</i> -axis in units of force.
	Second		Contains the force in <i>y</i> -axis in units of force.
	Third		Contains the force in <i>z</i> -axis in units of force.
Assumptions and	The block a side force (assumes that wind axes) ar	there is fully coordinated flight, i.e., there is no ad sideslip is always zero.
Limitations	The flat Ea approxima to the "fixe	arth reference tion that allowed stars" to be	e frame is considered inertial, an excellent ws the forces due to the Earth's motion relative e neglected.

See Also 4th Order Point Mass (Longitudinal)

Dialog Box 4th Order Point Mass Forces (Longitudinal)6th Order Point Mass (Coordinated Flight)

Acceleration Conversion

Purpose Convert from acceleration units to desired acceleration units

Library

Utilities/Unit Conversions

Description

The Acceleration Conversion block computes the conversion factor from specified input acceleration units to specified output acceleration units and applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units selected from the **Initial units** and **Final units** lists.

Dialog Box

Block Parameters: Acceleration Conversion 🛛 🛛 🛛
Acceleration Conversion (mask) (link)
Convert units of input signal to desired output units.
Parameters
Initial units: ft/s^2
Final units: m/s^2
OK Cancel Help Apply

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

m/s^2	Meters per second squared
ft/s^2	Feet per second squared
km/s 2	Kilometers per second squared
in/s^2	Inches per second squared
km/h-s	Kilometers per hour per second

mph-s	Miles per hour per second
G's	g-units

units.

Inputs and Outputs

Input	Dimension Type	Description
First		Contains the acceleration in initial acceleration units.
Outpu	t Dimension Type	Description
First		Contains the acceleration in final acceleration

See Also A

Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

Adjoint of 3x3 Matrix

Purpose	Compute	adjoint	of matrix
---------	---------	---------	-----------

Library Utilities/Math Operations

Description

ədj(A) (3x3) The Adjoint of 3x3 Matrix block computes the adjoint matrix for the input matrix.

The input matrix has the form of

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

The adjoint of the matrix has the form of

$$adj(A) = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$

where

$$M_{ij} = (-1)^{i+j}$$

Dialog	Block Parameters: Adjoint of 3x3 Matrix	×
Box	Adjoint of 3x3 matrix (mask) (link) Compute the adjoint matrix for the input matrix.	
	OK Cancel Help Apply	

Inputs and Outputs	Input	Dimension Type	Description
	First		Contains the acceleration in initial acceleration units.

	Output Dimension Type	Description
	First	Contains the acceleration in final acceleration units.
See Also	Create 3x3 Matrix	
	Determinant of 3x3 Ma	atrix
	Invert 3x3 Matrix	

Purpose Compute aerodynamic forces and moments using aerodynamic coefficients, dynamic pressure, center of gravity, center of pressure, and velocity

Library Aerodynamics

Description

The Aerodynamic Forces and Moments block computes the aerodynamic forces and moments about the center of gravity. By default, the inputs and outputs are represented in the body axes.

Let α be the angle of attack and β the sideslip. The rotation from body to stability axes:

$$C_{s \leftarrow b} = \begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) \\ 0 & 1 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix}$$

can be combined with the rotation from stability to wind axes:

$$C_{w \leftarrow s} = \begin{bmatrix} \cos(\beta) & \sin(\beta) & 0\\ -\sin(\beta) & \cos(\beta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

to yield the net rotation from body to wind axes:

$$C_{w \leftarrow b} = \begin{bmatrix} \cos(\alpha)\cos(\beta) & \sin(\beta) & \sin(\alpha)\cos(\beta) \\ -\cos(\alpha)\sin(\beta) & \cos(\beta) & -\sin(\alpha)\sin(\beta) \\ -\sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix}$$

Moment coefficients have the same notation in all systems. Force coefficients are given below. Note there are no specific symbols for stability-axes force components. However, the stability axes have two components that are unchanged from the other axes.

×	Coef _{stab}	_
×	9 _{bar}	Fbody
Y	CG	
×	CP	M _{book}
>	V _b	

$$\mathbf{F}_{A}^{w} \equiv \begin{bmatrix} -D \\ -C \\ -L \end{bmatrix} = C_{w \leftarrow b} \cdot \begin{bmatrix} X_{A} \\ Y_{A} \\ Z_{A} \end{bmatrix} \equiv C_{w \leftarrow b} \cdot \mathbf{F}_{A}^{b}$$

Components/Axes	x	у	Z
Wind	C_D	C_{C}	C_L
Stability	_	C_{Y}	C_L
Body	C_X	C_{Y}	$C_Z (-C_N)$

Given these definitions, to account for the standard definitions of D, C, Y (where Y = -C), and L, force coefficients in the wind axes are multiplied by the negative identity diag(-1, -1, -1). Forces coefficients in the stability axes are multiplied by diag(-1, 1, -1). $C_{\rm N}$ and $C_{\rm X}$ are, respectively, the normal and axial force coefficients ($C_{\rm N} = -C_{\rm Z}$).

Input Axes

Specifies coordinate system for input coefficients: Body (default), Stability, or Wind.

Dialog Box

Force Axes

Specifies coordinate system for aerodynamic force: Body (default), Stability, or Wind.

Moment Axes

Specifies coordinate system for aerodynamic moment: Body (default), Stability, or Wind.

Reference area

Specifies the reference area for calculating aerodynamic forces and moments.

Reference span

Specifies the reference span for calculating aerodynamic moments in *x*-axes and *z*-axes.

Reference length

Specifies the reference length for calculating aerodynamic moment in the *y*-axes.

Inputs and Outputs

The first input consists of aerodynamic coefficients (in the chosen input axes) for forces and moments. These coefficients are ordered into a vector depending on the choice of axes:

Input Axes	Input Vector
Body	(axial force C_x , side force C_y , normal force C_z , rolling moment C_l , pitching moment C_m , yawing moment C_n)
Stability	(drag force $C_{D(6=0)}$, side force C_y , lift force C_L , rolling moment C_l , pitching moment C_m , yawing moment C_n)
Wind	(drag force $C_{\rm D}$, cross-wind force $C_{\rm c}$, lift force $C_{\rm L}$, rolling moment $C_{\rm l}$, pitching moment $C_{\rm m}$, yawing moment $C_{\rm n}$)

Input	Dimension Type	Description
Second		Contains the dynamic pressure.
Third		Contains the center of gravity.
Fourth		Contains the center of pressure. This can also be taken as any general moment reference point as long as the rest of the model reflects the use of the moment reference point.
Fifth (For inputs or stability or wind axes)	Three-element vector	Contains the velocity in the body axes.

Output Dimension Type	Description
First	Contains the aerodynamic forces (in the chosen output axes) at the center of gravity in <i>x</i> -, <i>y</i> -, and <i>z</i> -axes.
Second	Contains the aerodynamic moments (in the chosen output axes) at the center of gravity in <i>x</i> -, <i>y</i> -, and <i>z</i> -axes.

Assumptions and	The default state of the block hides the $V_{\rm b}$ input port and assumes that the transformation is body-body.			
Limitations	The center of gravity and the center of pressure are assumed to be in body axes.			

While this block has the ability to output forces and/or moments in the stability axes, the blocks in the Equations of Motion library are currently designed to accept forces and moments in either the body or wind axes only.
See Airframe in the aeroblk_HL20 demo for an example of this block.
Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , John Wiley & Sons, New York, 1992
Digital DATCOM Forces and Moments Dynamic Pressure Estimate Center of Gravity Moments About CG Due to Forces

Angle Conversion

Purpose Convert from angle units to desired angle units

Library

Utilities/Unit Conversions

Description

>deg → rad>

The Angle Conversion block computes the conversion factor from specified input angle units to specified output angle units and applies the conversion factor to the input signal.

The Angle Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Block Parameters: Angle Conversion	×		
Angle Conversion (mask) (link)			
Convert units of input signal to desired output units.			
- Parametere			
Initial units: deg	_		
Final units: rad	•		
OK Cancel Help Apply			

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

deg	Degrees
rad	Radians
rev	Revolutions

Inputs and 0

Outputs	Input	Dimension Type	Description	
	First		Contains the angle in initial angle units.	
	Output	Dimension Type	Description	
	First		Contains the angle in final angle units.	
See Also	Accelerat	tion Conversion	n	
	Angular	Angular Acceleration Conversion		
	Angular	Angular Velocity Conversion		
	Density	Density Conversion		
	Force Co	Force Conversion		
	Length (Conversion		
	Mass Co	nversion		
	Pressure	Conversion		
	Tempera	ture Conversio	n	
	Velocity	Conversion		

- **Purpose** Convert from angular acceleration units to desired angular acceleration units
- Library

Utilities/Unit Conversions

Description

 \rightarrow deg/s² \rightarrow rad/s² \rightarrow

The Angular Acceleration Conversion block computes the conversion factor from specified input angular acceleration units to specified output angular acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Block Parameters: Angular Acceleration Conversion	×		
Angular Acceleration Conversion (mask) (link)			
Convert units of input signal to desired output units.			
Parameters	7		
Initial units: deg/s^2			
Final units: rad/s^2			
OK Cancel Help Apply			

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

deg/s 2	Degrees per second squared
rad/s^2	Radians per second squared
rpm/s	Revolutions per minute per second

_				
Inputs and Outputs	Input	Dimension Type	Description	
	First		Contains the angular acceleration in initial angular acceleration units.	
	Output	Dimension Type	Description	
	First		Contains the angular acceleration in final angular acceleration units.	
See Also	Accelera	tion Conversion	1	
	Angle Conversion			
	Angular Velocity Conversion			
	Density Conversion			
	Length (Conversion		
	Mass Co	nversion		
	Pressure	e Conversion		
	Tempera	ture Conversion	n	
	Velocity	Conversion		

Purpose Convert from angular velocity units to desired angular velocity units

Library

Utilities/Unit Conversions

Description

>deg/s → rad/s>

The Angular Velocity Conversion block computes the conversion factor from specified input angular velocity units to specified output angular velocity units and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Block Parameters: Angular Velocity Conversion	×		
Angular Velocity Conversion (mask) (link)			
Convert units of input signal to desired output units.			
Parameters			
Initial units: deg/s	•		
Final units: rad/s	•		
OK Cancel Help Apply			

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

deg/s	Degrees per second
rad/s	Radians per second
rpm	Revolutions per minute

_				
Inputs and Outputs	Input	Dimension Type	Description	
	First		Contains the angular acceleration in initial angular acceleration units.	
	Output	Dimension Type	Description	
	First		Contains the angular acceleration in final angular acceleration units.	
See Also	Accelera	tion Conversion	1	
	Angle Conversion			
	Angular Acceleration Conversion			
	Density Conversion			
	Force Co	onversion		
	Length (Conversion		
	Mass Co	nversion		
	Pressure	e Conversion		
	Tempera	ture Conversion	n	
	Velocity	Conversion		

PurposeTransform position and velocity components from discontinued
Standard Besselian Epoch (B1950) to Standard Julian Epoch (J2000)

Utilities/Axes Transformations

Description

Library

>^re1950 ^r.2000 > >^ve1950 ^v.2000 > The Besselian Epoch to Julian Epoch block transforms two 3-by-1 vectors of Besselian Epoch position (\bar{r}_{B1950}) , and Besselian Epoch velocity (\bar{v}_{B1950}) into Julian Epoch position (\bar{r}_{J2000}) , and Julian Epoch velocity (\bar{v}_{J2000}) . The transformation is calculated using:

$$\begin{bmatrix} \overline{r}_{J2000} \\ \overline{v}_{J2000} \end{bmatrix} = \begin{bmatrix} \overline{M}_{rr} & \overline{M}_{vr} \\ \overline{M}_{rv} & \overline{M}_{vv} \end{bmatrix} \begin{bmatrix} \overline{r}_{B1950} \\ \overline{v}_{B1950} \end{bmatrix}$$

where $(\bar{M}_{rr}, \bar{M}_{vr}, \bar{M}_{rv}, M_{vv})$ are defined as:

 $\bar{M}_{rr} \begin{bmatrix} 0.9999256782 & -0.0111820611 & -0.0048579477 \\ 0.0111820610 & 0.9999374784 & -0.0000271765 \\ 0.0048579479 & -0.0000271474 & 0.9999881997 \end{bmatrix}$

 $\bar{M}_{vr} = \begin{bmatrix} 0.00000242395018 & -0.0000002710663 & -0.00000001177656 \\ 0.00000002710663 & 0.00000242397878 & -0.0000000006587 \\ 0.00000001177656 & -0.0000000006582 & 0.00000242410173 \end{bmatrix}$

$$\bar{M}_{rv} = \begin{bmatrix} -0.000551 & -0.238565 & 0.435739 \\ 0.238514 & -0.002667 & -0.008541 \\ -0.435623 & 0.012254 & 0.002117 \end{bmatrix}$$

$$\bar{M}_{vv} = \begin{bmatrix} 0.99994704 & -0.01118251 & -0.00485767 \\ 0.01118251 & 0.99995883 & -0.00002718 \\ 0.00485767 & -0.00002714 & 1.00000956 \end{bmatrix}$$

Inputs and Outputs	Input	Dimension Type	Description
	First	3-by-1 vector	Contains the position in Standard Besselian Epoch (B1950).
	Second	3-by-1 vector	Contains the velocity in Standard Besselian Epoch (B1950).
	Output	Dimension Type	Description
	First	3-by-1 vector	Contains the position in Standard Julian Epoch (J2000).
	Second	3-by-1 vector	Contains the velocity in Standard Julian Epoch (J2000).
Reference	"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2-A.		
See Also	Julian Epoch to Besselian Epoch		

Purpose Calculate range between two crafts given their respective positions

Library

Dialog

Box

GNC/Guidance

Description

The Calculate Range block computes the range between two crafts. The equation used for the range calculation is

Range =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Inputs	and
Outpu	ts

Description
Contains the (x, y and z) position of craft 1.
Contains the (x, y and z) position of craft 2.
Description

Limitation The calculated range is the magnitude of the distance, but not the direction. Therefore it is always positive or zero.

Craft positions are real values.

Centrifugal Effect Model

Purpose	Implement mathematical representation of centrifugal effect for
-	planetary gravity

Library Environment/Gravity

Description

Dialog Box

>X_{ecef} Centrifugal Effect g_{ecef} >

Centrifugal Effect Model

The Centrifugal Effect Model block implements the mathematical representation of centrifugal effect for planetary gravity. The gravity centrifugal effect is the acceleration portion of centrifugal force effects due to the rotation of a planet. This block implements this representation using planetary rotation rates. You use centrifugal force values in rotating or non-inertial coordinate systems.

Function Blo	ck Parameters: Centrifugal Effect Model	2
Centrifugal Effe	ct Model (mask) (link)	
Implements the planetary gravit	mathematical representation of centrifugal effect for ty based on planetary rotation rate.	
-Parameters		
Planet model:	Earth	-
	OK Cancel Help	Apply

Planet model

Specify the planetary model. From the list, select Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, or Custom. The block uses the rotation of the selected planet to implement the mathematical representation of the centrifugal effect. Selecting Custom enables you to specify your own planetary model. This option enables the **Planetary rotational rate** (rad/sec) and **Input planetary rotation rate** parameters.

Planetary rotational rate (rad/sec)

Specify the planetary rotational rate in radians per second.

If you want to specify the planetary rotational rate as an input to the block, see the **Input planetary rotation rate** parameter.

Selecting the **Input planetary rotation rate** check box disables the **Planetary rotational rate (rad/sec)** parameter.

Input planetary rotation rate

Select this check box to enable a block input. You can then input a planetary rotation rate as a block input. When you select this check box, the block mask updates to display an input port for the rotation rate.

Selecting the **Input planetary rotation rate** check box disables the **Planetary rotational rate (rad/sec)** parameter.

References Vallado, D. A., *Fundamentals of Astrodynamics and Applications*, McGraw-Hill, New York, 1997.

NIMA TR8350.2: Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems.

CIRA-86 Atmosphere Model

Purpose Implement mathematical representation of 1986 CIRA atmosphere

Library

Environment/Atmosphere

Description

The CIRA-86 Atmosphere Model block implements the mathematical representation of the 1986 Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA). The block provides values for absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

The CIRA-86 Atmosphere Model block icon displays the input and output units selected from the **Units** list.

Dialog Box	Function Block Parameters: CIRA-86 Atmosphere Model Image: Circle Content of the Circle Cost of the Circle Ci
	Action for out of range input: Warning
	OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Height	Temperature	Speed of Sound	Air Pressure	Air Density
Metric (MKS)	Meters	Kelvin	Meters per second	Pascal	Kilograms per cubic meter
English (Velocity in ft/s)	Feet	Degrees Rankine	Feet per second	Pound-force per square inch	Slug per cubic foot
English (Velocity in kts)	Feet	Degrees Rankine	Knots	Pound-force per square inch	Slug per cubic foot

Coordinate type

Specify the representation of the coordinate type. The default is GPHeight.

• Pressure

Indicates pressure in pascal.

• GPHeight

Indicates geopotential height in meters.

Mean value type

Specify mean value types. The default is Monthly.

• Monthly

Indicates monthly values. If you select Monthly, you must also set the **Month** parameter.

• Annual

Indicates annual values. Valid when **Coordinate type** has a value of Pressure.

Month

Indicates the month in which the mean values are taken. From the list, select the desired month. This parameter applies only when **Mean value type** has a value of Monthly.

Action for out or range input

Specify if out-of-range input invokes a warning, error, or no action.

Inputs and	
Outputs	

Input	Dimension Type	Description
First	Array	Contains the latitude in degrees (limited to +/-80 degrees).
Second	Array	Contains an m array of either:
		• Geopotential heights in selected length units (Coordinate type is GPHeight)
		 Pressures in selected pressure units (Coordinate type is Pressure)

Output	Dimension Type	Description
First	Array	Contains mean temperature in selected units.
Second	Array	Contains geopotential heights in selected units.
Third	Array	Contains mean zonal windows in selected units.

Assumptions	This function uses a corrected version of the CIRA data files provided
and	by J. Barnett in July 1990 in ASCII format.
Limitations	This function has the limitations of the CIRA 1986 model. The values for the CIRA 1986 model are limited to the regions of 80 degrees S

	to 80 degrees N on the Earth and geopotential heights of 0 to 120 kilometers. In each monthly mean data set, values at 80 degrees S for 101,300 pascal or 0 meters were omitted because these levels are within the Antarctic land mass. For zonal mean pressure in constant altitude coordinates, pressure data is not available below 20 kilometers. Therefore, this is the bottom level of the CIRA climatology.
Reference	Fleming, E. L., Chandra, S., Shoeberl, M. R., Barnett, J. J., Monthly Mean Global Climatology of Temperature, Wind, Geopotential Height and Pressure for 0-120 km, NASA TM100697, February 1988
	http://modelweb.gsfc.nasa.gov/atmos/cospar1.html
See Also	COESA Atmosphere Model
	ISA Atmosphere Model
Purpose Implement 1976 COESA lower atmosphere

Library

Environment/Atmosphere

Description

The COESA Atmosphere Model block implements the mathematical representation of the 1976 Committee on Extension to the Standard Atmosphere (COESA) United States standard lower atmospheric values for absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

Below 32,000 meters (approximately 104,987 feet), the U.S. Standard Atmosphere is identical with the Standard Atmosphere of the International Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units selected from the **Units** list.

Dialog Box

Block Parameters: COESA Atmosphere Model 🛛 🛛 💆					
Atmosphere Model (mask) (link)					
Calculate various atmosphere models including 1976 COESA-extended U.S. Standard Atmosphere, MIL-HDBK-310, and MIL-STD-210C. Given geopotential altitude, calculate absolute temperature, pressure and density using standard interpolation formulas.					
The COESA model extrapolates temperature linearly and pressure/density logarithmically beyond the range					
0 <= altitude <= 84852 meters (geopotential)					
The MIL specifications are not extrapolated beyond their defined altitudes which are typically					
0 <= altitude <= 80000 meters (geometric)					
Depending on the given information either density or pressure is calculated using a perfect gas relationship.					
The unit system selected applies to both input and outputs.					
Parameters					
Units: Metric (MKS)					
Specification: 1976 COESA-extended U.S. Standard Atmosphere 💌					
Action for out of range input: Warning					
OK Cancel Help Apply					

Units

Specifies the input and output units:

Units	Height	Temperature	Speed of Sound	Air Pressure	Air Density
Metric (MKS)	Meters	Kelvin	Meters per second	Pascal	Kilograms per cubic meter
English (Velocity in ft/s)	Feet	Degrees Rankine	Feet per second	Pound-force per square inch	Slug per cubic foot
English (Velocity in kts)	Feet	Degrees Rankine	Knots	Pound-force per square inch	Slug per cubic foot

Specification

Specify the atmosphere model type from one of the following atmosphere models. The default is 1976 COESA-extended U.S. Standard Atmosphere.

MIL-HDBK-310

This selection is linked to the Non-Standard Day 310 block. See the block reference for more information.

MIL-STD-210C

This selection is linked to the Non-Standard Day 210C block. See the block reference for more information.

Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

Inputs and Outputs	Input	Dimension Type	Description
	First		Contains the geopotential height.
	Output	Dimension Type	Description
	First		Contains the temperature.
	Second		Contains the speed of sound.
	Third		Contains the air pressure.
	Fourth		Contains the air density.
Assumptions and Limitations	Below the geopotential altitude of 0 m (0 feet) and above the geopotential altitude of 84,852 m (approximately 278,386 feet), temperature values are extrapolated linearly and pressure values are extrapolated logarithmically. Density and speed of sound are calculated using a perfect gas relationship.		
Examples	See the aeroblk_calibrated model, the aeroblk_indicated model, and the airframe in the aeroblk_HL20 demo for examples of this block.		
Reference	U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.		
See Also	CIRA-86	Atmosphere M	odel, ISA Atmosphere Model
	Non-Star	ndard Day 2100	2
	Non-Star	ndard Day 310	

Create 3x3 Matrix

- Purpose Create 3-by-3 matrix from nine input values
- Library Utilities/Math Operations

Description The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input values where each input corresponds to an element of the matrix.

The output matrix has the form of

	A_{11}	A_{12}	A_{13}
<i>A</i> =	A_{21}	A_{22}	A_{23}
	A_{31}	A_{32}	A_{33}

A 11 A 12 A 13 A 22 A 22 A 23 A 23 A 23

32

AÞ

Block Parameters: Create 3x3 Matrix					
Create 3x3 Matrix (mask) (link)					
Create a 3-by-3 matrix from nine input values. Each input corresponds to an element of the matrix.					
For example, the input labeled A21 is the entry in the second row and first column of the matrix.					
OK Cancel Help Apply					

Inputs and Outputs	Input Dimensio Type	n Description
	First	Contains the first row and first column of the matrix.
	Second	Contains the first row and second column of the matrix.
	Third	Contains the first row and third column of the matrix.
	Fourth	Contains the second row and first column of the matrix.

Input Dimension Type	Description
Fifth	Contains the second row and second column of the matrix.
Sixth	Contains the second row and third column of the matrix.
Seventh	Contains the third row and first column of the matrix.
Eight	Contains the third row and second column of the matrix.
Ninth	Contains the third row and third column of the matrix.

Output Dimension Type		Description	
First	3-by-3 matrix	Contains the matrix.	

See Also Adjoint of 3x3 Matrix Determinant of 3x3 Matrix Invert 3x3 Matrix

Symmetric Inertia Tensor

Custom Variable Mass 3DoF (Body Axes)

Purpose Implement three-degrees-of-freedom equations of motion of custom variable mass with respect to body axes

Library

Equations of Motion/3DoF

Description

>	F. (N)		e (od)
>	F_z(N)		o (adis)
>	M (N-m) Cust	om Variable	de (dt
>	anvat (kg/s) m (ka)	Ť	¥ 7 (m)
>	dl/dt (kg-m ² /s)	¥	~e ² e ⁽⁰⁰⁾
>	l (kg⋅m²)	101855	U W (M/S)
>	g (m/s*)	A	× ^A z (mvs ⁻)

The Custom Variable Mass 3DoF (Body Axes) block considers the rotation in the vertical plane of a body-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

$$\begin{split} \dot{u} &= \frac{F_x}{m} - \frac{\dot{m}U}{m} - qw - g\sin\theta \\ \dot{w} &= \frac{F_z}{m} - \frac{\dot{m}w}{m} + qu + g\cos\theta \\ \dot{q} &= \frac{M - \dot{I}_{yy}q}{I_{yy}} \\ \dot{\theta} &= q \end{split}$$

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box

🔥 Block Parameters: Custom Variable Mass 3DoF (Body Axes) 🛛 😫 🏹
3DoF EoM (mask) (link)
Integrate the three-degrees-of-freedom equations of motion to determine body position, velocity, attitude, and related values.
Parameters
Units: Metric (MKS)
Mass type: Custom Variable
Initial velocity:
100
Initial body attitude:
0
Initial incidence:
0
Initial body rotation rate:
0
Initial position (x z):
Gravity source: External
Dr Caucei Teih Whith Whith

Units

Specifies the input and output units:

Custom Variable Mass 3DoF (Body Axes)

Units	Forces	Moment	Acceleratio	on	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squa	red	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per sec squared	ond	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per sec squared	ond	Knots	Feet	Slug	Slug foot squared
	M	ass Type						
		Select th	ne type of ma	lss to	use:			
		Fixed		Mas simu	s is consta ulation.	ant throug	ghout the	
		Simple	Variable	Mas func	s and iner tion of ma	rtia vary l Iss rate.	inearly as	a
		Custom	Variable	Mas cust	s and ine omizable.	rtia variat	tions are	
		The Cus describe	tom Variabl d equations o	.e sel of mo	ection cont tion.	forms to tl	ne previou	sly
	In	itial veloc i A scalar	ity value for the	e initi	al velocity	of the boo	ly, (V_0) .	

Initial body attitude

A scalar value for the initial pitch attitude of the body, (θ_0) .

Initial incidence

A scalar value for the initial angle between the velocity vector and the body, (a_0) .

Initial body rotation rate

A scalar value for the initial body rotation rate, (q_0) .

Initial position (x,z)

A two-element vector containing the initial location of the body in the Earth-fixed reference frame.

Gravity Source

Specify source of gravity:

External	Variable gravity input to block
Internal	Constant gravity specified in mask

Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Input	Dimension Type	Description
First		Contains the force acting along the body x-axis, (F_x) .
Second		Contains the force acting along the body z -axis, (F_z) .
Third		Contains the applied pitch moment, (M).
Fourth		Contains the rate of change of mass, (\dot{m})
Fifth		Contains the mass, (m).
Sixth		Contains the rate of change of inertia tensor
		matrix, (\dot{I}_{yy}) .
Seventl	ı	Contains the inertia tensor matrix, (I_{yy}) .
Eighth (Option	al)	Contains the gravity in the selected units.

Inputs and Outputs

Output	Dimension Type	Description
First		Contains the pitch attitude, in radians (θ).
Second		Contains the pitch angular rate, in radians per second (q) .
Third		Contains the pitch angular acceleration, in
		radians per second squared (\dot{q}) .
Fourth	Two-element vector	Contains the location of the body, in the Earth-fixed reference frame, (Xe, Ze) .
Fifth	Two-element vector	Contains the velocity of the body resolved into the body-fixed coordinate frame, (u, w) .
Sixth		Contains the acceleration of the body resolved into the body-fixed coordinate frame, (Ax, Az)

See Also

3DoF (Body Axes)

Incidence & Airspeed Simple Variable Mass 3DoF (Body Axes)

Purpose Implement three-degrees-of-freedom equations of motion of custom variable mass with respect to wind axes

Library

Equations of Motion/3DoF

Description

>	F_ (N)	y(rad)>
>	F_(N) Wind	လ _္ (rad/s) >
×	M (N-m) Gustom Yar	iable d∞_/dt⊳
>	dm/dt (kg/s) 🏾 🎔	→ x 7 (m) b
×	m (kg)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
×	dl/dt (kg-m ² /s) ♥ n Mass	v (m/s) >
2	l (kg-m ^e)	$A_x A_z (m/s^2)$
1	g (m/s*)	

The Custom Variable Mass 3DoF (Wind Axes) block considers the rotation in the vertical plane of a wind-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

$$\begin{split} \dot{V} &= \frac{F_{x_{wind}}}{m} - \frac{\dot{m}V}{m} - g\sin\gamma\\ \dot{\alpha} &= \frac{F_{z_{wind}}}{mV} + q + \frac{g}{V}\cos\gamma\\ \dot{q} &= \dot{\theta} = \frac{M_{y_{body}} - \dot{I}_{yy}q}{I_{yy}}\\ \dot{\gamma} &= q - \dot{\alpha} \end{split}$$

Custom Variable Mass 3DoF (Wind Axes)

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box

🙀 Function Block Parameters: Custom Variable Mass 3DoF (Wind Axes) 🛛 🗙
- 3DoF Wind EoM (mask) (link)
Integrate the three-degrees-of-freedom equations of motion in wind axes to determine position, velocity, attitude, and related values.
Parameters
Units: Metric (MKS)
Mass type: Custom Variable
Initial airspeed:
100
Initial flight path angle:
0
Initial incidence:
0
Initial body rotation rate:
0
Initial position (x z):
[0 0]
Gravity source: External
Carcer Length Abbit

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described equations of motion.

Initial airspeed

A scalar value for the initial velocity of the body, (V_0) .

Initial flight path angle

A scalar value for the initial pitch attitude of the body, (γ_0) .

Initial incidence

A scalar value for the initial angle between the velocity vector and the body, (a_0) .

Initial body rotation rate

A scalar value for the initial body rotation rate, (q_0) .

Initial position (x,z)

A two-element vector containing the initial location of the body in the Earth-fixed reference frame.

Gravity Source

Specify source of gravity:

External	Variable gravity input to block
Internal	Constant gravity specified in mask

Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Inputs and Outputs	Input Dime Type	nsion Description
	First	Contains the force acting along the wind x-axis, (F_x) .
	Second	Contains the force acting along the wind z -axis, (F_z) .
	Third	Contains the applied pitch moment in body axes, (M) .
	Fourth	Contains the rate of change of mass, (\dot{m}) .
	Fifth	Contains the mass, (m) .

Input	Dimension Type	Description
Sixth		Contains the rate of change of inertia tensor
		matrix, (\dot{I}_{yy}) .
Sevent	h	Contains the inertia tensor matrix, (I_{yy}) .
Eighth (Optior	nal)	Contains the gravity in the selected units.

Output	Dimension Type	Description
First		Contains the flight path angle, in radians (γ).
Second		Contains the pitch angular rate, in radians per second (ω_y).
Third		Contains the pitch angular acceleration, in radians per second squared $(d\omega_y/dt)$.
Fourth	Two-element vector	Contains the location of the body, in the Earth-fixed reference frame, (<i>Xe, Ze</i>).
Fifth	Two-element vector	Contains the velocity of the body resolved into the wind-fixed coordinate frame, $(V, 0)$.
Sixth	Two-element vector	Contains the acceleration of the body resolved into the body-fixed coordinate frame, (Ax, Az) .
Seventh	Scalar	Contains the angle of attack, (a).

ReferenceStevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, 1992.See Also3DoF (Body Axes)
3DoF (Wind Axes)
4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes) Simple Variable Mass 3DoF (Body Axes) Simple Variable Mass 3DoF (Wind Axes)

Purpose

Implement Euler angle representation of six-degrees-of-freedom equations of motion of custom variable mass

Library

Equations of Motion/6DoF

Description

The Custom Variable Mass 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate frame (X_b, Y_b, Z_b) about a flat Earth reference frame (X_e, Y_e, Z_e) . The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

Flat Earth reference frame

The translational motion of the body-fixed coordinate frame is given below, where the applied forces $[F_x F_y F_z]^T$ are in the body-fixed frame.

$$\begin{split} \vec{F}_{b} &= \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m(\dot{\vec{V}}_{b} + \vec{\omega} \times \vec{V}_{b}) + \dot{m}\vec{V}_{b} \\ \vec{V}_{b} &= \begin{bmatrix} u_{b} \\ v_{b} \\ w_{b} \end{bmatrix}, \vec{\omega} = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \end{split}$$

The rotational dynamics of the body-fixed frame are given below, where the applied moments are $[L M N]^{T}$, and the inertia tensor I is with respect to the origin O.

$$\bar{M}_B = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = I\bar{\varpi} + \bar{\varpi} \times (I\bar{\varpi}) + \dot{I}\bar{\varpi}$$

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}$$

$$\dot{I} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -\dot{I}_{yx} & \dot{I}_{yy} & -\dot{I}_{yz} \\ -\dot{I}_{zx} & -\dot{I}_{zy} & \dot{I}_{zz} \end{bmatrix}$$

The relationship between the body-fixed angular velocity vector, $[p \ q \ r]^{T}$,

and the rate of change of the Euler angles, $[\dot{\phi} \dot{\theta} \dot{\psi}]^{T}$, can be determined by resolving the Euler rates into the body-fixed coordinate frame.

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \psi \end{bmatrix} = J^{-1} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \psi \end{bmatrix}$$

Inverting ${\cal J}$ then gives the required relationship to determine the Euler rate vector.

				Γ		7		
$\left[\phi \right]$		p]	1	$(\sin\phi\tan\theta)$	$(\cos\phi\tan\theta)$	$\left\lceil p \right\rceil$	
$\dot{\theta}$	=J	q	=	0	$\cos\phi$	$-\sin\phi$	q	
ψ̈́		$\lfloor r \rfloor$		0	$\sin\phi$	$\cos\phi$	$\lfloor r \rfloor$	
				Ľ	$\cos heta$	$\cos heta$		

Dialog Box

Function Block	Parameters: Custo	m ¥ariable	Mass 6DoF (Eu	iler Angle
6DoF EoM (Body A	xis) (mask) (link)			
Integrate the six-de	grees-of-freedom equa	tions of motic	on in body axis.	
Parameters				
Units: Metric (MKS	5)			•
Mass type: Custor	n Variable			•
Representation: E	uler Angles			•
Initial position in in	artial axes [Xe,Ye,Ze]:			
[0 0 0]				
Initial velocity in bo	idy axes [U,v,w]:			
[0 0 0]				
Initial Euler orienta	tion [roll, pitch, yaw]:			
[0 0 0]				
Initial body rotation	rates (p,q,r):			
[0 0 0]				
	OK	Cancel	Help	Apply

Custom Variable Mass 6DoF (Euler Angles)

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Custom Variable Mass 6DoF (Euler Angles)

Euler Angles	Use Euler angles within equations of motion.
Quaternion	Use quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Inputs and Outputs	Input	Dimension Type	Description
	First	Vector	Contains the three applied forces.
	Second	Vector	Contains the three applied moments.
	Third	Scalar	Contains the rate of change of mass.
	Fourth	Scalar	Contains the mass.
	Fifth	3–by-3 matrix	Contains the rate of change of inertia tensor matrix.
	Sixth	3–by-3 matrix	Contains the inertia tensor matrix.

	Output	Dimension Type	Description
	First	Three-element vector	Contains the velocity in the flat Earth reference frame.
	Second	Three-element vector	Contains the position in the flat Earth reference frame.
	Third	Three-element vector	Contains the Euler rotation angles [roll, pitch, yaw], in radians.
	Fourth	3–by-3 matrix	Contains the coordinate transformation from flat Earth axes to body-fixed axes.
	Fifth	Three-element vector	Contains the velocity in the body-fixed frame.
	Sixth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
	Seventh	nThree-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.
	Eight	Three-element vector	Contains the accelerations in body-fixed axes.
mptions ations	The bloc gravity o	k assumes that f the body.	the applied forces are acting at the center of
erence	Mangiac Simulini	asale, L., <i>Flight</i> k <i>Helper,</i> Edizio	Mechanics of a μ-Airplane with a MATLAB ni Libreria CLUP, Milan, 1998.
Also	6DoF (E	uler Angles)	
	6DoF (Q	uaternion)	
	6DoF EC	CEF (Quaternion	n)
	6DoF Wi	nd (Quaternion)

6DoF Wind (Wind Angles) 6th Order Point Mass (Coordinated Flight) Custom Variable Mass 6DoF (Quaternion) Custom Variable Mass 6DoF ECEF (Quaternion) Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF (Quaternion)

Purpose

Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass with respect to body axes

Library Equations of Motion/6DoF

Description

For a description of the coordinate system and the translational dynamics, see the block description for the Custom Variable Mass 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below. The gain K drives the norm of the quaternion state vector to 1.0 should ε become nonzero. You must choose the value of this gain with care, because a large value improves the decay rate of the error in the norm, but also slows the simulation because fast dynamics are introduced. An error in the magnitude in one element of the quaternion vector is spread equally among all the elements, potentially increasing the error in the state vector.

$$\begin{bmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -p & -q & -r \\ p & 0 & r & -q \\ q & -r & 0 & p \\ r & q & -p & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} + K\varepsilon \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

$$\varepsilon = 1 - ({q_0}^2 + {q_1}^2 + {q_2}^2 + {q_3}^2)$$

Dialog	Function Block Parameters: Custom Variable Mass 6DoF (Quaternion)	
Box	6DoF EoM (Body Axis) (mask) (link)	
	Integrate the six-degrees-of-freedom equations of motion in body axis.	
	Parameters	
	Units: Metric (MKS)	
	Mass type: Custom Variable	
	Representation: Quaternion	
	Initial position in inertial axes [Xe,Ye,Ze]:	
	Initial velocity in body axes (U,v,w):	
	Initial Euler orientation [roll, pitch, yaw]:	
	Initial body rotation rates (p,q,r): [(0 0 0]	
	Gain for quaternion normalization:	
	OK Cancel Help Apply	

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Euler Angles	Use Euler angles within equations of motion.
Quaternion	Use quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Gain for quaternion normalization

The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and Outputs

Inp	ut	Dimension Type	Description
Firs	st	Vector	Contains the three applied forces.
Sec	ond	Vector	Contains the three applied moments.
Thi	rd	Scalar	Contains the rate of change of mass.
Fou	rth	Scalar	Contains the mass.
Fift	h	3–by-3 matrix	Contains the rate of change of inertia tensor matrix.
Sixt	th	3–by-3 matrix	Contains the inertia tensor matrix.

Output	Dimension Type	Description
First	Three-element vector	Contains the velocity in the flat Earth reference frame.
Second	Three-element vector	Contains the position in the flat Earth reference frame.
Third	Three-element vector	Contains the Euler rotation angles [roll, pitch, yaw], in radians.
Fourth	3–by-3 matrix	Contains the coordinate transformation from flat Earth axes to body-fixed axes.

	Output Dimension Type		Description			
	Fifth	Three-element vector	Contains the velocity in the body-fixed frame.			
	Sixth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.			
	Seventh	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.			
	Eight	Three-element vector	Contains the accelerations in body-fixed axes.			
Assumptions and Limitations	The block gravity o	k assumes that f the body.	the applied forces are acting at the center of			
Reference	Mangiac Simulint	asale, L., <i>Flight</i> & <i>Helper</i> , Edizio	Mechanics of a u-Airplane with a MATLAB ni Libreria CLUP, Milan, 1998.			
See Also	6DoF (E	uler Angles)				
	6DoF (Q	uaternion)				
	6DoF EC	EF (Quaternio	n)			
	6DoF Wi	nd (Quaternion)			
	6DoF Wi	nd (Wind Angle	es)			
	6th Orde	er Point Mass (C	Coordinated Flight)			
	Custom	Variable Mass 6	BDoF (Euler Angles)			
	Custom '	Variable Mass 6	DoF ECEF (Quaternion)			
	Custom Y	Variable Mass 6	DoF Wind (Quaternion)			
	Custom '	Variable Mass 6	DoF Wind (Wind Angles)			
	Simple V	ariable Mass 6	DoF (Euler Angles)			

Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF ECEF (Quaternion)

Purpose

Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass in Earth-centered Earth-fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description

F _{xys}	(N)		V _{ocar} (m/s) X _{ocar} (m)
M _{xys}	, (N+m)	ECEF Quaternion	rL⊣µ (ba)γ⊎θφ
dmi	tt (kg/s)	st G	DOM.
m (k	a) o	w "⊉ ustom Variable	DOM _{er} V _b (m/s)
aı/a	t (kg-m²/s	Mass	ം (nad/s) പ(nad/s)
l (kg	;nf)		d∞/dt A _b (m/s ²)

The Custom Variable Mass 6DoF ECEF (Quaternion) block considers the rotation of a Earth-centered Earth-fixed (ECEF) coordinate frame $(X_{ECEF}, Y_{ECEF}, Z_{ECEF})$ about an Earth-centered inertial (ECI) reference frame $(X_{ECF}, Y_{ECI}, Z_{ECI})$. The origin of the ECEF coordinate frame is the center of the Earth, additionally the body of interest is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is simplified to consider only the constant rotation of the ellipsoid Earth (ω_e) including an initial celestial longitude ($L_G(0)$). This excellent approximation allows the forces due to the Earth's complex motion relative to the "fixed stars" to be neglected.

The translational motion of the ECEF coordinate frame is given below, where the applied forces $[F_x F_y F_z]^T$ are in the body frame.

$$\begin{split} \bar{F}_{b} = & \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m \left(\dot{\bar{V}}_{b} + \bar{\omega}_{b} \times \bar{V}_{b} + DCM_{bf} \bar{\omega}_{e} \times \bar{V}_{b} \right) + DCM_{bf} \left(\bar{\omega}_{e} \times (\bar{\omega}_{e} \times \bar{X}_{f}) \right) \\ & + \dot{m} \left(\bar{V}_{b} + DCM_{bf} (\bar{\omega}_{e} \times \bar{X}_{f}) \right) \end{split}$$

where the change of position in ECEF $\dot{\bar{x}}_{f}$ is calculated by

$$\dot{\bar{x}}_f = DCM_{fb}\bar{V}_b$$

and the velocity of the body with respect to ECEF frame, expressed in body frame (\bar{V}_b) , angular rates of the body with respect to ECI frame, expressed in body frame $(\bar{\omega}_b)$. Earth rotation rate $(\bar{\omega}_e)$, and relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body frame $(\bar{\omega}_{rel})$ are defined as

$$\begin{split} \bar{V}_{b} &= \begin{bmatrix} u \\ v \\ w \end{bmatrix}, \bar{\omega}_{rel} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}, \bar{\omega}_{e} = \begin{bmatrix} 0 \\ 0 \\ \omega_{e} \end{bmatrix}, \bar{\omega}_{b} = \bar{\omega}_{rel} + DCM_{bf}\bar{\omega}_{e} + DCM_{be}\bar{\omega}_{ned} \\ \bar{\omega}_{ned} &= \begin{bmatrix} i\cos\mu \\ -\dot{\mu} \\ -\dot{\mu} \\ -i\sin\mu \end{bmatrix} = \begin{bmatrix} V_{E}/(N+h) \\ -V_{N}/(M+h) \\ V_{E} \bullet \tan\mu/(N+h) \end{bmatrix} \end{split}$$

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied moments are $[L M N]^{T}$, and the inertia tensor I is with respect to the origin O.

$$\bar{M}_{b} = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = \bar{I}\dot{\bar{\omega}}_{b} + \bar{\omega}_{b} \times (\bar{I}\bar{\omega}_{b}) + \dot{I}\bar{\omega}_{b}$$

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}$$

The rate of change of the inertia tensor is defined by the following equation.

$$\dot{I} = \begin{bmatrix} \dot{I}_{xx} & -\dot{I}_{xy} & -\dot{I}_{xz} \\ -\dot{I}_{yx} & \dot{I}_{yy} & -\dot{I}_{yz} \\ -\dot{I}_{zx} & -\dot{I}_{zy} & \dot{I}_{zz} \end{bmatrix}$$

The integration of the rate of change of the quaternion vector is given below.

ſ	\dot{q}_0		0	$\omega_{b}\left(1 ight)$	$\omega_{b}\left(2 ight)$	$\omega_{b}\left(3 ight)$	$\left[q_{0} \right]$
	\dot{q}_1	1/	$-\omega_{b}(1)$	0	$-\omega_{b}(3)$	$\omega_{b}(2)$	q_1
	\dot{q}_2	$ ^{-72}$	$-\omega_{b}(2)$	$\omega_{b}(3)$	0	$-\omega_{b}\left(1 ight)$	q_2
	\dot{q}_3		$-\omega_{b}(3)$	$-\omega_{b}(2)$	$\omega_{b}\left(1 ight)$	0	$\lfloor q_3 \rfloor$

Dialog Box

-6DoF EoM (ECEF) (mask) (link)					
Integrate the six-d representation for	egrees-of-freedom equations of motion using a quaternion the orientation of the body in space.				
Main Planet					
Units: Metric (MKS) 💌				
Mass type: Custom	Variable 💌				
Initial position in geo	odetic latitude, longitude, altitude [mu,l,h]:				
[0 0 0]					
Initial velocity in boo	ly axes [U,v,w]:				
[0 0 0]					
Initial Euler orientati	on (roll, pitch, yaw):				
[0 0 0]					
Initial body rotation	ates (p,q,r):				
[0 0 0]					

Custom Variable Mass 6DoF ECEF (Quaternion)

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation (see 6DoF ECEF (Quaternion)).
Simple Variable	Mass and inertia vary linearly as a function of mass rate (see Simple Variable Mass 6DoF ECEF (Quaternion)).
Custom Variable	Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described equations of motion.

Initial position in geodetic latitude, longitude and altitude

The three-element vector for the initial location of the body in the geodetic reference frame.

Initial velocity in body-axis

The three-element vector containing the initial velocity of the body with respect to ECEF frame, expressed in body frame.

Initial Euler orientation

The three-element vector containing the initial Euler rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and north-east-down (NED) coordinate systems.

Initial body rotation rates

The three-element vector for the initial angular rates of the body with respect to NED frame, expressed in body frame, in radians per second.

Planet model

Specifies the planet model to use, Custom or Earth (WGS84).

Flattening

Specifies the flattening of the planet. This option is only available when **Planet model** is set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for ECEF position. This option is only available when **Planet model** is set to **Custom**.

Rotational rate

Specifies the scalar rotational rate of the planet in rad/s. This option is only available when **Planet model** is set to **Custom**.

Celestial longitude of Greenwich source

Specifies the source of Greenwich meridian's initial celestial longitude:

Internal	Use celestial longitude value from mask dialog.
External	Use external input for celestial longitude value.

Celestial longitude of Greenwich

The initial angle between Greenwich meridian and the *x*-axis of the ECI frame.

Inputs and	Input	Dimension Type	Description
Outputs	First	Vector	Contains the three applied forces in body-fixed axes.
	Second	Vector	Contains the three applied moments in body-fixed axes.
	Third	Scalar	Contains the rate of change of mass.
	Fourth	Scalar	Contains the mass.
Input	Dimension Type	Description	
---------	-------------------------	---	
Fifth	3-by-3 matrix	Applies to the rate of change of inertia tensor matrix.	
Sixth	3-by-3 matrix	Applies to the inertia tensor matrix.	
Output	Dimension Type	Description	
First	Three-element vector	Contains the velocity of the body with respect to ECEF frame, expressed in ECEF frame.	
Second	Three-element vector	Contains the position in the ECEF reference frame.	
Third	Three-element vector	Contains the position in geodetic latitude, longitude and altitude, in degrees, degrees and selected units of length respectively.	
Fourth	Three-element vector	Contains the body rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and NED coordinate systems.	
Fifth	3-by-3 matrix	Applies to the coordinate transformation from ECI axes to body-fixed axes.	
Sixth	3-by-3 matrix	Applies to the coordinate transformation from NED axes to body-fixed axes.	
Seventh	3-by-3 matrix	Applies to the coordinate transformation from ECEF axes to NED axes.	
Eighth	Three-element vector	Contains the velocity of the body with respect to ECEF frame, expressed in body frame.	

	Output	Dimension Type	Description		
	Ninth	Three-element vector	Contains the relative angular rates of the body with respect to NED frame, expressed in body frame, in radians per second.		
	Tenth	Three-element vector	Contains the angular rates of the body with respect to ECI frame, expressed in body frame, in radians per second.		
	Eleventh	Three-element vector	Contains the angular accelerations of the body with respect to ECI frame, expressed in body frame, in radians per second.		
	Twelfth	Three-element vector	Contains the accelerations in body-fixed axes.		
Assumptions and	This implementation assumes that the applied forces are acting at the center of gravity of the body.				
Limitations This implementation generates a geodetic latitude that lies be degrees, and longitude that lies between ±180 degrees. Addit the MSL altitude is approximate.					
	The Earth is assumed to be ellipsoidal. By setting flattening to 0.0 spherical planet can be achieved. The Earth's precession, nutation and polar motion are neglected. The celestial longitude of Greenw is Greenwich Mean Sidereal Time (GMST) and provides a rough approximation to the sidereal time.				
The implementation of the ECEF coordinate system assumes origin is at the center of the planet, the <i>x</i> -axis intersects the meridian and the equator, the <i>z</i> -axis is the mean spin axis of positive to the north, and the <i>y</i> -axis completes the right-hand					
	The implementation of the ECI coordinate system assumes the origin is at the center of the planet, the x -axis is the continuat the line from the center of the Earth through the center of the				

	toward the vernal equinox, the z -axis points in the direction of the mean equatorial plane's north pole, positive to the north, and the y -axis completes the right-handed system.
References	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation, Second Edition</i> , John Wiley & Sons, New York, 2003.
	McFarland, Richard E., A Standard Kinematic Model for Flight simulation at NASA-Ames, NASA CR-2497.
	"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2-A.
See Also	6DoF (Euler Angles)
	6DoF (Quaternion)
	6DoF ECEF (Quaternion)
	6DoF Wind (Quaternion)
	6DoF Wind (Wind Angles)
	6th Order Point Mass (Coordinated Flight)
	Custom Variable Mass 6DoF (Euler Angles)
	Custom Variable Mass 6DoF (Quaternion)
	Custom Variable Mass 6DoF Wind (Quaternion)
	Custom Variable Mass 6DoF Wind (Wind Angles)
	Simple Variable Mass 6DoF (Euler Angles)
	Simple Variable Mass 6DoF (Quaternion)
	Simple Variable Mass 6DoF ECEF (Quaternion)
	Simple Variable Mass 6DoF Wind (Quaternion)
	Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF Wind (Quaternion)

Purpose

Implement quaternion representation of six-degrees-of-freedom equations of motion of custom variable mass with respect to wind axes

Library

Equations of Motion/6DoF

Description

2	F _{xyx} (N) V _e (m/s)	Þ
7	M _{xyx} (N-m) Wind Χ _α (m) Quaternion μγχ (rad)	Þ
2	dm/dt (kg/s)	Þ
2	m (kg) ↓ ∞β (rad) Custom Variable d∞/dt dβ/dt	Þ
7	Mass ∞ (rad/s) dl/dt (kg-m²/s) d∞/dt	þ
2	l(kg⊧nf) A_(m/s")	þ

The Custom Variable Mass 6DoF Wind (Quaternion) block considers the rotation of a wind-fixed coordinate frame (X_w, Y_w, Z_w) about an flat Earth reference frame (X_e, Y_e, Z_e) . The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

Flat Earth reference frame

The translational motion of the wind-fixed coordinate frame is given below, where the applied forces $[F_x, F_y, F_z]^T$ are in the wind-fixed frame.

$$\bar{F}_{w} = \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m(\bar{V}_{w} + \bar{\omega}_{w} \times \bar{V}_{w}) + \dot{m}\bar{V}_{w}$$

$$\begin{bmatrix} V \end{bmatrix} \qquad \begin{bmatrix} p_{w} \end{bmatrix} = b \sin \theta$$

$$\bar{V}_{w} = \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix}, \bar{\omega}_{w} = \begin{bmatrix} p_{w} \\ q_{w} \\ r_{w} \end{bmatrix} = DMC_{wb} \begin{bmatrix} p_{b} - \dot{\beta} \sin \alpha \\ q_{b} - \dot{\alpha} \\ r_{b} + \dot{\beta} \cos \alpha \end{bmatrix}, \bar{\omega}_{b} = \begin{bmatrix} p_{b} \\ q_{b} \\ r_{b} \end{bmatrix}$$

The rotational dynamics of the body-fixed frame are given below, where the applied moments are $[L \ M \ N]^T$, and the inertia tensor I is with respect to the origin O. Inertia tensor I is much easier to define in body-fixed frame.

$$\bar{M}_{b} = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = I \dot{\bar{\varpi}}_{b} + \bar{\varpi}_{b} \times (I \bar{\varpi}_{b}) + \dot{I} \bar{\varpi}_{b}$$

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}$$

The integration of the rate of change of the quaternion vector is given below.

$$\begin{bmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & p & q & r \\ -p & 0 & -r & q \\ -q & r & 0 & -p \\ -r & -q & p & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

Custom Variable Mass 6DoF Wind (Quaternion)

Dialog Box

🙀 Function Block Parameters: Custom Variable Mass 6DoF Wind (Quat 🗴				
- 6DoF EoM (Wind Axis) (mask) (link)				
Integrate the six-degrees-of-freedom equations of motion in wind axis.				
Parameters				
Units: Metric (MKS)				
Mass type: Custom Variable				
Representation: Quaternion				
Initial position in inertial axes [Xe,YeZe]:				
[0 0 0]				
Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]:				
[0 0 0]				
Initial wind orientation [bank angle,flight path angle,heading angle]:				
[0 0 0]				
Initial body rotation rates (p,q,r):				
OK Cancel Help Apply				

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Wind Angles	Use wind angles within equations of motion.
Quaternion	Use quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip angle and initial angle of attack.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Inputs and Outputs

Input	Dimension Type	Description
First	Vector	Contains the three applied forces in wind-fixed axes.
Second	Vector	Contains the three applied moments in body-fixed axes.
Third	Scalar	Contains the rate of change of mass.
Fourth	Scalar	Contains the mass.
Fifth	3-by-3 matrix	Applies to the rate of change of inertia tensor matrix in body-fixed axes.
Sixth	3-by-3 matrix	Applies to the inertia tensor matrix in body-fixed axes.

Output	Dimension Type	Description
First	Three-element vector	Contains the velocity in the flat Earth reference frame
Second	Three-element vector	Contains the position in the flat Earth reference frame.
Third	Three-element vector	Contains the wind rotation angles [bank, flight path, heading], in radians.
Fourth	3-by-3 matrix	Applies to the coordinate transformation from flat Earth axes to wind-fixed axes.
Fifth	Three-element vector	Contains to the velocity in the wind-fixed frame.

	Output	Dimension Type	Description		
	Sixth	Two-element vector	Contains the angle of attack and sideslip angle, in radians.		
	Seventh	Two-element vector	Contains the rate of change of angle of attack and rate of change of sideslip angle, in radians per second.		
	Eighth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.		
	Ninth	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.		
	Tenth	Three-element vector	Contains the accelerations in body-fixed axes.		
Assumptions and Limitations	The block assumes that the applied forces are acting at the center of gravity of the body.				
References	Mangiacasale, L., <i>Flight Mechanics of a u-Airplane with a MATLAB Simulink Helper</i> , Edizioni Libreria CLUP, Milan, 1998.				
	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , John Wiley & Sons, New York, 1992.				
See Also	6DoF (Euler Angles)				
	6DoF (Quaternion)				
	6DoF ECEF (Quaternion)				
	6DoF Wind (Quaternion)				
	6DoF Wind (Wind Angles)				
	6th Order Point Mass (Coordinated Flight)				

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF (Euler Angles) Custom Variable Mass 6DoF (Quaternion) Custom Variable Mass 6DoF ECEF (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Wind Angles)

Purpose Implement wind angle representation of six-degrees-of-freedom equations of motion of custom variable mass

Library

Equations of Motion/6DoF

Description

>	F _{xyx} (N)	V_ (m/s)>
>	M _{xyx} (N-m) Wind Wind Angles	⊲(m) χ ⊲(ba), ₇ γμ
>	am/at (kg/s)	v DOM ‱p V (m/s)p
>	m (kg) ↓ Custom Variable	∞β(nad)> d∞/dtdp/dt>
>	dl/dt (kg-mî/s)	o (nad/s)> do/dt>
>	l (kg-m ²)	A _b (m/s ²) ⊳

For a description of the coordinate system employed and the translational dynamics, see the block description for the Custom Variable Mass 6DoF Wind (Quaternion) block.

The relationship between the wind angles, $[\mu\gamma\chi]^{T}$, can be determined by resolving the wind rates into the wind-fixed coordinate frame.

[p_w		μ		1	0	0][0]	[1	0	0]	$\cos \gamma$	0	$-\sin\gamma$	0		Γµ̀
	q_w	=	0	+	0	$\cos \mu$	$\sin \mu$	γ +	0	$\cos \mu$	$\sin \mu$	0	1	0	0	$\equiv J^{-1}$	γ̈́
	r_w		0		0	$-\sin\mu$	$\cos \mu$	0	0	$-\sin\mu$	$\cos \mu$	$\sin \gamma$	0	$\cos \gamma$	Ż		χ

Inverting J then gives the required relationship to determine the wind rate vector.

$$\begin{bmatrix} \dot{\mu} \\ \dot{\gamma} \\ \dot{\chi} \end{bmatrix} = J \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = \begin{bmatrix} 1 & (\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\ 0 & \cos \mu & -\sin \mu \\ 0 & \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma} \end{bmatrix} \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix}$$

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.

$$\begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = DMC_{wb} \begin{bmatrix} p_b - \dot{\beta} \sin \alpha \\ q_b - \dot{\alpha} \\ r_b + \dot{\beta} \cos \alpha \end{bmatrix}$$

Using this relationship in the wind rate vector equations, gives the relationship between the wind rate vector and the body-fixed angular rates.

Custom Variable Mass 6DoF Wind (Wind Angles)

$$\begin{bmatrix} \dot{\mu} \\ \dot{\gamma} \\ \dot{\chi} \end{bmatrix} = J \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = \begin{bmatrix} 1 & (\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\ 0 & \cos \mu & -\sin \mu \\ 0 & \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma} \end{bmatrix} DMC_{wb} \begin{bmatrix} p_b - \dot{\beta} \sin \alpha \\ q_b - \dot{\alpha} \\ r_b + \dot{\beta} \cos \alpha \end{bmatrix}$$

Dialog Box

🙀 Function Block Parameters: Custom Variable Mass 6DoF Wind (Wind 🗙						
6DoF EoM (Wind Axis) (mask) (link)						
Integrate the six-degrees-of-freedom equations of motion in wind axis.						
Parameters						
Units: Metric (MKS)						
Mass type: Custom Variable						
Representation: Wind Angles						
Initial position in inertial axes [Xe,Ye,Ze]:						
[0 0 0]						
Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]:						
[0 0 0]						
Initial wind orientation [bank angle,flight path angle,heading angle]:						
[0 0 0]						
Initial body rotation rates (p,q,r):						
[0 0 0]						
OK Cancel Help Apply						

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	ן נ	Mass is constant throughout the simulation.
Simple Varia	ble I f	Mass and inertia vary linearly as a function of mass rate.
Custom Varia	ble I	Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Wind Angles	Use wind angles within equations of motion.
Quaternion	Use quaternions within equations of motion.

Custom Variable Mass 6DoF Wind (Wind Angles)

The Wind Angles selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip angle and initial angle of attack.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Inputs and	Input	Dimension Type	Description
Outputs	First	Vector	Contains the three applied forces in wind-fixed axes.
	Second	Vector	Contains the three applied moments in body-fixed axes.
	Third	Scalar	Contains the rate of change of mass.
	Fourth	Scalar	Contains the mass.
	Fifth	3-by-3 matrix	Applies to the rate of change of inertia tensor matrix in body-fixed axes.
	Sixth	3-by-3 matrix	Applies to the inertia tensor matrix in body-fixed axes.

C	Dutput	Dimension Type	Description
ł	First	Three-element vector	Contains the velocity in the flat Earth reference frame.
5	Second	Three-element vector	Contains the position in the flat Earth reference frame.
J	Third	Three-element vector	Contains the wind rotation angles [bank, flight path, heading], in radians.
ł	Fourth	3-by-3 matrix	Applies to the coordinate transformation from flat Earth axes to wind-fixed axes.
I	Fifth	Three-element vector	Contains the velocity in the wind-fixed frame.
5	Sixth	Two-element vector	Contains the angle of attack and sideslip angle, in radians.
5	Seventh	Two-element vector	Contains the rate of change of angle of attack and rate of change of sideslip angle, in radians per second.
ł	Eighth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
1	Ninth	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.
ſ	[enth	Three-element vector	Contains the accelerations in body-fixed axes.

Assumptions and Limitations

The block assumes that the applied forces are acting at the center of gravity of the body.

Custom Variable Mass 6DoF Wind (Wind Angles)

References	Mangiacasale, L., <i>Flight Mechanics of a µ-Airplane with a MATLAB</i> Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.					
	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , John Wiley & Sons, New York, 1992.					
See Also	6DoF (Euler Angles)					
	6DoF (Quaternion)					
	6DoF ECEF (Quaternion)					
	6DoF Wind (Quaternion)					
	6DoF Wind (Wind Angles)					
	6th Order Point Mass (Coordinated Flight)					
	Custom Variable Mass 6DoF (Euler Angles)					
	Custom Variable Mass 6DoF (Quaternion)					
	Custom Variable Mass 6DoF ECEF (Quaternion)					
	Custom Variable Mass 6DoF Wind (Quaternion)					
	Simple Variable Mass 6DoF (Euler Angles)					
	Simple Variable Mass 6DoF (Quaternion)					
	Simple Variable Mass 6DoF ECEF (Quaternion)					
	Simple Variable Mass 6DoF Wind (Quaternion)					
	Simple Variable Mass 6DoF Wind (Wind Angles)					

Purpose Convert from density units to desired density units

Library

Utilities/Unit Conversions

Description

>lbm/ft³ → kg/m³>

The Density Conversion block computes the conversion factor from specified input density units to specified output density units and applies the conversion factor to the input signal.

The Density Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Block Parameters: Density Conversion Density Conversion (mask) (link) Convert units of input signal to desired output units.	×
Parameters Initial units: Ibm/tt^3]]]
OK Cancel Help Apply	

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

lbm/ft^3	Pound mass per cubic foot
kg/m^3	Kilograms per cubic meter
$slug/ft^3$	Slugs per cubic foot
lbm/in ³	Pound mass per cubic inch

Density Conversion

Inputs and	Input	Dimension Type	Description				
Outputs	First		Contains the density, in initial density units.				
	Output	Dimension Type	Description				
	First		Contains the density, in final density units.				
See Also	Acceleration	n Conversion					
	Angle Conversion						
	Angular Acceleration Conversion						
	Angular Velocity Conversion						
	Force Conversion						
	Length Con	version					
	Mass Conve	ersion					
	Pressure Co	onversion					
	Temperatur	re Conversion					
	Velocity Co	nversion					

- **Purpose** Compute determinant of matrix
- Library Utilities/Math Operations

Description

The Determinant of 3x3 Matrix block computes the determinant for the input matrix.

The input matrix has the form of

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

The determinant of the matrix has the form of

$$det(A) = A_{11}(A_{22}A_{33} - A_{23}A_{32}) - A_{12}(A_{21}A_{33} - A_{23}A_{31}) + A_{13}(A_{21}A_{32} - A_{22}A_{31})$$

Dialog	Block Parameters: Determinant of 3x3 Matrix
Box	Determinant of 3x3 Matrix (mask) (link) Compute the determinant of 3x3 matrix.
	OK Cancel Help Apply

Inputs and Outputs	Input	Dimension Type	Description
	First	3-by-3 matrix	
	Output	Dimension Type	Description
	First		Contains the determinant of input matrix.
See Also	Adjoint of	3x3 Matrix	

Create 3x3 Matrix

Invert 3x3 Matrix

Purpose Compute aerodynamic forces and moments using Digital DATCOM static and dynamic stability derivatives

Library Aerodynamics

Description

>	α. (rad)	
>	β (rad)	F _{body} (N) >
>	Mach	
>	h (m)	
>	q _{bar} (Pa)	M _{body} (N-m) >
>	V _{body} (m/s)	

The Digital DATCOM Forces and Moments block computes the aerodynamic forces and moments about the center of gravity using aerodynamic coefficients from Digital DATCOM.

Algorithms for calculating forces and moments build up the overall aerodynamic forces and moments (F and M) from data contained in the **Digital DATCOM structure** parameter:

$$F = F_{\text{static}} + F_{\text{dyn}}$$

 $M = M_{\text{static}} + M_{\text{dyn}}$

 $F_{\rm static}$ and $M_{\rm static}$ are the static contribution, and $F_{\rm dyn}$ and $M_{\rm dyn}$ the dynamic contribution, to the aerodynamic coefficients. If the dynamic characteristics are not contained in the **Digital DATCOM structure** parameter, their contribution is set to zero.

Static Stability Characteristics

Static stability characteristics include the following.

Coefficient Meaning

C_{D}	Matrix of drag coefficients. These coefficients are defined positive for an aft-acting load.
$C_{ m L}$	Matrix of lift coefficients. These coefficients are defined positive for an up-acting load.
$C_{\rm m}$	Matrix of pitching-moment coefficients. These coefficients are defined positive for a nose-up rotation.
$C_{ m YB}$	Matrix of derivatives of side-force coefficients with respect to sideslip angle

Coefficient Meaning

C_{nB}	Matrix of derivatives of yawing-moment coefficients with respect to sideslip angle
$C_{ m lb}$	Matrix of derivatives of rolling-moment coefficients with respect to sideslip angle

These are the static contributions to the aerodynamic coefficients in stability axes.

$$C_{\rm D \ static} = C_{\rm D}$$

$$C_{\rm y \ static} = C_{\rm Y6} \beta$$

$$C_{\rm L \ static} = C_{\rm L}$$

$$C_{\rm l \ static} = C_{\rm l6} \beta$$

$$C_{\rm m \ static} = C_{\rm M}$$

$$C_{\rm n \ static} = C_{\rm n6} \beta$$

Dynamic Stability Characteristics

Dynamic stability characteristics include the following.

Coefficient Meaning

$C_{ m lq}$	Matrix of rolling-moment derivatives due to pitch rate
C_{mq}	Matrix of pitching-moment derivatives due to pitch rate
$C_{ m Ldlpha/dt}$	Matrix of lift force derivatives due to rate of angle of attack
$C_{ m md\alpha/dt}$	Matrix of pitching-moment derivatives due to rate of angle of attack
$C_{ m lp}$	Matrix of rolling-moment derivatives due to roll rate

Coefficient	Meaning
$C_{ m Yp}$	Matrix of lateral force derivatives due to roll rate
$C_{\rm np}$	Matrix of yawing-moment derivatives due to roll rate
$C_{ m nr}$	Matrix of yawing-moment derivatives due to yaw rate
$C_{ m lr}$	Matrix of rolling-moment derivatives due to yaw rate

These are the dynamic contributions to the aerodynamic coefficients in stability axes.

$$\begin{split} & C_{\rm D~dyn} = 0 \\ & C_{\rm y~dyn} = C_{\rm yp} \, p(b_{\rm ref} \, / \, 2V) \\ & C_{\rm L~dyn} = C_{\rm L} \dot{a} \, \dot{a}(c_{\rm bar} \, / \, 2V) \\ & C_{\rm l~dyn} = (C_{\rm lp} \, p + C_{\rm lq} \, q + C_{\rm lr} r) (b_{\rm ref} \, / \, 2V) \\ & C_{\rm m~dyn} = (C_{\rm mq} \, q + C_{\rm m} \dot{a} \, \dot{a}) (c_{\rm bar} \, / \, 2V) \\ & C_{\rm n~dyn} = (C_{\rm mp} \, p + C_{\rm nr} r) (b_{\rm ref} \, / \, 2V) \end{split}$$

Digital DATCOM Forces and Moments

Dialog Box

🐱 Function Block Parameters: Digital DATCOM F 🗙
Digital DATCOM Forces and Moments (mask)
Compute the aerodynamic forces and moments using Digital DATCOM static and dynamic stability derivatives.
Parameters
Units: Metric (MKS)
Digital DATCOM structure:
digdatstruct
Force axes: Body
Interpolation method: Linear
Extrapolation method: Linear
Process out of range input: Linear Extrapolation
Action for out of range input: None
OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Force	Moment	Length	Velocity	Pressure
Metric (MKS)	Newton	Newton- meter	Meters	Meters per second	Pascal
English (Velocity in ft/s)	Pound	Foot-pound	Feet	Feet per second	Pound per square inch
English (Velocity in kts)	Pound	Foot-pound	Feet	Knots	Pound per square inch

Digital DATCOM structure

Specifies the MATLAB structure containing the digital DATCOM data. This structure is generated by the Aerospace Toolbox function datcomimport.

Force axes

Specifies coordinate system for aerodynamic force: Body or Wind.

Interpolation method

None (flat) or Linear

Extrapolation method

None (clip) or Linear

Process out of range input

Specifies how to handle out-of-range input: Linear Extrapolation or Clip to Range.

Action for out of range input

Specifies if out-of-range input invokes a warning, an error, or no action.

Inputs and Outputs

Input	Dimension Type	Description
First	3-by-3 matrix	Contains the angle of attack.
Second		Contains the sideslip angle, in radians.
Third		Contains the Mach number.
Fourth		Contains the altitude, in selected length units.
Fifth		Contains the dynamic pressure, in selected pressure units.
Sixth		Contains the velocity, selected velocity units and selected force axes.
Seventh (Optional)		Contains the angle of attack rate, in radians per second.
Eight (Optional)		Contains the body angular rates, in radians per second.

	Input	Dimension Type	Description
	Ninth (Optional)		Contains the ground height, in select units of length
	Tenth (Optional)		Contains the control surface deflections, radians.
	Output	Dimension Type	Description
	First		Contains the aerodynamic forces at the center of gravity in selected coordinate system: Body $(F_x, F_y, and F_z)$, or Wind $(F_D, F_y, and F_L)$.
	Second		Contains the aerodynamic moments at the center of gravity in body coordinates $(M_x, M_y, \text{ and } M_z)$.
Assumptions and Limitations	The operational limitations of Digital DATCOM apply to the data contained in the Digital DATCOM structure parameter. For more information on Digital DATCOM limitations, see Section 2.4.5 of reference [1].		
	The Digital DATCOM structure parameters alpha, mach, alt, grndht, and delta must be strictly monotonically increasing to be with the Digital DATCOM Forces and Moments block.		
	The Digita dimensions be used wit	l DATCOM structur of the breakpoints (a h the Digital DATCO	re coefficients must correspond to the lpha, mach, alt, grndht, and delta) to M Forces and Moments block.
References	[1] <i>The US</i> AFFDL-TR-	AF Stability and Cor 79-3032, 1979.	ntrol Digital Datcom,
	[2] Etkin, E John Wiley	B., and L. D. Reid, <i>Dyr</i> & Sons, New York, 1	namics of Flight Stability and Control, 996.

[3] Roskam, J., "Airplane Design Part VI: Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics," Roskam Aviation and Engineering Corporation, Ottawa, Kansas, 1987.

[4] Stevens, B. L., and F. L. Lewis, *Aircraft Control and Simulation*, John Wiley & Sons, New York, 1992.

See Also Aerodynamic Forces and Moments

Direction Cosine Matrix Body to Wind

Purpose Convert angle of attack and sideslip angle to direction cosine matrix

Utilities/Axes Transformations

Description

Library

The Direction Cosine Matrix Body to Wind block converts angle of attack and sideslip angle into a 3-by-3 direction cosine matrix (DCM). The DCM matrix performs the coordinate transformation of a vector in body axes (ox_0, oy_0, oz_0) into a vector in wind axes (ox_2, oy_2, oz_2) . The order of the axis rotations required to bring this about is:

- ${\bf 1}$ A rotation about oy_0 through the angle of attack (a) to axes $(ox_1, \, oy_1, \, oz_1)$
- **2** A rotation about oz_1 through the sideslip angle (β) to axes (ox_2 , oy_2 , oz_2)

$$\begin{bmatrix} ox_2 \\ oy_2 \\ oz_2 \end{bmatrix} = DCM_{wb} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$$

$$\begin{bmatrix} ox_2 \\ oy_2 \\ oz_2 \end{bmatrix} = \begin{bmatrix} \cos\beta & \sin\beta & 0 \\ -\sin\beta & \cos\beta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\alpha & 0 & \sin\alpha \\ 0 & 1 & 0 \\ -\sin\alpha & 0 & \cos\alpha \end{bmatrix} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$$

Combining the two axis transformation matrices defines the following DCM.

$$DCM_{wb} = \begin{bmatrix} \cos\alpha\cos\beta & \sin\beta & \sin\alpha\cos\beta \\ -\cos\alpha\sin\beta & \cos\beta & -\sin\alpha\sin\beta \\ -\sin\alpha & 0 & \cos\alpha \end{bmatrix}$$

DCM Body to Wind (mask) Determine the 3-by-3 direction cosine matrix (DCM) from sideslip angle and angle of attack (beta and alpha). The output DCM transforms vectors from body axes to wind axes.	sideslip angle and angle of tors from body axes to wind
Determine the 3-by-3 direction cosine matrix (DCM) from sideslip angle and angle of attack (beta and alpha). The output DCM transforms vectors from body axes to wind axes.	sideslip angle and angle of tors from body axes to wind
Cancel Help Apply	

Dialog Box

Inputs and	Input	Dimension Type	Description		
Outputs	First	2-by-1 vector	Contains the angle of attack and sideslip angle, in radians.		
	Output	Dimension Type	Description		
	First	3-by-3 direction cosine matrix	Transforms body-fixed vectors to wind-fixed vectors.		
Reference	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , John Wiley & Sons, New York, 1992.				
See Also	Direction Cosine Matrix Body to Wind to Alpha and Beta				
	Direction Cosine Matrix to Rotation Angles				
	Direction Cosine Matrix to Wind Angles				
	Rotation A	ngles to Direction Cos	sine Matrix		
	Wind Angles to Direction Cosine Matrix				

Direction Cosine Matrix Body to Wind to Alpha and Beta

Purpose Convert direction cosine matrix to angle of attack and sideslip angle

Library Utilities/Axes Transformations

Description

The Direction Cosine Matrix Body to Wind to Alpha and Beta block converts a 3-by-3 direction cosine matrix (DCM) into angle of attack and sideslip angle. The DCM matrix performs the coordinate transformation of a vector in body axes (ox_0, oy_0, oz_0) into a vector in wind axes (ox_2, oy_2, oz_2) . The order of the axis rotations required to bring this about is:

- **1** A rotation about oy_0 through the angle of attack (*a*) to axes (ox_1, oy_1, oz_1)
- **2** A rotation about oz_1 through the sideslip angle (β) to axes (ox_2 , oy_2 , oz_2)

$$\begin{bmatrix} ox_2 \\ oy_2 \\ oz_2 \end{bmatrix} = DCM_{wb} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$$

$$\begin{bmatrix} ox_2 \\ oy_2 \\ oz_2 \end{bmatrix} = \begin{bmatrix} \cos\beta & \sin\beta & 0 \\ -\sin\beta & \cos\beta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\alpha & 0 & \sin\alpha \\ 0 & 1 & 0 \\ -\sin\alpha & 0 & \cos\alpha \end{bmatrix} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$$

Combining the two axis transformation matrices defines the following DCM.

$$DCM_{wb} = \begin{bmatrix} \cos\alpha\cos\beta & \sin\beta & \sin\alpha\cos\beta \\ -\cos\alpha\sin\beta & \cos\beta & -\sin\alpha\sin\beta \\ -\sin\alpha & 0 & \cos\alpha \end{bmatrix}$$

To determine angles from the DCM, the following equations are used:

Direction Cosine Matrix Body to Wind to Alpha and Beta

 $\alpha = \operatorname{asin}(-DCM(3,1))$

 $\beta = \operatorname{asin}(DCM(1,2))$

Dialog Box	DCM2AB (mask Determine a sic direction cosine wind axes.	ck Parameters: Direction Cosin) (link) leslip angle and an angle of attack (b e matrix (DCM). The input DCM transf	e Matrix Body to Wind to A X eta and alpha) from the 3-by-3 orms vectors from body axes to Help Apply			
Inputs and Outputs	Input	Dimension Type	Description			
	First	3-by-3 direction cosine matrix	Transforms body-fixed vectors to wind-fixed vectors.			
	• • •	D' ' T	A			
	Output	Dimension Type	Description			
	First	2-by-1 vector	Contains angle of attack and sideslip angle, in radians.			
Assumptions and Limitations	This impler	nentation generates a	angles that lie between ±90 degrees.			
Reference	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , John Wiley & Sons, New York, 1992.					
See Also	Direction Cosine Matrix Body to Wind					
	Direction Cosine Matrix to Rotation Angles					
	Direction Cosine Matrix to Wind Angles					
	Direction Cosine Matrix to Wind Angles					

Direction Cosine Matrix Body to Wind to Alpha and Beta

Rotation Angles to Direction Cosine Matrix Wind Angles to Direction Cosine Matrix **Purpose** Convert geodetic latitude and longitude to direction cosine matrix

Library

Utilities/Axes Transformations

Description

The Direction Cosine Matrix ECEF to NED block converts geodetic latitude and longitude into a 3-by-3 direction cosine matrix (DCM). The DCM matrix performs the coordinate transformation of a vector in Earth-centered Earth-fixed (ECEF) axes (ox_0, oy_0, oz_0) into a vector in north-east-down (NED) axes (ox_2, oy_2, oz_2) . The order of the axis rotations required to bring this about is:

- **1** A rotation about oz_0 through the longitude (*i*) to axes (ox_1, oy_1, oz_1)
- ${\bf 2}$ A rotation about oy_1 through the geodetic latitude (μ) to axes (ox_2, oy_2, oz_2)

$$\begin{bmatrix} ox_2 \\ oy_2 \\ oz_2 \end{bmatrix} = DCM_{ef} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$$

$$\begin{bmatrix} ox_2 \\ oy_2 \\ oz_2 \end{bmatrix} = \begin{bmatrix} -\sin\mu & 0 & \cos\mu \\ 0 & 1 & 0 \\ -\cos\mu & 0 & -\sin\mu \end{bmatrix} \begin{bmatrix} \cos\iota & \sin\iota & 0 \\ -\sin\iota & \cos\iota & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$$

Combining the two axis transformation matrices defines the following DCM.

$$DCM_{ef} = \begin{bmatrix} -\sin\mu\cos\iota & -\sin\mu\sin\iota & \cos\mu\\ -\sin\iota & \cos\iota & 0\\ -\cos\mu\cos\iota & -\cos\mu\sin\iota & -\sin\mu \end{bmatrix}$$

Dialog Box

Inputs and Outputs	Input	Dimension Type	Description				
	First	First 2-by-1 vector Contains the geodetic longitude, in degrees.					
	Output	Dimonsion Type	Description				
	Timat	2 by 2 direction					
	First	cosine matrix	vectors.				
Assumptions References	The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the <i>x</i> -axis intersects the Greenwich meridian and the equator, the <i>z</i> -axis is the mean spin axis of the planet, positive to the north, and the <i>y</i> -axis completes the right-hand system. Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , John						
	Zipfel, P. H., <i>Modeling and Simulation of Aerospace Vehicle Dynamics</i> , AIAA Education Series, Reston, Virginia, 2000.						
	"Atmospheric and Space Flight Vehicle Coordinate Systems," ANSI/AIAA R-004-1992.						
See Also	Direction Cosine Matrix ECEF to NED to Latitude and Longitude						
	Direction Cosine Matrix to Rotation Angles						

Direction Cosine Matrix to Wind Angles ECEF Position to LLA Rotation Angles to Direction Cosine Matrix LLA to ECEF Position Wind Angles to Direction Cosine Matrix

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Purpose Convert direction cosine matrix to geodetic latitude and longitude

Library Utilities/Axes Transformations

Description

The Direction Cosine Matrix ECEF to NED to Latitude and Longitude block converts a 3-by-3 direction cosine matrix (DCM) into geodetic latitude and longitude. The DCM matrix performs the coordinate transformation of a vector in Earth-centered Earth-fixed (ECEF) axes (ox_0, oy_0, oz_0) into a vector in north-east-down (NED) axes (ox_2, oy_2, oz_2) . The order of the axis rotations required to bring this about is:

- **1** A rotation about oz_0 through the longitude (*i*) to axes (ox_1, oy_1, oz_1)
- **2** A rotation about oy_1 through the geodetic latitude (μ) to axes (ox_2 , oy_2 , oz_2)

 $\begin{bmatrix} ox_2 \\ oy_2 \\ oz_2 \end{bmatrix} = DCM_{ef} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$

ox_2		$-\sin\mu$	0	$\cos \mu$	$\cos \iota$	sin <i>ı</i>	0]	$\left[ox_0\right]$
oy_2	=	0	1	0	$-\sin\iota$	$\cos\iota$	0	oy ₀
oz_2		$-\cos\mu$	0	$-\sin\mu$	0	0	1	$\lfloor oz_0 \rfloor$

Combining the two axis transformation matrices defines the following DCM.

$$DCM_{ef} = \begin{bmatrix} -\sin\mu\cos\iota & -\sin\mu\sin\iota & \cos\mu\\ -\sin\iota & \cos\iota & 0\\ -\cos\mu\cos\iota & -\cos\mu\sin\iota & -\sin\mu \end{bmatrix}$$

To determine geodetic latitude and longitude from the DCM, the following equations are used:
Direction Cosine Matrix ECEF to NED to Latitude and Longitude

 $\mu = \operatorname{asin}(-DCM(3,3))$

$$\iota = \operatorname{atan}\left(\frac{-DCM(2,1)}{DCM(2,2)}\right)$$

Dialog	🙀 Function Block Parameters: Direction Cosine Matrix ECEF to NED to Lat 🗙
Box	DCM to LATLON (mask) (link)
	Determine a geodetic latitude and longitude (mu and l) from the 3-by-3 direction cosine matrix (DCM). The input DCM transforms vectors from Earth Centered Earth Fixed(ECEF) axes to geodetic earth or north-east-down (NED) axes.

Inputs and	Input	Dimension Type	Description	
Outputs	First	3-by-3 direction cosine matrix	Transforms ECEF vectors to NED vectors.	
	Output	Dimension Type	Description	
	First	2-by-1 vector	Contains the geodetic latitude and longitude, in degrees.	
Assumptions and	This implementation generates a geodetic latitude that lies between ± 90 degrees, and longitude that lies between ± 180 degrees.			
Limitations	The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the <i>x</i> -axis intersects the Greenwich meridian and the equator, the <i>z</i> -axis is the mean spin axis of the planet, positive to the north, and the <i>y</i> -axis completes the right-hand system.			
References	Stevens, B Wiley & S	8. L., and F. L. Lewis, ons, New York, 1992.	Aircraft Control and Simulation, John	

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

	Zipfel, P. H., <i>Modeling and Simulation of Aerospace Vehicle Dynamics</i> , AIAA Education Series, Reston, Virginia, 2000.
	"Atmospheric and Space Flight Vehicle Coordinate Systems," ANSI/AIAA R-004-1992.
See Also	Direction Cosine Matrix ECEF to NED
	Direction Cosine Matrix to Rotation Angles
	Direction Cosine Matrix to Wind Angles
	ECEF Position to LLA
	Rotation Angles to Direction Cosine Matrix
	LLA to ECEF Position
	Wind Angles to Direction Cosine Matrix

Purpose Convert direction cosine matrix to quaternion vector

Utilities/Axes Transformations

Description

Library

DCM2Quat

The Direction Cosine Matrix to Quaternions block transforms a 3-by-3 direction cosine matrix (DCM) into a four-element unit quaternion vector (q_0, q_1, q_2, q_3) . The DCM performs the coordinate transformation of a vector in inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the following:

$$DCM = \begin{bmatrix} (q_0^2 + q_1^2 - q_2^2 - q_3^2) & 2(q_1q_2 + q_0q_3) & 2(q_1q_3 - q_0q_2) \\ 2(q_1q_2 - q_0q_3) & (q_0^2 - q_1^2 + q_2^2 - q_3^2) & 2(q_2q_3 + q_0q_1) \\ 2(q_1q_3 + q_0q_2) & 2(q_2q_3 - q_0q_1) & (q_0^2 - q_1^2 - q_2^2 + q_3^2) \end{bmatrix}$$

Using this representation of the DCM, there are a number of calculations to arrive at the correct quaternion. The first of these is to calculate the trace of the DCM to determine which algorithms are used. If the trace is greater that zero, the quaternion can be automatically calculated. When the trace is less than or equal to zero, the major diagonal element of the DCM with the greatest value must be identified to determine the final algorithm used to calculate the quaternion. Once the major diagonal element is identified, the quaternion is calculated. For a detailed view of these algorithms, look under the mask of this block.

Direction Cosine Matrix to Quaternions

_	-				
Inputs and	Input	Dimension Type	Description		
Outputs	First	3-by-3 direction cosine matrix			
	Output	Dimension Type	Description		
	First	4-by-1 quaternion vector			
See Also	Direction Cosine Matrix to Rotation Angles				
	Rotation Angles to Direction Cosine Matrix				
	Rotation Angles to Quaternions				
	Quaternions to Direction Cosine Matrix				
	Quaternions to Rotation Angles				

Purpose Convert direction cosine matrix to rotation angles

Library

Utilities/Axes Transformations

Description

>DCM_{be} [R₁,R₂,R₃]

The Direction Cosine Matrix to Rotation Angles block converts a 3-by-3 direction cosine matrix (DCM) into three rotation angles R1, R2, and R3, respectively the first, second, and third rotation angles. The DCM matrix performs the coordinate transformation of a vector in inertial axes into a vector in body axes. The block **Rotation Order** parameter specifies the order of the block output rotations. For example, if **Rotation Order** has a value of ZYX, the block outputs are in the rotation order z - y - x (psi theta phi).

Direction Cosine Matrix to Rotation Angles

Dialog	🙀 Function Block Parameters: Direction Cosine Matrix to Rotation Angl 🗵
вох	DCM2Ang (mask) (link)
	Determine rotation vector from the 3-by-3 direction cosine matrix (DCM).
	The 'Default' limitations for the ZYX', ZXY', YXZ', YZX', XYZ', and XZY' implementations generate an R2 angle that lies between +/- 90 degrees, and R1 and R3 angles that lie between +/- 180 degrees.
	The 'Default' limitations for the ZYZ', ZXZ', YXY', YZY', XYX', and XZX' implementations generate an R2 angle that lies between 0 and 180 degrees, and R1 and R3 angles that lie between +/- 180 degrees.
	The ZeroR3' limitations for the ZYX', ZXY', YXZ', YZX', XYZ', and XZY' implementations generate an R2 angle that lies between +/- 90 degrees, and R1 and R3 angles that lie between +/- 180 degrees. However, when R2 is +/- 90 degrees, R3 is set to 0 degrees.
	The ZeroR3' limitations for the ZYZ', ZXZ', YXY', YZY', XYX', and XZX' implementations generate an R2 angle that lies between 0 and 180 degrees, and R1 and R3 angles that lie between +/- 180 degrees. However, when R2 is 0 or +/- 180 degrees, R3 is set to 0 degrees.
	Parameters
	Rotation Order: ZYX
	Limitation: Default
	OK Cancel Help Apply

Rotation Order

Specifies the output rotation order for three rotation angles. From the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, or XZX. The default is ZYX.

Limitation

The 'Default' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate an R2 angle that lies between ± 90 degrees, and R1 and R3 angles that lie between ± 180 degrees.

The 'Default' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate an R2 angle that lies between 0 and 180 degrees, and R1 and R3 angles that lie between ± 180 degrees.

The 'ZeroR3' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate an R2 angle that lies between ± 90 degrees, and R1 and R3 angles that lie between ± 180 degrees. However, when R2 is ± 90 degrees, R3 is set to 0 degrees.

The 'ZeroR3' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate an R2 angle that lies between 0 and 180 degrees, and R1 and R3 angles that lie between ± 180 degrees. However, when R2 is 0 or ± 180 degrees, R3 is set to 0 degrees.

Inputs and	Input	Dimension Type	Description	
Outputs	First	3-by-3 matrix	Contains the direction cosine matrix.	
	Output	Dimension Type	Description	
	First	3-by-1 vector	Contains the rotation angles, in radians.	
See Also	Direction (Cosine Matrix to Qua	ternions	
	Quaternions to Direction Cosine Matrix			
	Rotation Angles to Direction Cosine Matrix			

Direction Cosine Matrix to Wind Angles

Purpose Convert direction cosine matrix to wind angles

Library

Utilities/Axes Transformations

Description

The Direction Cosine Matrix to Wind Angles block converts a 3-by-3 direction cosine matrix (DCM) into three wind rotation angles. The DCM matrix performs the coordinate transformation of a vector in earth axes (ox_0, oy_0, oz_0) into a vector in wind axes (ox_3, oy_3, oz_3) . The order of the axis rotations required to bring this about is:

- ${\bf 1}$ A rotation about oz_0 through the heading angle (χ) to axes $(ox_1, \, oy_1, \, oz_1)$
- **2** A rotation about oy_1 through the flight path angle (y) to axes (ox_2, oy_2, oz_2)
- **3** A rotation about ox_2 through the bank angle (μ) to axes (ox_3 , oy_3 , oz_3)

$$\begin{bmatrix} ox_3 \\ oy_3 \\ oz_3 \end{bmatrix} = DCM_{we} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$$

 $\begin{bmatrix} ox_3\\ oy_3\\ oz_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\mu & \sin\mu\\ 0 & -\sin\mu & \cos\mu \end{bmatrix} \begin{bmatrix} \cos\gamma & 0 & -\sin\gamma\\ 0 & 1 & 0\\ \sin\gamma & 0 & \cos\gamma \end{bmatrix} \begin{bmatrix} \cos\chi & \sin\chi & 0\\ -\sin\chi & \cos\chi & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ox_0\\ oy_0\\ oz_0 \end{bmatrix}$

Combining the three axis transformation matrices defines the following DCM.

$$DCM_{we} = \begin{bmatrix} \cos\gamma\cos\chi & \cos\gamma\sin\chi & -\sin\gamma\\ (\sin\mu\sin\gamma\cos\chi - \cos\mu\sin\chi) & (\sin\mu\sin\gamma\sin\chi + \cos\mu\cos\chi) & \sin\mu\cos\gamma\\ (\cos\mu\sin\gamma\cos\chi + \sin\mu\sin\chi) & (\cos\mu\sin\gamma\sin\chi - \sin\mu\cos\chi) & \cos\mu\cos\gamma \end{bmatrix}$$

To determine wind angles from the DCM, the following equations are used:

$$\mu = \operatorname{atan}\left(\frac{DCM(2,3)}{DCM(3,3)}\right)$$
$$\gamma = \operatorname{asin}\left(-DCM(1,3)\right)$$
$$\chi = \operatorname{atan}\left(\frac{DCM(1,2)}{DCM(1,1)}\right)$$

 Dialog
 Function Block Parameters: Direction Cosine Matrix to Wind Angles

 Box
 DCM2Wind (mask) [link]

 Determine a wind orientation (mu, gamma, chi) from the 3-by-3 direction cosine matrix (DCM). The input DCM transforms vectors from geodetic earth or north sast-down (NED) axes to wind axes.

 DK
 Cancel
 Help
 Apply

Inputs and	Input	Dimension Type	Description
Outputs	First	3-by-3 direction cosine matrix	Transforms earth vectors to wind vectors.
	Output	Dimension Type	Description
	First	3-by-1 vector	Contains the wind angles, in radians.
Assumptions and Limitations	This implementation generates a flight path angle that lies between ±90 degrees, and bank and heading angles that lie between ±180 degrees.		
See Also	Direction Cosine Matrix Body to Wind		
	Direction Cosine Matrix Body to Wind to Alpha and Beta		

Direction Cosine Matrix to Wind Angles

Direction Cosine Matrix to Rotation Angles Rotation Angles to Direction Cosine Matrix Wind Angles to Direction Cosine Matrix Purpose Generate discrete wind gust

Library Environment/Wind

Description

The Discrete Wind Gust Model block implements a wind gust of the standard "1-cosine" shape. This block implements the mathematical representation in the Military Specification MIL-F-8785C [1]. The gust is applied to each axis individually, or to all three axes at once. You specify the gust amplitude (the increase in wind speed generated by the gust), the gust length (length, in meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The parameters that govern the gust shape are indicated on the diagram.

The discrete gust can be used singly or in multiples to assess airplane response to large wind disturbances.

The mathematical representation of the discrete gust is

$$V_{wind} = \begin{cases} 0 & x < 0 \\ \frac{V_m}{2} \left(1 - \cos\left(\frac{\pi x}{d_m}\right) \right) & 0 \le x \le d_m \\ V_m & x > d_m \end{cases}$$

where $V_{\rm m}$ is the gust amplitude, $d_{\rm m}$ is the gust length, x is the distance traveled, and $V_{\rm wind}$ is the resultant wind velocity in the body axis frame.

×

3	ock Parameters: Discrete Wind Gust Model
Г	- Discrete Wind Gust Model (mask) (link)
	Generate a discrete wind gust. The gust profile takes the '1-cosine' form.
Г	Parameters
	Units: Metric (MKS)
	🔽 Gust in u-axis
	🔽 Gust in v-axis
	🔽 Gust in w-axis
	Gust start time (sec):
	5
	Gust length [dx dy dz] (m):
	[120 120 80]
	Gust amplitude [ug vg wg] (m/s):
	[3.5 3.5 3.0]
L	

Units

ΟK

Dialog

Box

Define the units of wind gust.

Help

Cancel

Units	Wind	Altitude
Metric (MKS)	Meters/second	Meters
English (Velocity in ft/s)	Feet/second	Feet
English (Velocity in kts)	Knots	Feet

Gust in u-axis

Select to apply the wind gust to the *u*-axis in the body frame.

Gust in v-axis

Select to apply the wind gust to the *v*-axis in the body frame.

Gust in w-axis

Select to apply the wind gust to the *w*-axis in the body frame.

	Gust start time (sec) The model time, in seconds, at which the gust begins.		
	Gust length [dx dy dz] (m or f) The length, in meters or feet (depending on the choice of units), over which the gust builds up in each axis. These values must be positive.		
	Gust amplitude [ug vg wg] (m/s, f/s, or knots) The magnitude of the increase in wind speed caused by the gust in each axis. These values may be positive or negative.		
Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the airspeed in units selected.
	Output	Dimension Type	Description
	First		Contains the wind speed in units selected.
Examples	See Airfrai	me in the aeroblk_HL	.20 demo for an example of this block.
Reference	U.S. Military Specification MIL-F-8785C, 5 November 1980.		
See Also	Dryden Wind Turbulence Model (Continuous)		
	Dryden Wi	ind Turbulence Mode	l (Discrete)
	Von Karm	an Wind Turbulence	Model (Continuous)
	Wind Shear Model		

Purpose Generate continuous wind turbulence with Dryden velocity spectra

Library

Environment/Wind

Description

>	h (m)	Continuous	V _{Wind} (m/s) >	
>	V (nvs) DCM	Dryden (+q +r)	ω _{vind} (rad/s) >	

The Dryden Wind Turbulence Model (Continuous) block uses the Dryden spectral representation to add turbulence to the aerospace model by passing band-limited white noise through appropriate forming filters. This block implements the mathematical representation in the Military Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined by velocity spectra. For an aircraft flying at a speed V through a frozen turbulence field with a spatial frequency of Ω radians per meter, the circular frequency ω is calculated by multiplying V by Ω . The following table displays the component spectra functions:

	MIL-F-8785C	MIL-HDBK-1797
Longitudinal		
$\Phi_u(\omega)$	$rac{2\sigma_u^2 L_u}{\pi V} \cdot rac{1}{1 + \left(L_u rac{\omega}{V} ight)^2}$	$rac{2\sigma_u^2 L_u}{\pi V} \cdot rac{1}{1 + \left(L_u rac{\omega}{V} ight)^2}$
$\Phi_{p_g}(\omega)$	$\frac{\sigma_w^2}{VL_w} \cdot \frac{0.8 \left(\frac{\pi L_w}{4b}\right)^{1/3}}{1 + \left(\frac{4b\omega}{\pi V}\right)^2}$	$\frac{\sigma_w^2}{2VL_w} \cdot \frac{0.8 \left(\frac{2\pi L_w}{4b}\right)^{\!$
Lateral		

	MIL-F-8785C	MIL-HDBK-1797
$\Phi_v\left(\omega ight)$	$\frac{\sigma_v^2 L_v}{\pi V} \cdot \frac{1 + 3 \left(L_v \frac{\omega}{V}\right)^2}{\left[1 + \left(L_v \frac{\omega}{V}\right)^2\right]^2}$	$\frac{2\sigma_v^2 L_v}{\pi V} \cdot \frac{1 + 12 \left(L_v \frac{\omega}{V}\right)^2}{\left[1 + 4 \left(L_v \frac{\omega}{V}\right)^2\right]^2}$
$\Phi_r(\omega)$	$\frac{\mp \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{3b\omega}{\pi V}\right)^{2}} \cdot \Phi_{v}\left(\omega\right)$	$\frac{\mp \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{3b\omega}{\pi V}\right)^{2}} \cdot \Phi_{v}\left(\omega\right)$
Vertical		
$\Phi_w(\omega)$	$\frac{\sigma_w^2 L_w}{\pi V} \cdot \frac{1 + 3 \left(L_w \frac{\omega}{V}\right)^2}{\left[1 + \left(L_w \frac{\omega}{V}\right)^2\right]^2}$	$\frac{2\sigma_w^2 L_w}{\pi V} \cdot \frac{1 + 12 \left(L_w \frac{\omega}{V}\right)^2}{\left[1 + 4 \left(L_w \frac{\omega}{V}\right)^2\right]^2}$
$\overline{\Phi_{q}\left(\omega ight)}$	$\frac{\pm \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{4b\omega}{\pi V}\right)^{2}} \cdot \Phi_{w}\left(\omega\right)$	$\frac{\pm \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{4b\omega}{\pi V}\right)^{2}} \cdot \Phi_{w}\left(\omega\right)$

The variable b represents the aircraft wingspan. The variables L_u , L_v , L_w represent the turbulence scale lengths. The variables σ_u , σ_v , σ_w represent the turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the specifications as three variations, which are displayed in the following table:

 $p_{g} = \frac{\partial w_{g}}{\partial y} \qquad q_{g} = \frac{\partial w_{g}}{\partial x} \qquad r_{g} = -\frac{\partial v_{g}}{\partial x}$ $p_{g} = \frac{\partial w_{g}}{\partial y} \qquad q_{g} = \frac{\partial w_{g}}{\partial x} \qquad r_{g} = \frac{\partial v_{g}}{\partial x}$ $p_{g} = -\frac{\partial w_{g}}{\partial y} \qquad q_{g} = -\frac{\partial w_{g}}{\partial x} \qquad r_{g} = \frac{\partial v_{g}}{\partial x}$

The variations affect only the vertical (\boldsymbol{q}_{g}) and lateral (r_{g}) turbulence angular rates.

Keep in mind that the longitudinal turbulence angular rate spectrum

$$\Phi_{p_g}(\omega)$$

is a rational function. The rational function is derived from curve-fitting a complex algebraic function, not the vertical turbulence velocity spectrum, $\Phi_w(\omega)$, multiplied by a scale factor. Because the turbulence angular rate spectra contribute less to the aircraft gust response than the turbulence velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral turbulence angular rate spectra:

Dryden Wind Turbulence Model (Continuous)

Vertical	Lateral	
$\Phi_q(\omega)$	$-\Phi_r(\omega)$	
$\Phi_q(\omega)$	$\Phi_r(\omega)$	
$-\Phi_q(\omega)$	$\Phi_r(\omega)$	

To generate a signal with the correct characteristics, a unit variance, band-limited white noise signal is passed through forming filters. The forming filters are derived from the spectral square roots of the spectrum equations.

The following table displays the transfer functions:

	MIL-F-8785C	MIL-HDBK-1797
Longitudin	al	
$H_u(s)$	$\sigma_u \sqrt{rac{2L_u}{\pi V}} \cdot rac{1}{1 + rac{L_u}{V}s}$	$\sigma_u \sqrt{rac{2L_u}{\pi V}} \cdot rac{1}{1 + rac{L_u}{V}s}$
$H_p(s)$	$\sigma_w \sqrt{\frac{0.8}{V}} \cdot \frac{\left(\frac{\pi}{4b}\right)^{1/6}}{L_w^{-1/3} \left(1 + \left(\frac{4b}{\pi V}\right)s\right)}$	$\sigma_w \sqrt{\frac{0.8}{V}} \cdot \frac{\left(\frac{\pi}{4b}\right)^{1/6}}{\left(2L_w\right)^{1/3} \left(1 + \left(\frac{4b}{\pi V}\right)s\right)}$
Lateral		

	MIL-F-8785C	MIL-HDBK-1797
$H_v(s)$	$\sigma_v \sqrt{rac{L_v}{\pi V}} \cdot rac{1 + rac{\sqrt{3}L_v}{V}s}{\left(1 + rac{L_v}{V}s ight)^2}$	$\sigma_v \sqrt{rac{2L_v}{\pi V}} \cdot rac{1 + rac{2\sqrt{3}L_v}{V}s}{\left(1 + rac{2L_v}{V}s ight)^2}$
$H_r(s)$	$\frac{\mp \frac{s}{V}}{\left(1 + \left(\frac{3b}{\pi V}\right)s\right)} \cdot H_v(s)$	$\frac{\mp \frac{s}{V}}{\left(1 + \left(\frac{3b}{\pi V}\right)s\right)} \cdot H_v(s)$
Vertical		
$H_w(s)$	$\sigma_w \sqrt{rac{L_w}{\pi V}} \cdot rac{1 + rac{\sqrt{3}L_w}{V}s}{\left(1 + rac{L_w}{V}s ight)^2}$	$\sigma_w \sqrt{rac{2L_w}{\pi V}} \cdot rac{1 + rac{2\sqrt{3}L_w}{V}s}{\left(1 + rac{2L_w}{V}s ight)^2}$
$H_q(s)$	$\frac{\pm \frac{s}{V}}{\left(1 + \left(\frac{4b}{\pi V}\right)s\right)} \cdot H_w(s)$	$\frac{\pm \frac{s}{V}}{\left(1 + \left(\frac{4b}{\pi V}\right)s\right)} \cdot H_w(s)$

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of altitude.

Note The military specifications result in the same transfer function after evaluating the turbulence scale lengths. The differences in turbulence scale lengths and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low altitudes, where h is the altitude in feet, are represented in the following table:

MIL-F-8785C	MIL-HDBK-1797
$L_w = h$	$2L_w = h$
$L_u = L_v = \frac{h}{(0.177 + 0.000823h)^{1.2}}$	$L_u = 2L_v = \frac{h}{(0.177 + 0.000823h)^{1.2}}$

The turbulence intensities are given below, where W_{20} is the wind speed at 20 feet (6 m). Typically for light turbulence, the wind speed at 20 feet is 15 knots; for moderate turbulence, the wind speed is 30 knots; and for severe turbulence, the wind speed is 45 knots.

$$\sigma_{w} = 0.1 W_{20}$$

$$\frac{\sigma_{u}}{\sigma_{w}} = \frac{\sigma_{u}}{\sigma_{w}} = \frac{1}{(0.177 + 0.000823h)^{0.4}}$$

The turbulence axes orientation in this region is defined as follows:

- Longitudinal turbulence velocity, $\boldsymbol{u}_{g},$ aligned along the horizontal relative mean wind vector
- Vertical turbulence velocity, w_g , aligned with vertical

At this altitude range, the output of the block is transformed into body coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are based on the assumption that the turbulence is isotropic. In the military references, the scale lengths are represented by the following equations:

MIL-F-8785C	MIL-HDBK-1797
L_u = L_v = L_w = 1750 ft	L_u = $2L_v$ = $2L_w$ = 1750 ft

The turbulence intensities are determined from a lookup table that provides the turbulence intensity as a function of altitude and the probability of the turbulence intensity being exceeded. The relationship of the turbulence intensities is represented in the following equation: $\sigma_u = \sigma_v = \sigma_w$.

The turbulence axes orientation in this region is defined as being aligned with the body coordinates.

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and turbulence angular rates are determined by linearly interpolating between the value from the low altitude model at 1000 feet transformed from mean horizontal wind coordinates to body coordinates and the value from the high altitude model at 2000 feet in body coordinates. Dialog Box

/ind Turbulence Model (mask) (link)		
Renerate atmospheric turbulence. White noise is passed through a filter	to give the turbulence the specified velocity spectra.	
fedium/high altitude scale lengths from the specifications are 762 m (25	500 ft) for Von Karman turbulence and 533.4 m (1750 ft	t) for Dryden turbuler
rameters		
Units: Metric (MKS)		
Specification: WILE 070EC		
Specification: JMIL4-0703C		
Model type: Continuous Dryden (+q +r)		
Wind speed at 6 m defines the low-altitude intensity (m/s):		
15		
Wind direction at 6 m (degrees clockwise from north)		
Probability of exceedance of high-altitude intensity: 10^-2 - Light		
Scale length at medium/high altitudes (m):		
Scale length at medium/high altitudes (m): 533.4		
Scale length at medium/high altitudes (m): 533.4 wingspan (m):		
Scale length at medium/high altitudes (m): 533.4 Wingspan (m): 10		
Scale length at medium/high altitudes (m): 533.4 Wingspan (m): 10 Band limited noise sample time (sec):		
Scale length at medium/high altitudes (m): 533.4 Wingspan (m): 10 Band limited noise sample time (sec): 0.1		
Scale length at medium/high altitudes (m): 533.4 Wingspan (m): 10 Band limited noise sample time (sec): 0.1		
Scale length at medium/high altitudes (m): 533.4 Wingspan (m): 10 Band limited noise sample time (sec): 0.1 Noise seeds (ug vg wg pg); 1734.1.234.9.2334.2.2334.1		
Scale length at medium/high altitudes (m): 533 4 Wingspan (m): 10 Band limited noise sample time (sec): 0.1 Noise seeds (ug vg wg pg): [23341 23342 23343 23344]		
Scale length at medium/high altitudes (m): 533.4 Wingspan (m): 10 Band limited noise sample time (sec): 0.1 Noise seeds [ug vg wg pg] [23341 23342 23343 23344] 7 Turbulence on		

Units

Define the units of wind speed due to the turbulence.

Units	Wind Velocity	Altitude	Airspeed
Metric (MKS)	Meters/second	Meters	Meters/second
English (Velocity in ft/s)	Feet/second	Feet	Feet/second
English (Velocity in kts)	Knots	Feet	Knots

Specification

Define which military reference to use. This affects the application of turbulence scale lengths in the lateral and vertical directions.

Model type

Select the wind turbulence model to use.

Continuous -r)	Von Karman	(+q	Use continuous representation of Von Kármán velocity spectra with positive vertical and negative lateral angular rates spectra.
Continuous +r)	Von Karman	(+q	Use continuous representation of Von Kármán velocity spectra with positive vertical and lateral angular rates spectra.
Continuous +r)	Von Karman	(- q	Use continuous representation of Von Kármán velocity spectra with negative vertical and positive lateral angular rates spectra.
Continuous	Dryden (+q	-r)	Use continuous representation of Dryden velocity spectra with positive vertical and negative lateral angular rates spectra.
Continuous	Dryden (+q	+r)	Use continuous representation of Dryden velocity spectra with positive vertical and lateral angular rates spectra.
Continuous	Dryden (-q	+r)	Use continuous representation of Dryden velocity spectra with negative vertical and positive lateral angular rates spectra.

Discrete Dryden (+q -r)	Use discrete representation of Dryden velocity spectra with positive vertical and negative lateral angular rates spectra.
Discrete Dryden (+q +r)	Use discrete representation of Dryden velocity spectra with positive vertical and lateral angular rates spectra.
Discrete Dryden (-q +r)	Use discrete representation of Dryden velocity spectra with negative vertical and positive lateral angular rates spectra.

The Continuous Dryden selections conform to the transfer function descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 6 meters (20 feet) provides the intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 6 meters (20 feet) is an angle to aid in transforming the low-altitude turbulence model into a body coordinates.

Probability of exceedance of high-altitude intensity

Above 2000 feet, the turbulence intensity is determined from a lookup table that gives the turbulence intensity as a function of altitude and the probability of the turbulence intensity's being exceeded.

Scale length at medium/high altitudes (m)

The turbulence scale length above 2000 feet is assumed constant, and from the military references, a figure of 1750 feet is recommended for the longitudinal turbulence scale length of the Dryden spectra.

Dryden Wind Turbulence Model (Continuous)

Note An alternate scale length value changes the power spectral density asymptote and gust load.

Wingspan

The wingspan is required in the calculation of the turbulence on the angular rates.

Band-limited noise sample time (sec)

The sample time at which the unit variance white noise signal is generated.

Noise seeds

There are four random numbers required to generate the turbulence signals, one for each of the three velocity components and one for the roll rate. The turbulences on the pitch and yaw angular rates are based on further shaping of the outputs from the shaping filters for the vertical and lateral velocities.

Turbulence on

Selecting the check box generates the turbulence signals.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the altitude, in units selected.
	Second		Contains the aircraft speed, in units selected.
	Third		Contains the direction cosine matrix.
	Output	Dimension Type	Description
	First	Three-element signal	Contains the turbulence velocities, in the selected units.
	Second	Three-element signal	Contains the turbulence angular rates, in radians per second.

Assumptions and Limitations	The frozen turbulence field assumption is valid for the cases of mean-wind velocity and the root-mean-square turbulence velocity, or intensity, is small relative to the aircraft's ground speed.		
	The turbulence model describes an average of all conditions for clear air turbulence because the following factors are not incorporated into the model:		
	• Terrain roughness		
	• Lapse rate		
	• Wind shears		
	• Mean wind magnitude		
	• Other meteorological factions (except altitude)		
Examples	See the Airframe subsystem in the aeroblk_HL20 demo for an example of this block.		
References	U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.		
	U.S. Military Specification MIL-F-8785C, 5 November 1980.		
	Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., "Background Information and User Guide for MIL-F-8785B(ASG), 'Military Specification-Flying Qualities of Piloted Airplanes'," AD869856, Cornell Aeronautical Laboratory, August 1969.		
	Hoblit, F., <i>Gust Loads on Aircraft: Concepts and Applications</i> , AIAA Education Series, 1988.		
	Ly, U., Chan, Y., "Time-Domain Computation of Aircraft Gust Covariance Matrices," AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference, Danvers, Massachusetts, August 11-13, 1980.		
	McRuer, D., Ashkenas, I., Graham, D., <i>Aircraft Dynamics and Automatic Control</i> , Princeton University Press, July 1990.		

Dryden Wind Turbulence Model (Continuous)

	Moorhouse, D., Woodcock, R., "Background Information and User Guide for MIL-F-8785C, 'Military Specification-Flying Qualities of Piloted Airplanes'," ADA119421, Flight Dynamic Laboratory, July 1982.
	McFarland, R., "A Standard Kinematic Model for Flight Simulation at NASA-Ames," NASA CR-2497, Computer Sciences Corporation, January 1975.
	Tatom, F., Smith, R., Fichtl, G., "Simulation of Atmospheric Turbulent Gusts and Gust Gradients," AIAA Paper 81-0300, Aerospace Sciences Meeting, St. Louis, Missouri, January 12-15, 1981.
	Yeager, J., "Implementation and Testing of Turbulence Models for the F18-HARV Simulation," NASA CR-1998-206937, Lockheed Martin Engineering & Sciences, March 1998.
See Also	Dryden Wind Turbulence Model (Discrete) Discrete Wind Gust Model Wind Shear Model Von Karman Wind Turbulence Model (Continuous)

Purpose Generate discrete wind turbulence with Dryden velocity spectra

Library

Environment/Wind

Description

>	h (m)	Disc rete	V _{Wind} (m/s) >	
>	V (m/s)	E_		
>	DOM	(+q +r)	∞ _{wind} (rad/s)⊳	

The Dryden Wind Turbulence Model (Discrete) block uses the Dryden spectral representation to add turbulence to the aerospace model by using band-limited white noise with appropriate digital filter finite difference equations. This block implements the mathematical representation in the Military Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined by velocity spectra. For an aircraft flying at a speed V through a frozen turbulence field with a spatial frequency of Ω radians per meter, the circular frequency ω is calculated by multiplying V by Ω . The following table displays the component spectra functions:

	MIL-F-8785C	MIL-HDBK-1797
Longitudinal		
$\Phi_u(\omega)$	$\frac{2\sigma_u^2 L_u}{\pi V} \cdot \frac{1}{1 + \left(L_u \frac{\omega}{V}\right)^2}$	$\frac{2\sigma_u^2 L_u}{\pi V} \cdot \frac{1}{1 + \left(L_u \frac{\omega}{V}\right)^2}$
$\Phi_p(\omega)$	$\frac{\sigma_w^2}{VL_w} \cdot \frac{0.8 \left(\frac{\pi L_w}{4b}\right)^{1/3}}{1 + \left(\frac{4b\omega}{\pi V}\right)^2}$	$\frac{\sigma_w^2}{2VL_w} \cdot \frac{0.8 \left(\frac{2\pi L_w}{4b}\right)^{1/3}}{1 + \left(\frac{4b\omega}{\pi V}\right)^2}$

	MIL-F-8785C	MIL-HDBK-1797
Lateral		
$\Phi_v(\omega)$	$\frac{\sigma_v^2 L_v}{\pi V} \cdot \frac{1 + 3 \left(L_v \frac{\omega}{V}\right)^2}{\left[1 + \left(L_v \frac{\omega}{V}\right)^2\right]^2}$	$\frac{2\sigma_v^2 L_v}{\pi V} \cdot \frac{1 + 12 \left(L_v \frac{\omega}{V}\right)^2}{\left[1 + 4 \left(L_v \frac{\omega}{V}\right)^2\right]^2}$
$\Phi_r(\omega)$	$\frac{\mp \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{3b\omega}{\pi V}\right)^{2}} \cdot \Phi_{v}\left(\omega\right)$	$\frac{\mp \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{3b\omega}{\pi V}\right)^{2}} \cdot \Phi_{v}\left(\omega\right)$
Vertical		
$\Phi_w(\omega)$	$\frac{\sigma_w^2 L_w}{\pi V} \cdot \frac{1 + 3 \left(L_w \frac{\omega}{V}\right)^2}{\left[1 + \left(L_w \frac{\omega}{V}\right)^2\right]^2}$	$\frac{2\sigma_w^2 L_w}{\pi V} \cdot \frac{1 + 12 \left(L_w \frac{\omega}{V}\right)^2}{\left[1 + 4 \left(L_w \frac{\omega}{V}\right)^2\right]^2}$
$\Phi_q(\omega)$	$\frac{\pm \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{4b\omega}{\pi V}\right)^{2}} \cdot \Phi_{w}\left(\omega\right)$	$\frac{\pm \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{4b\omega}{\pi V}\right)^{2}} \cdot \Phi_{w}\left(\omega\right)$

The variable *b* represents the aircraft wingspan. The variables L_u , L_v , L_w represent the turbulence scale lengths. The variables σ_u , σ_v , σ_w represent the turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the references as three variations, which are displayed in the following table:

 $p_{g} = \frac{\partial w_{g}}{\partial y} \qquad q_{g} = \frac{\partial w_{g}}{\partial x} \qquad r_{g} = -\frac{\partial v_{g}}{\partial x}$ $p_{g} = \frac{\partial w_{g}}{\partial y} \qquad q_{g} = \frac{\partial w_{g}}{\partial x} \qquad r_{g} = \frac{\partial v_{g}}{\partial x}$ $p_{g} = -\frac{\partial w_{g}}{\partial y} \qquad q_{g} = -\frac{\partial w_{g}}{\partial x} \qquad r_{g} = \frac{\partial v_{g}}{\partial x}$

The variations affect only the vertical (\boldsymbol{q}_{g}) and lateral (r_{g}) turbulence angular rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, $\Phi_p(\omega)$, is a rational function. The rational function is derived from curve-fitting a complex algebraic function, not the vertical turbulence velocity spectrum, $\Phi_w(\omega)$, multiplied by a scale factor. Because the turbulence angular rate spectra contribute less to the aircraft gust response than the turbulence velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral turbulence angular rate spectra:

Vertical	Lateral
$\Phi_q(\omega)$	$-\Phi_r(\omega)$
$\Phi_q(\omega)$	$\Phi_r(\omega)$
$-\Phi_q(\omega)$	$\Phi_r(\omega)$

To generate a signal with the correct characteristics, a unit variance, band-limited white noise signal is used in the digital filter finite difference equations.

The following table displays the digital filter finite difference equations:

	MIL-F-8785C	MIL-HDBK-1797
Longitud	inal	
u _g	$\left(1 - \frac{V}{L_u}T\right) u_g + \sqrt{2\frac{V}{L_u}T}\frac{\sigma_u}{\sigma_\eta}\eta_1$	$\left(1 - \frac{V}{L_u}T\right) u_g + \sqrt{2\frac{V}{L_u}T}\frac{\sigma_u}{\sigma_\eta}\eta_1$
p_g	$\left(1 - {2.6 \over \sqrt{L_w b}} T ight) p_g +$	$\left(1\!-\!rac{2.6}{\sqrt{2L_wb}}T ight)\!p_g$ +
	$\sqrt{2\frac{2.6}{\sqrt{L_wb}}T}\frac{\frac{0.95}{\sqrt[3]{2L_wb^2}}}{\sigma_\eta}\eta_4$	$\sqrt{2rac{2.6}{\sqrt{2L_wb}}T}rac{1.9}{\sigma_\eta}\sigma_w$
Lateral		
v _g	$\left(1-rac{V}{L_{u}}T ight)v_{g}+\sqrt{2rac{V}{L_{u}}T}rac{\sigma_{v}}{\sigma_{\eta}}\eta_{2}$	$\left(1 - \frac{V}{L_u}T\right) v_g + \sqrt{2\frac{V}{L_u}T} \frac{\sigma_v}{\sigma_\eta} \eta_2$

	MIL-F-8785C	MIL-HDBK-1797
r _g	$\left(1-\frac{\pi V}{3b}T\right)r_g\mp\frac{\pi}{3b}\left(v_g-v_{g_{past}}\right)$	$\left(1 - \frac{\pi V}{3b}T\right) r_g \mp \frac{\pi}{3b} \left(v_g - v_{g_{past}}\right)$
Vertical		
wg	$\left(1-\frac{V}{L_u}T\right)w_g + \sqrt{2rac{V}{L_u}T}rac{\sigma_w}{\sigma_\eta}\eta_3$	$\left(1 - \frac{V}{L_u}T\right) w_g + \sqrt{2\frac{V}{L_u}T} \frac{\sigma_w}{\sigma_\eta} \eta_3$
q_g	$\left(1-\frac{\pi V}{T}T\right)a_{\pi}\pm\frac{\pi}{T}\left(w_{\pi}-w_{\pi}\right)$	$\left(1-\frac{\pi V}{T}T\right)a_{\pi}\pm\frac{\pi}{T}(w_{\pi}-w_{\pi})$

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of altitude.

4b

18

 $4b \setminus g$

8 past)

Low-Altitude Model (Altitude < 1000 feet)

8 _{past} J

 $4b \setminus s$

4b

According to the military references, the turbulence scale lengths at low altitudes, where h is the altitude in feet, are represented in the following table:

MIL-F-8785C	MIL-HDBK-1797		
$L_{w} = h$	$2L_w = h$		
$L_{u} = L_{v} = \frac{h}{(0.177 + 0.000823h)^{1.2}}$	$L_u = 2L_v = \frac{h}{(0.177 + 0.000823h)^{1.2}}$		

The turbulence intensities are given below, where W_{20} is the wind speed at 20 feet (6 m). Typically for light turbulence, the wind speed at 20 feet is 15 knots; for moderate turbulence, the wind speed is 30 knots, and for severe turbulence, the wind speed is 45 knots.

 $\sigma_{w} = 0.1 W_{20}$ $\frac{\sigma_{u}}{\sigma_{w}} = \frac{\sigma_{v}}{\sigma_{w}} = \frac{1}{(0.177 + 0.000823h)^{0.4}}$

The turbulence axes orientation in this region is defined as follows:

- Longitudinal turbulence velocity, $\boldsymbol{u}_{g},$ aligned along the horizontal relative mean wind vector
- Vertical turbulence velocity, w_{g} , aligned with vertical.

At this altitude range, the output of the block is transformed into body coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are based on the assumption that the turbulence is isotropic. In the military references, the scale lengths are represented by the following equations:

MIL-F-8785C	MIL-HDBK-1797		
$L_u = L_v = L_w = 1750 \text{ ft}$	L_u = $2L_v$ = $2L_w$ = 1750 ft		

The turbulence intensities are determined from a lookup table that provides the turbulence intensity as a function of altitude and the probability of the turbulence intensity being exceeded. The relationship of the turbulence intensities is represented in the following equation: $\sigma_u = \sigma_v = \sigma_w$.

The turbulence axes orientation in this region is defined as being aligned with the body coordinates.

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and turbulence angular rates are determined by linearly interpolating between the value from the low altitude model at 1000 feet transformed from mean horizontal wind coordinates to body coordinates and the value from the high altitude model at 2000 feet in body coordinates.

Dryden Wind Turbulence Model (Discrete)

Dialog Box

Block Parameters: Dryden Wind Turbulence M	odel (Discrete (+q +r))				<u>? ×</u>
Wind Turbulence Model (mask) (link)					
Generate atmospheric turbulence. White noise is pass	sed through a filter to give the tu	irbulence the spe	cified velocity spec	tra.	
Medium/high altitude scale lengths from the specifical	tions are 762 m (2500 ft) for Vor	n Karman turbulen	ce and 533.4 m (17	750 ft) for Dryden t	urbulence.
Parameters					
Units: Metric (MKS)					•
Specification: MIL-F-8785C					•
Model type: Discrete Dryden (+q +r)					•
Wind speed at 6 m defines the low-altitude intensity !	(m/s):				
15					
Wind direction at 6 m (degrees clockwise from north):				
0					
Probability of exceedance of high-altitude intensity:	10^-2 - Light				-
Scale length at medium/high altitudes (m):					
533.4					
Wingspan (m):					
10					
Band limited noise and discrete filter sample time (ser	5):				
0.1	,				
Noise seeds (up up up pa):					
[23341 23342 23343 23344]					
i rubulence on					
		OV.	Court 1	[
		ŪK	Lancel	Help	Apply

Units

Define the units of wind speed due to the turbulence.

Units	Wind Velocity	Altitude	Airspeed
Metric (MKS)	Meters/second	Meters	Meters/second
English (Velocity in ft/s)	Feet/second	Feet	Feet/second
English (Velocity in kts)	Knots	Feet	Knots
Specification

Define which military reference to use. This affects the application of turbulence scale lengths in the lateral and vertical directions

Model type

Select the wind turbulence model to use:

Continuous (+q -r)	Von Karman	Use continuous representation of Von Kármán velocity spectra with positive vertical and negative lateral angular rates spectra.
Continuous (+q +r)	Von Karman	Use continuous representation of Von Kármán velocity spectra with positive vertical and lateral angular rates spectra.
Continuous (-q +r)	Von Karman	Use continuous representation of Von Kármán velocity spectra with negative vertical and positive lateral angular rates spectra.
Continuous -r)	Dryden (+q	Use continuous representation of Dryden velocity spectra with positive vertical and negative lateral angular rates spectra.
Continuous +r)	Dryden (+q	Use continuous representation of Dryden velocity spectra with positive vertical and lateral angular rates spectra.
Continuous +r)	Dryden (-q	Use continuous representation of Dryden velocity spectra with negative vertical and positive lateral angular rates spectra.

Discrete Dryden	(+q -r)	Use discrete representation of Dryden velocity spectra with positive vertical and negative lateral angular rates spectra.
Discrete Dryden	(+q +r)	Use discrete representation of Dryden velocity spectra with positive vertical and lateral angular rates spectra.
Discrete Dryden	(-q +r)	Use discrete representation of Dryden velocity spectra with negative vertical and positive lateral angular rates spectra.

The Discrete Dryden selections conform to the transfer function descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 6 meters (20 feet) provides the intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 6 meters (20 feet) is an angle to aid in transforming the low-altitude turbulence model into a body coordinates.

Probability of exceedance of high-altitude intensity

Above 2000 feet, the turbulence intensity is determined from a lookup table that gives the turbulence intensity as a function of altitude and the probability of the turbulence intensity's being exceeded.

Scale length at medium/high altitudes

The turbulence scale length above 2000 feet is assumed constant, and from the military references, a figure of 1750 feet is recommended for the longitudinal turbulence scale length of the Dryden spectra. **Note** An alternate scale length value changes the power spectral density asymptote and gust load.

Wingspan

The wingspan is required in the calculation of the turbulence on the angular rates.

Band-limited noise and discrete filter sample time (sec)

The sample time at which the unit variance white noise signal is generated and at which the discrete filters are updated.

Noise seeds

There are four random numbers required to generate the turbulence signals, one for each of the three velocity components and one for the roll rate. The turbulences on the pitch and yaw angular rates are based on further shaping of the outputs from the shaping filters for the vertical and lateral velocities.

Turbulence on

Selecting the check box generates the turbulence signals.

Inputs and Outputs	Input	Dimension Type	Description
	First		Contains the altitude, in units selected.
	Second		Contains the aircraft speed, in units selected.
	Third		Contains the NED direction cosine matrix.

Dryden Wind Turbulence Model (Discrete)

	Output	Dimension Type	Description		
	First	Three-element signal	Contains the turbulence velocities, in the selected units.		
	Second	Three-element signal	Contains the turbulence angular rates, in radians per second.		
Assumptions and Limitations	The "frozen mean-wind intensity, is	turbulence field" ass velocity and the root- small relative to the	umption is valid for the cases of mean-square turbulence velocity, or aircraft's ground speed.		
	The turbule air turbuler the model:	ence model describes ance because the follow	an average of all conditions for clear ring factors are not incorporated into		
	• Terrain r	oughness			
	• Lapse rate				
	• Wind shears				
	• Mean wind magnitude				
	• Other meteorological factions (except altitude)				
References	U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.				
	U.S. Militar	ry Specification MIL-l	F-8785C, 5 November 1980.		
	Chalk, C., N Information Specificatio Aeronautica	Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., "Background Information and User Guide for MIL-F-8785B(ASG), 'Military Specification-Flying Qualities of Piloted Airplanes'," AD869856, Cornell Aeronautical Laboratory, August 1969.			
	Hoblit, F., <i>Gust Loads on Aircraft: Concepts and Applications</i> , AIAA Education Series, 1988.				
	Ly, U., Chan, Y., "Time-Domain Computation of Aircraft Gust Covariance Matrices," AIAA Paper 80-1615, Atmospheric Fligh Mechanics Conference, Danvers, Massachusetts, August 11-13,				

	McRuer, D., Ashkenas, I., Graham, D., <i>Aircraft Dynamics and Automatic Control</i> , Princeton University Press, July 1990.
	Moorhouse, D., Woodcock, R., "Background Information and User Guide for MIL-F-8785C, 'Military Specification-Flying Qualities of Piloted Airplanes'," ADA119421, Flight Dynamic Laboratory, July 1982.
	McFarland, R., "A Standard Kinematic Model for Flight Simulation at NASA-Ames," NASA CR-2497, Computer Sciences Corporation, January 1975.
	Tatom, F., Smith, R., Fichtl, G., "Simulation of Atmospheric Turbulent Gusts and Gust Gradients," AIAA Paper 81-0300, Aerospace Sciences Meeting, St. Louis, Missouri, January 12-15, 1981.
	Yeager, J., "Implementation and Testing of Turbulence Models for the F18-HARV Simulation," NASA CR-1998-206937, Lockheed Martin Engineering & Sciences, March 1998.
See Also	Dryden Wind Turbulence Model (Continuous)
	Von Karman Wind Turbulence Model (Continuous)
	Discrete Wind Gust Model
	Wind Shear Model

Dynamic Pressure

Purpose	Compute	dynamic	pressure	using	velocity	and a	air (density	J
	F		T	- 0					÷.,

Library Flight Parameters

The Dynamic Pressure block computes dynamic pressure. Dynamic pressure is defined as

Description

 $\overline{q} = \frac{1}{2} \rho V^2$

where P is air density and V is velocity.

Dialoa	Block Parameters: Dynamic Pressure	×
Box	Dynamic Pressure (mask) (link) Compute dynamic pressure using velocity and air density.	
	OK Cancel Help Apply	1

Inputs and	Input	Dimension Type	Description
Outputs	First	Vector	Contains the velocity.
	Second		Contains the air density.
	Output	Dimension Type	Description
	First		Contains the dynamic pressure.
Examples	See the Air of this bloc	rframe subsystem in t k.	he aeroblk_HL20 demo for an example
See Also	Aerodynan	nic Forces and Mome	nts
	Mach Num	nber	

PurposeCalculate geodetic latitude, longitude, and altitude above planetary
ellipsoid from Earth-centered Earth-fixed (ECEF) position

Utilities/Axes Transformations

Description

µl> ≻X_f h>

Library

The ECEF Position to LLA block converts a 3-by-1 vector of ECEF

position (\bar{p}) into geodetic latitude $(\bar{\mu})$, longitude $(\bar{\iota})$, and altitude

 (\bar{h}) above the planetary ellipsoid.

The ECEF position is defined as

$$\overline{p} = \begin{bmatrix} \overline{p}_x \\ \overline{p}_y \\ \overline{p}_z \end{bmatrix}$$

Longitude is calculated from the ECEF position by

$$\iota = \operatorname{atan}\left(\frac{p_y}{p_x}\right)$$

Geodetic latitude $(\bar{\mu})$ is calculated from the ECEF position using Bowring's method, which typically converges after two or three iterations. The method begins with an initial guess for geodetic latitude

 $(\bar{\mu})$ and reduced latitude $(\bar{\beta})$. An initial guess takes the form:

$$\begin{split} \overline{\beta} &= \operatorname{atan}\!\left(\frac{p_z}{(1-f)s}\right) \\ \overline{\mu} &= \operatorname{atan}\!\left(\frac{p_z + \frac{e^2(1-f)}{(1-e^2)}R(\sin\beta)^3}{s - e^2R(\cos\beta)^3}\right) \end{split}$$

where *R* is the equatorial radius, *f* the flattening of the planet, $e^2 = 1-(1-f)^2$, the square of first eccentricity, and

$$s = \sqrt{p_x^2 + p_y^2}$$

After the initial guesses are calculated, the reduced latitude $(\bar{\beta})$ is recalculated using

$$\beta = \operatorname{atan}\left(\frac{(1-f)\sin\mu}{\cos\mu}\right)$$

and geodetic latitude $(\bar{\mu})$ is reevaluated. This last step is repeated until $\bar{\mu}$ converges.

The altitude $\left(ar{h}
ight)$ above the planetary ellipsoid is calculated with

$$h = s\cos\mu + \left(p_z + e^2N\sin\mu\right)\sin\mu - N$$

where the radius of curvature in the vertical prime $\left(ar{N}
ight)$ is given by

$$N = \frac{R}{\sqrt{1 - e^2(\sin\mu)^2}}$$

Dialog Box

Function Block Parameters: ECEF Position to 🗵				
ECEF to LLA (mask)				
Calculate geodetic latitude, longitude, and altitude from Earth Centered Earth Fixed (ECEF) position.				
Parameters				
Units: Metric (MKS)				
Planet model: Earth (WGS84)				
OK Cancel Help Apply				

🙀 Function Block Parameters: ECEF Position to 🗴		
ECEF to LLA (mask)		
Calculate geodetic latitude, longitude, and altitude from Earth Centered Earth Fixed (ECEF) position.		
Parameters-		
Planet model: Custom		
Flattening:		
1/298.257223563		
Equatorial radius of planet:		
6378137		
OK Cancel Help Apply		

Units

Specifies the parameter and output units:

Units	Position	Equatorial Radius	Altitude
Metric (MKS)	Meters	Meters	Meters
English	Feet	Feet	Feet

This option is only available when **Planet model** is set to Earth (WGS84).

Planet model

Specifies the planet model to use, Custom or Earth (WGS84).

Flattening

Specifies the flattening of the planet.

This option is available only with **Planet model** set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The equatorial radius units should be the same as the desired units for ECEF position.

This option is available only with **Planet model** set to Custom.

Inputs and	Input	Dimension Type	Description
Oupuis	First	3-by-1 vector	Contains the position in ECEF frame.
	Output	Dimension Type	Description
	First	2-by-1 vector	Contains the geodetic latitude and longitude, in degrees.
	Second	Scalar	Contains the altitude above the planetary ellipsoid, in the same units as the ECEF position.

Assumptions

and Limitations

This implementation generates a geodetic latitude that lies between ± 90 degrees, and longitude that lies between ± 180 degrees. The planet is assumed to be ellipsoidal. By setting the flattening to 0, you model a spherical planet.

The implementation of the ECEF coordinate system assumes that its origin lies at the center of the planet, the *x*-axis intersects the prime

(Greenwich) meridian and the equator, the z-axis is the mean spin
axis of the planet (positive to the north), and the y-axis completes the
right-handed system.

References Stevens, B. L., and F. L. Lewis, *Aircraft Control and Simulation*, John Wiley & Sons, New York, 1992.

Zipfel, P. H., *Modeling and Simulation of Aerospace Vehicle Dynamics*, AIAA Education Series, Reston, Virginia, 2000.

"Atmospheric and Space Flight Vehicle Coordinate Systems," ANSI/AIAA R-004-1992.

See Also See "About Aerospace Coordinate Systems" on page 2-16.

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

EGM96 Geoid

Purpose Calculate geoid height as determined from EGM96 Geopotential Model

Library

Environment/Gravity

Description

The EGM96 Geoid block calculates the geoid height as determined from the EGM96 Geopotential Model. The block interpolates the geoid heights from a 15 minute grid of point values in the tide-free system. It uses the EGM96 Geopotential Model to degree and order 360. The geoid undulations are with respect to the WGS84 ellipsoid.

The interpolation scheme wraps over the poles to allow for geoid height calculations at and near these locations.

Dialog Box

🙀 Function Block Parameters: EGM96 Geoid	×			
EGM96 Geoid (mask) (link)				
Calculates the geoid height as determined from the EGM96 Geopotential Model. Geoid heights are interpolated from a 15-minute grid of point values in the tide-free system, using the EGM96 Geopotential Model to degree and order 360.				
Geocentric latitude and longitude are entered in degrees.				
Parameters				
Units: Metric (MKS)	•			
Data type: double	•			
<u> </u>	Apply			

Units

Specifies the parameter and output units:

Units	Height
Metric (MKS)	Meters
English	Feet

Data type

Specify the data type of the input and output signals. From the list, select double or single.

Inputs and	Input	Dimension Type	Description
	First	Scalar	Contains geocentric latitude in degrees, where north latitude is positive, and south latitude is negative. Input latitude must be of type single or double. If latitude is not in the range from -90 to 90, the block wraps it to be within the range.
	Second	Scalar	Contains geocentric longitude in degrees, where east longitude is positive in the range from 0 to 360. Input longitude must be of type single or double. If longitude is not in the range from 0 to 360, the block wraps it to be within the range.
	Output	Dimension Type	Description
	First	Scalar	Contains the geoid height, in meters.

Limitations This block has the limitations of the 1996 Earth Geopotential Model. For more information, see http://www.ngdc.noaa.gov/mgg/gravity/1999/document/html/egm96.html.

EGM96 Geoid

	The WGS84 EGM96 geoid undulations have an error range of +/-0.5 to +/-1.0 meters worldwide.
References	"Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems", NIMA TR8350.2.
	"The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96", NASA/TP-1998-206861.
	National Geospatial-Intelligence Agency Web site: http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html
See Also	WGS84 Gravity Model

Purpose Calculate center of gravity location

Library

Dialog Box Mass Properties

Description

The Estimate Center of Gravity block calculates the center of gravity location and the rate of change of the center of gravity.

Linear interpolation is used to estimate the location of center of gravity as a function of mass. The rate of change of center of gravity is a linear function of rate of change of mass.

Block Parameters: Estimate Center of Gravity	? ×
Estimate CG (mask) (link)	
Calculate the center of gravity location. Linear interpolation is used to determine center of gravity as a function of mass.	
Parameters	
Full mass:	
2	
Empty mass:	
1	_
Full center of gravity:	
[1 1 1]	_
Empty center of gravity:	
[0.5 0.5 0.5]	_
OK Cancel Help Apr	oly

Full mass

Specifies the gross mass of the craft.

Empty mass

Specifies the empty mass of the craft.

Full center of gravity

Specifies the center of gravity at gross mass of the craft.

Empty center of gravity

Specifies the center of gravity at empty mass of the craft.

_			
Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the mass.
	Second		Contains the rate of change of mass.
	Output	Dimension Type	Description
	First		Contains the center of gravity location.
	Second		Contains the rate of change of center of gravity location.
Examples	See the aeroblk_vmm demo for an example of this block.		
See Also	Aerodynamic Forces and Moments		
	Estimate In	nertia Tensor	
	Moments A	bout CG Due to Forc	es

Purpose Calculate inertia tensor

Library

Mass Properties

Description

Dialog Box The Estimate Inertia Tensor block calculates the inertia tensor and the rate of change of the inertia tensor.

Linear interpolation is used to estimate the inertia tensor as a function of mass. The rate of change of the inertia tensor is a linear function of rate of change of mass.

Block Parameters: Estimate Inertia Tensor	? ×
-Estimate Inertia (mask) (link)	
Calculate the inertia tensor. Linear interpolation is used to determine inertia l as a function of mass.	tensor
Parameters	
Full mass:	
2	
Empty mass:	
1	
Full inertia matrix:	
eye(3)	
Empty inertia matrix:	
eye(3)/2	_

Full mass

Specifies the gross mass of the craft.

Empty mass

Specifies the empty mass of the craft.

Full inertia matrix

Specifies the inertia tensor at gross mass of the craft.

Empty inertia matrix

Specifies the inertia tensor at empty mass of the craft.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the mass.
	Second		Contains the rate of change of mass.
	Output	Dimension Type	Description
	First		Contains the inertia tensor.
	Second		Contains the rate of change of inertia tensor.
See Also	Estimate (Center of Gravity	

Symmetric Inertia Tensor

Purpose Estimate geodetic latitude, longitude, and altitude from flat Earth position

Utilities/Axes Transformations

Description

Library

≻X_e μI> >h_{ref} h> position (\bar{p}) into geodetic latitude $(\bar{\mu})$, longitude $(\bar{\tau})$, and altitude (h). The flat Earth coordinate system assumes the *z*-axis is downward positive. The estimation begins by transforming the flat Earth *x* and *y* coordinates to North and East coordinates. The transformation has the form of

The Flat Earth to LLA block converts a 3-by-1 vector of Flat Earth

 $\begin{bmatrix} N \\ E \end{bmatrix} = \begin{bmatrix} \cos\psi & -\sin\psi \\ \sin\psi & \cos\psi \end{bmatrix} \begin{bmatrix} p_x \\ p_y \end{bmatrix}$

where $(\overline{\psi})$ is the angle in degrees clockwise between the *x*-axis and north.

To convert the North and East coordinates to geodetic latitude and longitude, the radius of curvature in the prime vertical (R_N) and the radius of curvature in the meridian (R_M) are used. (R_N) and (R_M) are defined by the following relationships:

$$\begin{split} R_N &= \frac{R}{\sqrt{1 - (2f - f^2) \sin^2 \mu}} \\ R_M &= R_N \frac{1 - (2f - f^2)}{1 - (2f - f^2) \sin^2 \mu} \end{split}$$

where (R) is the equatorial radius of the planet $\operatorname{and}(\overline{f})$ is the flattening of the planet.

Small changes in the in latitude and longitude are approximated from small changes in the North and East positions by

$$d\mu = \operatorname{atan}\left(rac{1}{R_M}
ight) dN$$

 $d\iota = \operatorname{atan}\left(rac{1}{R_N \cos \mu}
ight) dE$

The output latitude and longitude are simply the initial latitude and longitude plus the small changes in latitude and longitude.

$$\mu = \mu_0 + d\mu$$
$$\iota = \iota_0 + d\iota$$

The altitude is the negative flat Earth z-axis value minus the reference height (h_{ref}) .

$$h = -p_z - h_{ref}$$

Dialog Box

-

Flat Earth to LLA (mask)	(link)———			
Estimate geodetic latitud Earth coordinate system	le, longitude assumes th	e, and altitude fr e z-axis is positi	om flat Earth position. ve downwards.	The flat
-Parameters				
Units: Metric (MKS)				•
Planet model: Earth (W	/GS84)			•
Initial geodetic latitude a	and longitud	e [deg]:		
[0 10]				
Direction of flat Earth x-	axis (degree	s clockwise fror	n north):	
0				
	OK	Cancel	Help	Applu
				мрру
Function Block Para	meters: Fl	at Earth to LL	A	X
-Flat Earth to LLA (mask)	(link)——			
Estimate geodetic latitud	le, longitude	, and altitude fr	om flat Earth position.	The flat
Earth coordinate system assumes the z-axis is positive downwards.				
-Parameters				
Planet model: Custom				•
Flattening:				
1/298.257223563				
,				
Equatorial radius of plan	net:			
Equatorial radius of plan 6378137	net:			
Figuatorial radius of plan 6378137 Initial geodetic latitude a	net: and longitud	e (deg):		
Equatorial radius of plan 6378137 Initial geodetic latitude a [0 10]	net: and longitud	e [deg]:		
Equatorial radius of plan 6378137 Initial geodetic latitude a [0 10] Direction of flat Earth x-	net: and longitud axis (degree	e (deg): s clockwise fror	n north):	
, Equatorial radius of plar 6378137 Initial geodetic latitude a [(0 10] Direction of flat Earth x- 0	net: and longitud axis (degree	e (deg): s clockwise fror	n north):	
, Equatorial radius of plar [6378137 Initial geodetic latitude a [(0 10] Direction of flat Earth x- [0	net: and longitud axis (degree	e [deg]: s clockwise fror	n north):	
Equatorial radius of plar 6378137 Initial geodetic latitude a [0 10] Direction of flat Earth x- 0	net: and longitud axis (degree	e [deg]; s clockwise fror Cancel	n north):	Apply

Units

Specifies the parameter and output units:

Units	Position	Equatorial Radius	Altitude
Metric (MKS)	Meters	Meters	Meters
English	Feet	Feet	Feet

This option is only available when **Planet model** is set to Earth (WGS84).

Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

Flattening

Specifies the flattening of the planet. This option is only available with **Planet model Custom**.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for flat Earth position. This option is only available with **Planet model Custom**.

Initial geodetic latitude and longitude

Specifies the reference location, in degrees of latitude and longitude, for the origin of the estimation and the origin of the flat Earth coordinate system.

Direction of flat Earth x-axis (degrees clockwise from north)

Specifies angle used for converting flat Earth x and y coordinates to North and East coordinates.

Inputs and	Input	Dimension Type	Description
Outputs	First	3-by-1 vector	Contains the position in flat Earth frame.
	Second	Scalar	Contains the reference altitude in the same units for flat Earth position.

	Output	Dimension Type	Description	
	First	2-by-1 vector	Contains the geodetic latitude and longitude, in degrees.	
	Second	Scalar	Contains the altitude above the input reference altitude, in same units as flat Earth position.	
Assumptions and	This estimation method assumes the flight path and bank angle are zero.			
Limitations	This estimation method assumes the flat Earth <i>z</i> -axis is normal to the Earth at the initial geodetic latitude and longitude only. This method has higher accuracy over small distances from the initial geodetic latitude and longitude, and nearer to the equator. The longitude will have higher accuracy the smaller the variations in latitude. Additionally, longitude is singular at the poles.			
Example	See the ask	oh120 demo for an exa	ample of this block.	
References	Etkin, B., <i>Dynamics of Atmospheric Flight</i> , John Wiley & Sons, New York, 1972.			
	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , Second Edition, John Wiley & Sons, New York, 2003.			
See Also	Direction (Cosine Matrix ECEF t	to NED	
	Direction (Cosine Matrix ECEF t	o NED to Latitude and Longitude	
	ECEF Position to LLA			
	Geocentric	to Geodetic Latitude		
	LLA to EC	EF Position		
	Radius at Geocentric Latitude			

FlightGear Preconfigured 6DoF Animation

Purpose Connect model to FlightGear flight simulator

Animation/Flight Simulator Interfaces

Library

Description

The FlightGear Preconfigured 6DoF Animation block lets you drive position and attitude values to a FlightGear flight simulator vehicle given double precision values for longitude (1), latitude (i), altitude (h), roll (ϕ), pitch (θ), and yaw (ψ) respectively.

The block is a masked subsystem containing principally a Pack net_fdm Packet for FlightGear block set for 6DoF inputs, a Send net_fdm Packet to FlightGear block, and a Simulation Pace block. To access the full capabilities of these blocks, use the individual corresponding blocks from the Aerospace Blockset library.

The block is additionally configured as a SimViewingDevice, so that if you generate code for your model using the Real-Time Workshop product and connect to the running target code using theReal-Time Workshop External Mode available from the model's toolbar, then the Simulink software can obtain the data from the target on the fly and transmit position and attitude data to FlightGear. The SimViewingDevice facility is described in the Simulink documentation.

This block does not produce deployable code, but can be used with Real-Time Workshop external mode as a SimViewingDevice.

Dialog	🙀 Sink Block Parameters: FlightGear Preconfigured 6DoF Ani 🗙		
Box	FlightGearQuick6DoFAnimation (mask) (link)		
	Drive position and attitude values to a FlightGear Flight Simulator vehicle given double precision values for longitude, latitude, altitude, roll, pitch, and yaw respectively. Units are degrees west/north for longitude and latitude, meters above mean sea level for altitude, and radians for attitude values.		
	This block is a masked subsystem containing principally a FlightGear Pack Net FDM block set for 6DoF inputs, a FlightGear Send Net FDM block, and a Simulation Pace block. To access the full capabilities of these blocks, use the individual corresponding blocks from the Aerospace Blockset library.		
	Use "Look under mask" from this block's context menu to see the blocks under the mask.		
	Parameters		
	FlightGear version: v1.9.1		
	Destination IP address:		
	127.0.0.1		
	Destination port:		
	5502		
	Sample time (-1 for inherited):		
	1/30		
	OK Cancel Help Apply		

FlightGear version

Select your FlightGear software version.

Supported versions: v0.9.3, v0.9.8/0.9.8a, v0.9.9, v0.9.10, v1.0, v1.9.1.

Destination IP address

Specify your destination IP address.

Destination port

Specify your destination port.

Sample time

Specify the sample time (-1 for inherited).

Inputs and Outputs	Input	Dimension Type	Description	
	First	Vector	Contains the longitude, latitude, altitude, roll, pitch, and yaw, in double precision. Units are degrees west/north for longitude and latitude, meters above mean sea level for altitude, and radians for attitude values.	
Reference	Bowditch, N US Navy H	J., <i>American Practica</i> ydrographic Office, 1	l Navigator, An Epitome of Navigation, 802.	
See Also	Generate R	un Script		
	Pack net_fdm Packet for FlightGear			
	Send net_fc	lm Packet to FlightG	ear	
	Simulation	Pace		

Force Conversion

Purpose Convert from force units to desired force units

Library

Utilities/Unit Conversions

Description

>lbf → N>

The Force Conversion block computes the conversion factor from specified input force units to specified output force units and applies the conversion factor to the input signal.

The Force Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Block Parameters: Force Conversion
Force Conversion (mask) (link)
Convert units of input signal to desired output units.
Parameters
Initial units: Ibf
Final units: N
UK Cancel Help Apply

Initial units

Specifies the input units.

Final units

Ν

Specifies the output units.

The following conversion units are available:

1bf Pound force

Newtons

Force Conversion

Inputs and	Input	Dimonsion Type	Description
Outputs	mpoi	Dimension Type	Description
Colbois	First		Contains the force in initial force units.
	Output	Dimension Type	Description
	First		Contains the force in final force units.
See Also	Acceleration	1 Conversion	
	Angle Conv	ersion	
	Angular Acc	celeration Conversion	L
	Angular Vel	locity Conversion	
	Density Cor	iversion	
	Length Con	version	
	Mass Conve	ersion	
	Pressure Co	onversion	
	Temperatur	e Conversion	
	Velocity Con	nversion	

Purpose Implement first-order lead-lag with gain-scheduled coefficients

Library **GNC/Controls**

Description

Box

The Gain Scheduled Lead-Lag block implements a first-order lag of the form

 $u = \frac{1+as}{1+bs}e$

where *e* is the filter input, and *u* the filter output.

The coefficients *a* and *b* are inputs to the block, and hence can be made dependent on flight condition or operating point. For example, they could be produced from the Lookup Table (n-D) Simulink block.

Initial state, x initial

The initial internal state for the filter x initial. Given this initial state, the initial output is given by

$$u\big|_{t=0} = \frac{x_initial + ae}{b}$$

Inputs and Outputs	Input	Dimension Type	Description	
	First		Contains the filter input.	
	Second		Contains the numerator coefficient.	
	Third		Contains the denominator coefficient.	
	Output	Dimension Type	Description	
	First		Contains the filter output.	

Purpose Generate FlightGear run script on current computer

Library Animation/Flight Simulator Interfaces

Description

The Generate Run Script block generates a customized FlightGear run script on the current platform.

To generate the run script, fill the required information into the dialog's fields, then click **Generate Script**.

Fields in the dialog marked with an asterisk (*) are evaluated as MATLAB expressions. The other fields are treated as literal text.

For More Information About FlightGear

See "Creating a FlightGear Run Script" on page 2-43 for more about FlightGear.

Generate Run Script

Dialog Box

Block Paramete	ers: Generate I	Run Script		×
Generate FlightGea	r Run Script			
Generate a custom	FlightGear run s	cript file on the cu	rrent platform.	
To generate the run marked with an aste fields are literal tex	n script, fill in the erisk (*) are eval t.	information then uated as MATLAB	press Generate So expressions, the i	ript. Items est of the
Parameters				
Generate Script				
Output file name:				
runfg.bat				
FlightGear base dire	ectory:			
C:\Program Files\F	lightGear			
FlightGear geometr	y model name:			
HL20				
Destination port:				
5502				
Airport ID:				
KSFO				
Runway ID:				
10L				
Initial altitude (ft)*:				
7224				
Initial heading (deg)*:			
113				
Offset distance (mil	es)*:			
4.72				
Offset azimuth (deg	g)*:			
0				
ſ		1	1	
	OK	Cancel	Help	Apply

Generate Script

Click to generate a run script for FlightGear. Do not click this button until you have entered the correct information in the dialog fields.

Output file name

Specify the name of the output file. The file name is the name of the command you will use to start FlightGear with these initial parameters. The file must have the .bat extension.

FlightGear base directory

Specify the name of your FlightGear installation folder.

FlightGear geometry model name

Specify the name of the folder containing the desired model geometry in the *FlightGear*\data\Aircraft folder.

Destination port

Specify your network flight dynamics model (fdm) port. For more information, see the Send net_fdm Packet to FlightGear block reference.

Airport ID

Specify the airport ID. The list of supported airports is available in the FlightGear interface, under **Location**.

Runway ID

Specify the runway ID.

Initial altitude

Specify the initial altitude of the aircraft, in feet.

Initial heading

Specify the initial heading of the aircraft, in degrees.

Offset distance

Specify the offset distance of the aircraft from the airport, in miles.

Offset azimuth

Specify the offset azimuth of the aircraft, in degrees.

Examples See the asbh120 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation Pack net_fdm Packet for FlightGear Send net_fdm Packet to FlightGear Purpose Convert geocentric latitude to geodetic latitude

Library

Utilities/Axes Transformations

Description

The Geocentric to Geodetic Latitude block converts a geocentric latitude (λ) into geodetic latitude (μ) . There are a number of geometric relationships that are used to calculate the geodetic latitude in this noniterative method. A number of angles and points are involved in the calculation, which are shown in following figure.

Given geocentric latitude (λ) and the radius (r) from the center of the planet (O) to the center of gravity (P), this noniterative method starts by computing values for the point of r that intercepts the surface of the planet (S). By rearranging the equation for an ellipse, the horizontal coordinate, (x_a) is determined. When equatorial radius (R), polar radius ((1-f)R) and $x_a \tan \lambda$, are substituted for semi-major axis, semi-minor axis and vertical coordinate (y_a) , the resulting equation for x_a has the following form:

$$x_a = \frac{(1-f)R}{\sqrt{\tan^2 \lambda + (1-f)^2}}$$

To determine the geodetic latitude at S μ_a , the equation for an ellipse with equatorial radius (*R*), polar radius ((1-f)R) is used again. This time it is used to define y_a in terms of x_a .

$$y_a=\sqrt{R^2-x_a^2}(1-f)$$

Additionally, the relationship between geocentric latitude at the planet's surface and geodetic latitude is used.

$$\mu_a = \operatorname{atan}\!\left(\frac{\tan\lambda}{(1-f)^2}\right)$$

Using the relationship $\tan \lambda = y_a / x_a$ and the two equations above, the resulting equation for μ_a is obtained.

$$\mu_a = \operatorname{atan}\left(\frac{\sqrt{R^2 - x_a^2}}{(1 - f)x_a}\right)$$
The correct sign of μ_a is determined by testing λ and if λ is less than zero μ_a changes sign accordingly.

In order to calculate the geodetic latitude of P, a number of geometric relationships are required to be calculated. These calculations follow.

The radius (r_a) from the center of the planet (O) to the surface of the planet (S) is calculated by using trigonometric relationship.

$$r_a = \frac{x_a}{\cos \lambda}$$

The distance from S to P is defined by:

 $l = r - r_a$

The angular difference between geocentric latitude and geodetic latitude at $S(\delta\lambda)$ is defined by:

$$\delta \lambda = \mu_a - \lambda$$

Using l and $\delta\lambda$, the segment TP or the mean sea-level altitude (*h*) is estimated.

 $h = l\cos\delta\lambda$

The equation for the radius of curvature in the Meridian (ρ_a) at μ_a is

$$\rho_a = \frac{R(1-f)^2}{\left(1 - (2f - f^2)\sin^2\mu_a\right)^{3/2}}$$

Using l, $\delta\lambda$, h, and ρ_a , the angular difference between geodetic latitude at S (μ) and geodetic latitude at P (μ_a) is defined as:

$$\delta\mu = \operatorname{atan}\left(\frac{l\sin\delta\lambda}{\rho_a + h}\right)$$

Subtracting $\delta \mu$ from μ_a then gives μ .

$$\mu = \mu_a - \delta \mu$$

Dialog Box

Function Block Parameters: Geocentric to Geodetic Latitude		
Geocentric to Geodetic Latitude (mask) (link)		
Convert geocentric latitude to geodetic latitude. Geodetic latitude is computed using geocentric latitude and the radius from the center of the planet to the center of gravity.		
Parameters		
Units: Metric (MKS)		
Planet model: Earth (WGS84)		
OK Cancel Help Apply		

Function Block Parameters: Geocentric to Geodetic Latitude		
Geocentric to Geodetic Latitude (mask) (link)		
Convert geocentric latitude to geodetic latitude. Geodetic latitude is computed using geocentric latitude and the radius from the center of the planet to the center of gravity.		
Parameters		
Planet model: Custom		
Flattening:		
1/298.257223563		
Equatorial radius of planet:		
6378137		
OK Cancel Help Apply		

Units

Specifies the parameter and output units:

Units	Radius from CG to Center of Planet	Equatorial Radius
Metric (MKS)	Meters	Meters
English	Feet	Feet

This option is only available when **Planet model** is set to Earth (WGS84).

Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

Flattening

Specifies the flattening of the planet. This option is only available with **Planet model** set to **Custom**.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for radius. This option is only available with **Planet model** set to **Custom**.

Inputs and Outputs

Input	Dimension Type	Description
First	Scalar	Contains the geocentric latitude, in degrees.
Second	Scalar	Contains the radius from center of the planet to the center of gravity.
Output	Dimension Type	Description
First	Scalar	Contains the geodetic latitude, in degrees.

Assumptions and Limitations	This implementation generates a geodetic latitude that lies between ±90 degrees.		
References	Jackson, E. B., Manual for a Workstation-based Generic Flight Simulation Program (LaRCsim) Version 1.4, NASA TM 110164, April, 1995.		
	Hedgley, D. R., Jr., "An Exact Transformation from Geocentric to Geodetic Coordinates for Nonzero Altitudes," NASA TR R-458, March, 1976.		
	Clynch, J. R., "Radius of the Earth - Radii Used in Geodesy," Naval Postgraduate School, 2002, http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf.		
	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , John Wiley & Sons, New York, 1992.		
	Edwards, C. H., and D. E. Penny, <i>Calculus and Analytical Geometry</i> 2nd Edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.		
See Also	ECEF Position to LLA		
	Flat Earth to LLA		
	Geodetic to Geocentric Latitude		
	LLA to ECEF Position		

Purpose Convert geodetic latitude to geocentric latitude

Utilities/Axes Transformations

Description

>μ >h

Library

The Geodetic to Geocentric Latitude block converts a geodetic latitude (μ) into geocentric latitude (λ) . Geocentric latitude at the planet surface

 $\left(\lambda_{s}\right)$ is defined by flattening (f), and geodetic latitude in the following relationship.

$$\lambda_s = \operatorname{atan}((1-f)^2 \tan \mu)$$

Geocentric latitude is defined by mean sea-level altitude (h), geodetic

latitude, radius of the planet $(r_{\rm s})\,$ and geocentric latitude at the planet surface in the following relationship.

$$\lambda = \operatorname{atan}\left(\frac{h\sin\mu + r_s\sin\lambda_s}{h\cos\mu + r_s\cos\lambda_s}\right)$$

Dialog Box

Function Block Parameters: Geodetic to Geocentric Latitude		
Geodetic to Geocentric Latitude (mask) (link)		
Convert geodetic latitude to geocentric latitude. Setting mean sea-level altitude to zero will give the geocentric latitude at the surface of the planet.		
Parameters		
Units: Metric (MKS)		
Planet model: Earth (WGS84)		
OK Cancel Hein Anniu		
Carcer Trep Sppy		

🙀 Function Block Parameters: Geodetic to Geocentric Latitude	x		
Geodetic to Geocentric Latitude (mask) (link)	_		
Convert geodetic latitude to geocentric latitude. Setting mean sea-level altitude to zero will give the geocentric latitude at the surface of the planet.			
Parameters			
Planet model: Custom			
Flattening:			
1/298.257223563			
Equatorial radius of planet:			
6378137			
OK Cancel Help Apply			

Units

Specifies the parameter and output units:

Units	Altitude	Equatorial Radius
Metric (MKS)	Meters	Meters
English	Feet	Feet

This option is only available when **Planet model** is set to Earth (WGS84).

Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

Flattening

Specifies the flattening of the planet. This option is only available with **Planet model** set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for altitude. This option is only available with **Planet model** set to Custom.

Inputs and Outputs	Input	Dimension Type	Description
	First	Scalar	Contains the geocentric latitude, in degrees.
	Second	Scalar	Contains the mean sea-level altitude (MSL).
	Output	Dimension Type	Description
	-		
	First	Scalar	Contains the geodetic latitude, in degrees.

Reference Stevens, B. L., and F. L. Lewis, *Aircraft Control and Simulation*, John Wiley & Sons, New York, 1992.

Geodetic to Geocentric Latitude

See Also ECEF Position to LLA Flat Earth to LLA Geocentric to Geodetic Latitude LLA to ECEF Position Radius at Geocentric Latitude

Purpose Transform horizontal wind into body-axes coordinates

Library

Environment/Wind

Description

The Horizontal Wind Model block computes the wind velocity in body-axes coordinates.

The wind is specified by wind speed and wind direction in Earth axes. The speed and direction can be constant or variable over time. The direction of the wind is in degrees clockwise from the direction of the Earth *x*-axis (north). The wind direction is defined as the direction from which the wind is coming. Using the direction cosine matrix (DCM), the wind velocities are transformed into body-axes coordinates.

Dialog Box

Block Parameters: Horizontal Wind Model 🛛 🛛 🛛 🛛			
Horizontal Wind Model (mask) (link)			
Transform horizontal wind (north and east components) into body coordinates given wind speed, wind direction and direction cosine matrix (DCM).			
Parameters			
Units: Metric (MKS)			
Wind speed source: Internal			
Wind speed at altitude (m/s):			
15			
Wind direction source: Internal			
Wind direction at altitude (degrees clockwise from north):			
0			
OK Cancel Help Apply			

Units

Specifies the input and output units:

	Units	Wind	Speed	Wind Velocity
	Metric (MKS)	Meters second	per	Meters per second
	English (Velocity in ft/s)	Feet p second	er	Feet per second
	English (Velocity in kts)	Knots		Knots
Wind	speed source Specify source of wind spe	eed:		
	External		Variable block	e wind speed input to
	Internal		Constan in mask	t wind speed specified
Wind	speed at altitude (m/s) Constant wind speed used selected.	d if inte	rnal wind	d speed source is
Wind	direction source Specify source of wind dir	rection:		
	External		Variable	wind direction input

Wi

Wi

External	Variable wind direction input to block
Internal	Constant wind direction specified in mask

Wind direction at altitude (degrees clockwise from north)

Constant wind direction used if internal wind direction source is selected. The direction of the wind is in degrees clockwise from the direction of the Earth *x*-axis (north). The wind direction is defined as the direction from which the wind is coming.

Inputs and	Input	Dimension Type	Description	
Outputs	First		Contains the direction cosine matrix.	
	Second (Optional)		Contains the wind speed in selected units.	
	Third (Optional)		Contains the wind direction in degrees.	
	Output	Dimension Type	Description	
	First		Contains the wind velocity in body-axes, in selected units.	
See Also	Dryden Wii	nd Turbulence Model	l (Continuous)	
	Dryden Wii	nd Turbulence Model	(Discrete)	
	Discrete Wind Gust Model			
	Von Karma	n Wind Turbulence I	Model (Continuous)	
	Wind Shear	r Model		

Ideal Airspeed Correction

PurposeCalculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from each other

Library Flight Parameters

Description

The Ideal Airspeed Correction block calculates one of the following airspeeds: equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS), from one of the other two airspeeds.

Three equations are used to implement the Ideal Airspeed Correction block. The first equation shows TAS as a function of EAS, relative pressure ratio at altitude (δ), and speed of sound at altitude (a).

$$TAS = \frac{EAS \times a}{a_0 \sqrt{\delta}}$$

Using the compressible form of Bernoulli's equation and assuming isentropic conditions, the last two equations for EAS and CAS are derived.

$$EAS = \sqrt{\frac{2\gamma P}{(\gamma - 1)\rho_0} \left(\left(\frac{q}{P} + 1\right)^{(\gamma - 1)/\gamma} - 1 \right)}$$

$$CAS = \sqrt{\frac{2\gamma P_0}{(\gamma - 1)\rho_0}} \left(\left(\frac{q}{P_0} + 1\right)^{(\gamma - 1)/\gamma} - 1 \right)$$

In order to generate a correction table and its approximate inverse, these two equations were solved for dynamic pressure (q). Having values of q by a function of *EAS* and ambient pressure at altitude (*P*) or by a function of *CAS*, allows the two equations to be solved using the other's solution for q, thus creating a solution for *EAS* that depends on *P* and *CAS* and a solution for *CAS* that depends on *P* and *EAS*.

lock Parameters: Ideal Airspeed Correction	×	
Ideal Airspeed Correction (mask) (link)		
Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS) from one of the other two airspeeds.		
Based on assumption of compressible, isentropic (subsonic flow), dry air with constant specific heat ratio (gamma).		
Parameters		
Units: Metric (MKS)		
Airspeed input: TAS		
Airspeed output: CAS		
Action for out of range input: Frror		
OK Cancel Help Apply		

Dialog Box

Units

Specifies the input and output units:

Units	Airspeed Input	Speed of Sound	Air Pressure	Airspeed Output
Metric (MKS)	Meters per second	Meters per second	Pascal	Meters per second
English (Velocity in ft/s)	Feet per second	Feet per second	Pound force per square inch	Feet per second
English (Velocity in kts)	Knots	Knots	Pound force per square inch	Knots

Airspeed input

Specify the airspeed input type:

TAS	True airspeed
EAS	Equivalent airspeed
CAS	Calibrated airspeed

Airspeed output

Specify the airspeed output type:

Velocity Input	Velocity Output
TAS	EAS (equivalent airspeed)
	CAS (calibrated airspeed)
EAS	TAS (true airspeed)
	CAS (calibrated airspeed)
CAS	TAS (true airspeed)
	EAS (equivalent airspeed)

Action for out of range input

Specify if an out-of-range input (supersonic airspeeds) invokes a warning, an error, or no action.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the selected airspeed in the selected units.
	Second		Contains the speed of sound in the selected units.
	Third		Contains the static pressure in the selected units.

	Output	Dimension Type	Description
	First		Contains the selected airspeed in the selected units.
Assumptions and Limitations	This block (subsonic f	assumes that the air low), dry air with con	flow is compressible, isentropic stant specific heat ratio, γ.
Examples	See the aer for example	roblk_indicated modes of this block.	del and the aeroblk_calibrated model
References	Lowry, J. 7 Washingto	f., Performance of Lig n, DC, 1999.	tht Aircraft, AIAA Education Series,
	Aeronautic Whitney, A	al Vestpocket Handbo August, 1986.	ook, United Technologies Pratt &

Incidence & Airspeed

- Purpose Calculate incidence and airspeed
- Library

Flight Parameters

Description

The Incidence & Airspeed block supports the 3DoF equations of motion model by calculating the angle between the velocity vector and the body, and also the total airspeed from the velocity components in the body-fixed coordinate frame.

Dialog Box

Block Parameter	s: Incidence & A	irspeed			×
- Incidence&Airspe	ed (mask) (link) —				
Calculate the angl and the velocity m	e between the body agnitude from the c	and the velo omponents in	body -	ector (incide axes (U,w).	ince)

Inputs and	Input	Dimension Type	Description
Outputs	First	Two-element vector	Contains the velocity of the body resolved into the body-fixed coordinate frame.
	Output	Dimension Type	Description
	First		Contains the incidence angle, in radians.
	Second		Contains the airspeed of the body.
Examples	See the ae model for	roblk_guidance mod examples of this block	lel and the aero_guidance_airframe

See Also Incidence, Sideslip & Airspeed

Incidence, Sideslip & Airspeed

Purpose Calculate incidence, sideslip, and airspeed

Library Flight Parameters

Description

α> >ν_bβ> ν> The Incidence, Sideslip & Airspeed block supports the 6DoF (Euler Angles) and 6DoF (Quaternion) models by calculating the angles between the velocity vector and the body, and also the total airspeed from the velocity components in the body-fixed coordinate frame.

$$\alpha = \operatorname{atan}\left(\frac{w}{u}\right)$$
$$\beta = \operatorname{asin}\left(\frac{v}{V}\right)$$
$$V = \sqrt{u^2 + v^2 + w^2}$$

Dialog Box

Inputs and Outputs

Input	Dimension Type	Description
First	Three-element vector	Contains the velocity of the body resolved into the body-fixed coordinate frame.
Output	Dimension Type	Description
First		Contains the incidence angle in radians.
Second		Contains the sideslip angle in radians.
Third		Contains the airspeed of the body.

Examples See Airframe in the aeroblk_HL20 model for an example of this block.

See Also Incidence & Airspeed

Interpolate Matrix(x)

Purpose	Return	interpolated	matrix	for	given	input
---------	--------	--------------	--------	-----	-------	-------

Library GNC/Controls

Description

x_k x_f Matrix(x) The Interpolate Matrix(x) block interpolates a one-dimensional array of matrices.

This one-dimensional case assumes a matrix M is defined at a discrete number of values of an independent variable

$$x = [x_1 x_2 x_3 \dots x_i x_{i+1} \dots x_n].$$

Then for $x_i < x < x_{i+1}$, the block output is given by

 $(1-\lambda)M(x_i) + \lambda M(x_{i+1})$

where the interpolation fraction is defined as

 $\lambda = (x - x_i) / (x_{i+1} - x_i)$

The matrix to be interpolated should be three dimensional, the first two dimensions corresponding to the matrix at each value of x. For example, if you have three matrices A, B, and C defined at x = 0, x = 0.5, and x = 1.0, then the input matrix is given by

matrix(:,:,1) = A; matrix(:,:,2) = B; matrix(:,:,3) = C; Dialog Box

陽 Function Block Parameters: Interpolate Matri 🗙
ScheduleMatrix-1D (mask)
Return an interpolated matrix for given input x_k and x_f . Inputs must be from the Simulink Prelookup block.
Parameters
Matrix to interpolate:
OK Cancel Help Apply

Matrix to interpolate

Matrix to be interpolated, with three indices and the third index labeling the interpolating values of x.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the interpolation index i .
	Second		Contains the interpolation fraction λ .
	Output	Dimension Type	Description
	First		Contains the interpolated matrix.
Assumptions and Limitations	This block	must be driven from t	che Simulink Prelookup block.
Examples	See the fol [A(v),B(v),0 1D Self-Co	lowing block reference C(v),D(v)], 1D Observe nditioned [A(v),B(v),C	er pages: 1D Controller er Form [A(v),B(v),C(v),F(v),H(v)], and C(v),D(v)].
See Also	Interpolate Interpolate	e Matrix(x,y) e Matrix(x,y,z)	

Purpose Return interpolated matrix for given inputs

Library GNC/Controls

Description

The Interpolate Matrix(x,y) block interpolates a two-dimensional array of matrices.

This two-dimensional case assumes the matrix is defined as a function of two independent variables, $\mathbf{x} = [x_1 \ x_2 \ x_3 \dots \ x_i \ x_{i+1} \dots \ x_n]$ and $\mathbf{y} = [y_1 \ y_2 \ y_3 \dots \ y_j \ y_{j+1} \dots \ y_m]$. For given values of x and y, four matrices are interpolated. Then for $x_i < x < x_{i+1}$ and $y_j < y < y_{j+1}$, the output matrix is given by

$$(1 - \lambda_y)[(1 - \lambda_x)M(x_i, y_j) + \lambda_x M(x_{i+1}, y_j)] + \lambda_y [(1 - \lambda_x)M(x_i, y_{j+1}) + \lambda_x M(x_{i+1}, y_{j+1})]$$

where the two interpolation fractions are denoted by

$$\lambda_x = (x - x_i) / (x_{i+1} - x_i)$$

and

$$\iota_{y} = (y - y_{j}) / (y_{j+1} - y_{j})$$

In the two-dimensional case, the interpolation is carried out first on x and then y.

The matrix to be interpolated should be four dimensional, the first two dimensions corresponding to the matrix at each value of x and y. For example, if you have four matrices A, B, C, and D defined at (x = 0.0, y = 1.0), (x = 0.0, y = 3.0), (x = 1.0, y = 1.0) and (x = 1.0, y = 3.0), then the input matrix is given by

```
matrix(:,:,1,1) = A;
matrix(:,:,1,2) = B;
matrix(:,:,2,1) = C;
matrix(:,:,2,2) = D;
```

 Function Block Parameters: Interpolate Matri... X

 ScheduleMatrix-2D (mask)

 Return an interpolated matrix for given inputs x_k, x_f, y_k and y_f. Inputs must be from Simulink Prelookup block.

 Parameters

 Matrix to interpolate:

 matrix

 OK
 Cancel

 Help

 Apply

Matrix to interpolate

Matrix to be interpolated, with four indices and the third and fourth indices labeling the interpolating values of *x* and *y*.

Inputs and Outputs	Input	Dimension Type	Description
	First		Contains the first interpolation index i .
	Second		Contains the first interpolation fraction λ_x .
	Third		Contains the second interpolation index j .
	Fourth		Contains the second interpolation fraction $\lambda_{\rm y}.$
	Output	Dimension Type	Description
	First		Contains the interpolated matrix.
Assumptions	This block	must be driven from	the Simulink Prelookup block.

Assumptions and Limitations

Dialog

Box

Examples	See the following block reference pages: 2D Controller $[A(v),B(v),C(v),D(v)]$, 2D Observer Form $[A(v),B(v),C(v),F(v),H(v)]$, and 2D Self-Conditioned $[A(v),B(v),C(v),D(v)]$.
See Also	Interpolate Matrix(x)

Interpolate Matrix(x,y,z)

Purpose Return interpolated matrix for given inputs

Library GNC/Controls

Description

x_k x_f y_K Matrix(x,y,z) y_f z_k z_f The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of matrices.

This three-dimensional case assumes the matrix is defined as a function of three independent variables:

$$\begin{aligned} x &= [x_1 \ x_2 \ x_3 \ \dots \ x_i \ x_{i+1} \ \dots \ x_n] \\ y &= [y_1 \ y_2 \ y_3 \ \dots \ y_j \ y_{j+1} \ \dots \ y_m] \\ z &= [z_1 \ z_2 \ z_3 \ \dots \ z_k \ z_{k+1} \ \dots \ z_p] \end{aligned}$$

For given values of x, y, and z, eight matrices are interpolated. Then for

$$x_i < x < x_{i+1}$$

 $y_j < y < y_{j+1}$
 $z_k < z < z_{k+1}$

the output matrix is given by

$$\begin{split} (1-\lambda_{z})\Big\{& \big(1-\lambda_{y}\big)\Big[\big(1-\lambda_{x}\big)M\big(x_{i},y_{j},z_{k}\big)+\lambda_{x}M\big(x_{i+1},y_{j},z_{k}\big)\Big]\\ & +\lambda_{y}\Big[\big(1-\lambda_{x}\big)M\big(x_{i},y_{j+1},z_{k}\big)+\lambda_{x}M\big(x_{i+1},y_{j+1},z_{k}\big)\Big]\Big\}\\ & +\lambda_{z}\left\{& \big(1-\lambda_{y}\big)\Big[\big(1-\lambda_{x}\big)M\big(x_{i},y_{j},z_{k+1}\big)+\lambda_{x}M\big(x_{i+1},y_{j},z_{k+1}\big)\Big]\right\}\\ & +\lambda_{y}\Big[\big(1-\lambda_{x}\big)M\big(x_{i},y_{j+1},z_{k+1}\big)+\lambda_{x}M\big(x_{i+1},y_{j+1},z_{k+1}\big)\Big]\Big\}\end{split}$$

where the three interpolation fractions are denoted by

$$\begin{split} \lambda_{x} &= (x - x_{i}) / (x_{i+1} - x_{i}) \\ i_{y} &= (y - y_{j}) / (y_{j+1} - y_{j}) \\ \lambda_{z} &= (z - z_{k}) / (z_{k+1} - z_{k}) \end{split}$$

In the three-dimensional case, the interpolation is carried out first on x, then y, and finally z.

The matrix to be interpolated should be five dimensional, the first two dimensions corresponding to the matrix at each value of x, y, and z. For example, if you have eight matrices A, B, C, D, E, F, G, and H defined at the following values of x, y, and z, then the corresponding input matrix is given by

(x	=	0.0,y	=	1.0, z = 0.1)	<pre>matrix(:,:,1,1,1)</pre>	=	Α;
(x	=	0.0,y	=	1.0, z = 0.5)	<pre>matrix(:,:,1,1,2)</pre>	=	В;
(x	=	0.0,y	=	3.0, z = 0.1)	<pre>matrix(:,:,1,2,1)</pre>	=	C;
(x	=	0.0,y	=	3.0, z = 0.5)	<pre>matrix(:,:,1,2,2)</pre>	=	D;
(x	=	1.0,y	=	1.0, z = 0.1)	<pre>matrix(:,:,2,1,1)</pre>	=	E;
(x	=	1.0,y	=	1.0, z = 0.5)	<pre>matrix(:,:,2,1,2)</pre>	=	F;
(x	=	1.0,y	=	3.0, z = 0.1)	<pre>matrix(:,:,2,2,1)</pre>	=	G;
(x	=	1.0,y	=	3.0, z = 0.5)	<pre>matrix(:,:,2,2,2)</pre>	=	Н;

Dialog Box

Matrix to interpolate

Matrix to be interpolated, with five indices and the third, fourth, and fifth indices labeling the interpolating values of x, y, and z.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the first interpolation index i .
	Second		Contains the first interpolation fraction λ_x .
	Third		Contains the second interpolation index j .
	Fourth		Contains the second interpolation fraction λ_y .
	Fifth		Contains the third interpolation index k .
	Sixth		Contains the third interpolation fraction λ_z .
	Output	Dimension Type	Description
	First		Contains the interpolated matrix.
Assumptions and Limitations	This block	must be driven from t	che Simulink Prelookup block.
Examples	See the fol [A(v),B(v),G 3D Self-Cor	lowing block reference C(v),D(v)], 3D Observe nditioned [A(v),B(v),C	e pages: 3D Controller er Form [A(v),B(v),C(v),F(v),H(v)], and C(v),D(v)].

See Also Interpolate Matrix(x) Interpolate Matrix(x,y)

Library Utilities/Math Operations

Description

A⁻¹ (3x3)

Dialog

Box

The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix. If det(A) = 0, an error occurs and the simulation stops.

Inputs and	Input	Dimension Type	Description
Outputs	First	3-by-3 matrix	
	Output	Dimension Type	Description
	First	3-by-3 matrix	Contains the matrix inverse of input matrix.
See Also	Adjoint of	3x3 Matrix	
	Create 3x3	8 Matrix	
	Determina	nt of 3x3 Matrix	

ISA Atmosphere Model

Purpose Implement International Standard Atmosphere (ISA)

Library

Dialog

Box

Environment/Atmosphere

Description

The ISA Atmosphere Model block implements the mathematical representation of the international standard atmosphere values for ambient temperature, pressure, density, and speed of sound for the input geopotential altitude.

The ISA Atmosphere Model block icon displays the input and output metric units.

Change atmospheric parameters

Select to customize various atmospheric parameters to be different from the ISA values.

Inputs and Outputs	Input	Dimension Type	Description
	First		Contains the geopotential height.

	Output	Dimension Type	Description
	First		Contains the temperature.
	Second		Contains the speed of sound.
	Third		Contains the air pressure.
	Fourth		Contains the air density.
Assumptions and Limitations	Below the g altitude of 2 and speed o	geopotential altitude o 20 km, temperature a of sound are calculated	of 0 km and above the geopotential nd pressure values are held. Density d using a perfect gas relationship.
Reference	[1] U.S. Sta Washingtor	ndard Atmosphere, 1 n, D.C.	976, U.S. Government Printing Office,
See Also	COESA Atr Model	mosphere Model, CIR	A-86 Atmosphere Model, Lapse Rate

Julian Epoch to Besselian Epoch

PurposeTransform position and velocity components from Standard Julian
Epoch (J2000) to discontinued Standard Besselian Epoch (B1950)

Library Utilities/Axes Transformations

Description

The Julian Epoch to Besselian Epoch block transforms two 3-by-1 vectors of Julian Epoch position (\bar{r}_{J2000}) , and Julian Epoch velocity (\bar{v}_{J2000}) into Besselian Epoch position (\bar{r}_{B1950}) , and Besselian Epoch velocity (\bar{v}_{B1950}) . The transformation is calculated using:

$$\begin{bmatrix} \bar{r}_{B1950} \\ \bar{v}_{B1950} \end{bmatrix} = \begin{bmatrix} \bar{M}_{rr} & \bar{M}_{vr} \\ \bar{M}_{rv} & \bar{M}_{vv} \end{bmatrix}^T \begin{bmatrix} \bar{r}_{J2000} \\ \bar{v}_{J2000} \end{bmatrix}$$

where

$$\left(\bar{M}_{rr}, \bar{M}_{vr}, \bar{M}_{rv}, \bar{M}_{vv}\right)$$

are defined as:

$$\bar{M}_{rr} = \begin{bmatrix} 0.9999256782 & -0.0111820611 & -0.0048579477 \\ 0.0111820610 & 0.9999374784 & -0.0000271765 \\ 0.0048579479 & -0.0000271474 & 0.9999881997 \end{bmatrix}$$

 $\bar{M}_{vr} = \begin{bmatrix} 0.00000242395018 & -0.0000002710663 & -0.00000001177656 \\ 0.00000002710663 & 0.00000242397878 & -0.0000000006587 \\ 0.00000001177656 & -0.0000000006582 & 0.0000242410173 \end{bmatrix}$

$$\bar{M}_{rv} = \begin{bmatrix} -0.000551 & -0.238565 & 0.435739 \\ 0.238514 & -0.002667 & -0.008541 \\ -0.435623 & 0.012254 & 0.002117 \end{bmatrix}$$

	0.99994704	-0.01118251	-0.00485767
$\bar{M}_{vv} =$	0.01118251	0.99995883	-0.00002718
	0.00485767	-0.00002714	1.00000956

Box

Inputs and	Input	Dimension Type	Description
Outputs	First	3-by-1 vector	Contains the position in Standard Julian Epoch (J2000).
	Second	3-by-1 vector	Contains the velocity in Standard Julian Epoch (J2000).
	Output	Dimension Type	Description
	First	3-by-1 vector	Contains the position in Standard Besselian Epoch (B1950).
	Second	3-by-1 vector	Contains the velocity in Standard Besselian Epoch (B1950).
Reference	"Supplemer Technical F WGS84 Dev	nt to Department of D Report: Part I - Metho velopment," DMA TR	Defense World Geodetic System 1984 ods, Techniques and Data Used in 8350.2-A.
See Also	Besselian E	poch to Julian Epoch	L

Lapse Rate Model

Purpose Implement lapse rate model for atmosphere

Library

Environment/Atmosphere

Description

The Lapse Rate Model block implements the mathematical representation of the lapse rate atmospheric equations for ambient temperature, pressure, density, and speed of sound for the input geopotential altitude. You can customize this atmospheric model, described below, by specifying atmospheric properties in the block dialog.

The following equations define the troposphere

$$T = T_0 - Lh$$
$$P = P_0 \left(\frac{T}{T_0}\right)^{\frac{g}{LR}}$$
$$\rho = \rho_0 \left(\frac{T}{T_0}\right)^{\frac{g}{LR}-1}$$
$$a = \sqrt{\gamma RT}$$

The following equations define the tropopause (lower stratosphere)

$$\begin{split} T &= T_0 - Lhts \\ P &= P_0 \bigg(\frac{T}{T_0} \bigg)^{\frac{g}{LR}} e^{\frac{g}{RT}(hts - h)} \\ \rho &= \rho_0 \bigg(\frac{T}{T_0} \bigg)^{\frac{g}{LR} - 1} e^{\frac{g}{RT}(hts - h)} \\ a &= \sqrt{\gamma RT} \end{split}$$

where:

T_0	Absolute temperature at mean sea level in kelvin (K)
$ ho_0$	Air density at mean sea level in kg/m ³
P_{0}	Static pressure at mean sea level in N/m ²
h	Altitude in m
hts	Height of the troposphere in m
T	Absolute temperature at altitude h in kelvin (K)
ρ	Air density at altitude h in kg/m ³
Р	Static pressure at altitude h in N/m ²
a	Speed of sound at altitude h in m/s 2
L	Lapse rate in K/m
R	Characteristic gas constant J/kg-K
γ	Specific heat ratio
g	Acceleration due to gravity in m/s^2

The Lapse Rate Model block icon displays the input and output metric units.

Lapse Rate Model

Dialog Box

Change atmospheric parameters

When selected, the following atmospheric parameters can be customized to be different from the ISA values.

Acceleration due to gravity

Specify the acceleration due to gravity (g).

Ratio of specific heats

Specify the ratio of specific heats γ .

Characteristic gas constant

Specify the characteristic gas constant (R).
	Lapse ra Spe	Lapse rate Specify the lapse rate of the troposphere (<i>L</i>).			
	Height of troposphere Specify the upper altitude of the troposphere, a range of decreasing temperature.				
	Height of tropopause Specify the upper altitude of the tropopause, a range of constant temperature.				
	Air density at mean sea level Specify the air density at sea level (ρ_0).				
Ambient pressure at mean sea level Specify the ambient pressure at sea level (P_0) .			ea level ure at sea level (P_0).		
	Ambient Spe	temperature at me cify the ambient temp	an sea level erature at sea level (T_0).		
Inputs and	Input	Dimension Type	Description		
Outputs	First		Contains the geopotential height		

Jis ana	Input	Dimension Type	Description
puts	First		Contains the geopotential height.
	Output	Dimension Type	Description
	First		Contains the temperature.
	Second		Contains the speed of sound.

	Output	Dimension Type	Description
	Third		Contains the air pressure.
	Fourth		Contains the air density.
Assumptions and Limitations	Below the geopotential altitude of 0 km and above the geopotential altitude of the tropopause, temperature and pressure values are held. Density and speed of sound are calculated using a perfect gas relationship.		
Reference	[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.		
See Also	COESA Atr	nosphere Model	
	ISA Atmosp	ohere Model	

Purpose Convert from length units to desired length units

Library

Utilities/Unit Conversions

Description

>ft → m>

The Length Conversion block computes the conversion factor from specified input length units to specified output length units and applies the conversion factor to the input signal.

The Length Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

J				
Length Conversion (mask) (link)				
Convert units of input signal to desired output units.				

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

m	Meters
ft	Feet
km	Kilometers
in	Inches
mi	Miles
naut mi	Nautical miles

Inputs and	Input	Dimonsion Type	Description	
Outputs	mpor	Dimension Type	Description	
	First		Contains the length in initial length units.	
	Output	Dimension Type	Description	
	First		Contains the length in final length units.	
		~ ·		
See Also	Acceleration	n Conversion		
	Angle Conv	Angle Conversion		
	Angular Acceleration Conversion			
	Angular Velocity Conversion			
	Density Cor	nversion		
	Force Conv	ersion		
	Mass Conve	ersion		
	Pressure Conversion			
	Temperatu	re Conversion		
	Velocity Co	nversion		

Purpose Calculate Earth-centered Earth-fixed (ECEF) position from geodetic latitude, longitude, and altitude above planetary ellipsoid

Utilities/Axes Transformations

Description

×µu ×_f⊳

Library

The LLA to ECEF Position block converts geodetic latitude $(\bar{\mu})$,

longitude $(\bar{\iota})$, and altitude (\bar{h}) above the planetary ellipsoid into a 3-by-1 vector of ECEF position (\bar{p}) . The ECEF position is calculated from geocentric latitude at mean sea-level (λ_{i}) and longitude using:

$$\overline{p} = \begin{bmatrix} \overline{p}_x \\ \overline{p}_y \\ \overline{p}_z \end{bmatrix} = \begin{bmatrix} r_s \cos \lambda_s \cos \iota + h \cos \mu \cos \iota \\ r_s \cos \lambda_s \sin \iota + h \cos \mu \sin \iota \\ r_s \sin \lambda_s + h \sin \mu \end{bmatrix}$$

where geocentric latitude at mean sea-level and the radius at a surface

point (r_s) are defined by flattening (\bar{f}) , and equatorial radius (\bar{R}) in the following relationships.

$$\lambda_s = \operatorname{atan}((1-f)^2 \tan \mu)$$

$$r_s = \sqrt{\frac{R^2}{1 + \left(1 / (1 - f)^2 - 1\right) \sin^2 \lambda_s}}$$

LLA to ECEF Position

Dialog Box

Function Block Parameters: LLA to ECEF Posit 🗙		
LLA to ECEF (mask)		
Calculate Earth Centered Earth Fixed (ECEF) position from geodetic latitude, longitude, and altitude.		
Parameters		
Units: Metric (MKS)		
Planet model: Earth (WGS84)		
OK Cancel Help Apply		

🐱 Function Block Parameters: LLA to ECEF Posit 💌		
LLA to ECEF (mask)		
Calculate Earth Centered Earth Fixed (ECEF) position from geodetic latitude, longitude, and altitude.		
Parameters		
Planet model: Custom		
Flattening:		
1/298.257223563		
Equatorial radius of planet:		
J6378137		
OK Cancel Help Apply		

Units

Specifies the parameter and output units:

Units	Altitude	Equatorial Radius	Position
Metric (MKS)	Meters	Meters	Meters
English	Feet	Feet	Feet

This option is only available when **Planet model** is set to Earth (WGS84).

Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

Flattening

Specifies the flattening of the planet. This option is only available with **Planet model** set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for altitude. This option is only available with **Planet model** set to Custom.

Input	Dimension Type	Description
First	2-by-1 vector	Contains the geodetic latitude and longitude, in degrees.
Second	Scalar	Contains the altitude above the planetary ellipsoid.
Output	Dimension Type	Description

Assumptions and Limitations

Inputs and Outputs

The planet is assumed to be ellipsoidal by setting flattening to 0.0 a spherical planet can be achieved.

The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the *x*-axis intersects the Greenwich meridian and the equator, the *z*-axis being the mean spin axis of the planet, positive to the north, and the *y*-axis completes the right-handed system.

References	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , John Wiley & Sons, New York, 1992.		
	Zipfel, P. H., <i>Modeling and Simulation of Aerospace Vehicle Dynamics</i> , AIAA Education Series, Reston, Virginia, 2000.		
	"Atmospheric and Space Flight Vehicle Coordinate Systems," ANSI/AIAA R-004-1992.		
See Also	See "About Aerospace Coordinate Systems" on page 2-16.		
	Direction Cosine Matrix ECEF to NED		
Direction Cosine Matrix ECEF to NED to Latitude and Lo			
ECEF Position to LLA			
	Flat Earth to LLA		
	Radius at Geocentric Latitude		

Purpose Compute Mach number using velocity and speed of sound

Library **Flight Parameters**

Description

The Mach Number block computes Mach number.

γk Mach

Box

 $Mach = \frac{\sqrt{V \cdot V}}{a}$

Mach number is defined as

where a is speed of sound and V is velocity vector.

×

Dialog Block Parameters: Mach Number Mach Number (mask) (link)-Compute Mach number using velocity and speed of sound. Cancel Help ΟK

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the velocity vector.
	Second		Contains the speed of sound.
	-		
	Output	Dimension Type	Description
	First	3-by-1 vector	Contains the Mach number.
Examples	See Airframe in the aeroblk_HL20 model for an example of this block.		
See Also	Aerodynamic Forces and Moments		
	Dynamic I	Pressure	

Mass Conversion

Purpose	Convert	from	mass	units	to	desired	mass	units

Library

Utilities/Unit Conversions

Description

>lbm → kgp

The Mass Conversion block computes the conversion factor from specified input mass units to specified output mass units and applies the conversion factor to the input signal.

The Mass Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Block Parameters: Mass Conversion 🛛 🛛 🛛
Mass Conversion (mask) (link)
Convert units of input signal to desired output units.
Parameters
Initial units: Ibm
Final units: kg
OK Cancel Help Apply

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

lbm	Pound mass
kg	Kilograms

slug Slugs

Inputs and Outputs

Inputs and	Input	Dimension Type	Description			
Outputs	First		Contains the mass in initial mass units.			
	Output	Dimension Type	Description			
	First	3-by-1 vector	Contains the mass in final mass units.			
See Also	Acceleration Conversion					
	Angle Conversion					
	Angular Acceleration Conversion					
	Angular Velocity Conversion					
	Density Conversion					
	Force Conv	ersion				
	Length Con	version				
	Pressure Co	onversion				
	Temperatur	re Conversion				
	Velocity Co	nversion				

MATLAB Animation

Purpose Create six-degrees-of-freedom multibody custom geometry block

Animation/MATLAB-Based Animation

Library

Description

The MATLAB Animation block creates a six-degrees-of-freedom multibody custom geometry block based on the Aero.Animation object. This block animates one or more vehicle geometries with x - y - z position and Euler angles through the specified bounding box, camera offset, and field of view. This block expects the rotation order z - y - x (psi, theta, phi).

To update the camera parameters in the animation, first set the parameters then close and double-click the block to reopen the MATLAB Animation window.

To access the dialog box for this block, right-click the block, then select **Mask Parameters**. Alternatively, double-click the block to display the MATLAB Animation window, then click the **Block Parameters** icon.

Note The underlying graphics system stores values in single precision. As a result, you might notice that motion at coordinate positions greater than approximately 1e6 appear unstable. This is because a single-precision number has approximately six digits of precision. The instability is due to quantization at the local value of the eps MATLAB function. To visualize more stable motion for coordinates beyond 1e6, either offset the input data to a local zero, or scale down the coordinate values feeding the visualization.

Dialog Box

🙀 Sink Block Parameters: MATLAB Animation 🛛 🛛 🗶			
-AeroMATLABAnimation (mask) (link)			
Animate one or more vehicle geometries with XYZ position and euler angles through the specified bounding box, camera offset, and field of view. By default, the camera aim point is the position of the first body lagged dynamically to indicate motion. The camera offset represents the distance from the camera aim point to the camera itself. To update the camera parameters in the animation, first set the parameters then close and reopen the animation window.			
Vehicle geometries can be specified using a variable name, a cell array of variable names, a filename string with quotes 'mygeom.mat', or a mixed cell array of variable names and strings, e.g., ('file1.mat', 'file2.mat', 'file3.ac', geomVar). Currently, geometries specified in variables must exist in the MATLAB workspace and file names must exist in the current directory or be on the MATLAB path.			
Parameters			
Vehicles: 1			
Geometries (use 'quotes' on filenames):			
'astredwedge.mat'			
Bounding box coordinates:			
[-50,50,-50,50,-50,50]			
Camera offset:			
[-150,-50,0]			
Camera view angle:			
3			
Sample time:			
0.2			
OK Cancel Help Apply			

Vehicles

Specifies the vehicle to animate. From the list, select from 1 to 10. The block mask inputs change to reflect the number of vehicles you select. Each vehicle has its own set of inputs, denoted by the number at the beginning of the input label.

Geometries

Specifies the vehicle geometries. You can specify these geometries using one of the following:

- Variable name, for example geomVar
- Cell array of variable names, for example {geomVar, AltGeomVar}
- String with single quotes, for example, 'astredwedge.mat'
- Mixed cell array of variable names and strings, for example
 {'file1.mat', 'file2.mat', 'file3.ac', geomVar}

Note All specified geometries specified must exist in the MATLAB workspace and file names must exist in the current folder or be on the MATLAB path.

Bounding box coordinates

Specifies the boundary coordinates for the vehicle.

This parameter is not tunable during simulation. A change to this parameter takes effect after simulation stops.

Camera offset

Specifies the distance from the camera aim point to the camera itself.

This parameter is not tunable during simulation. A change to this parameter takes effect after simulation stops.

Camera view angle

Specifies the camera view angle. By default, the camera aim point is the position of the first body lagged dynamically to indicate motion.

This parameter is not tunable during simulation. A change to this parameter takes effect after simulation stops.

Sample time

Specify the sample time (-1 for inherited).

Inputs and	Input	Dimension Type	Description
Outputs	First	Vector	Contains the altitude, the crossrange position, and the downrange position of the vehicle in Earth coordinates.
	Output	Dimension Type	Description
	First	Vectors	Contains the Euler angles (roll, pitch, and yaw) of the vehicle.
See Also	Aero.Anim	nation in the Aerospa	ce Toolbox documentation

5-337

Moments About CG Due to Forces

Purpose Compute moments about center of gravity due to forces applied at a point, not center of gravity

Library

Dialog

Box

Mass Properties

Description

>F >CG >CP The Moments about CG Due to Forces block computes moments about center of gravity due to forces that are applied at point CP, not at the center of gravity.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the forces applied at point CP.
	Second		Contains the center of gravity.
	Third		Contains the application point of forces.
	Output	Dimension Type	Description
	First		Contains the moments at the center of gravity in <i>x</i> -axes, <i>y</i> -axes and <i>z</i> -axes.

See Also Aerodynamic Forces and Moments

Estimate Center of Gravity

Non-Standard Day 210C

Purpose Implement MIL-STD-210C climatic data

Library

Environment/Atmosphere

Description

The Non-Standard Day 210C block implements a portion of the climatic data of the MIL-STD-210C worldwide air environment to 80 km (geometric or approximately 262,000 feet geometric) for absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 210C block icon displays the input and output units selected from the **Units** list.

Dialog Box

Block Parameters: Non-Standard Day 210C 🛛 🛛 🖄			
Atmosphere Model (mask) (link)			
Calculate various atmosphere models including 1976 CDESA-extended U.S. Standard Atmosphere, MIL-HDBK-310, and MIL-STD-210C. Given geopotential altitude, calculate absolute temperature, pressure and density using standard interpolation formulas.			
The COESA model extrapolates temperature linearly and pressure/density logarithmically beyond the range $% \left({{\left[{{{\rm{T}}_{\rm{T}}} \right]}} \right)$			
0 <= altitude <= 84852 meters (geopotential)			
The MIL specifications are not extrapolated beyond their defined altitudes which are typically			
0 <= altitude <= 80000 meters (geometric)			
Depending on the given information either density or pressure is calculated using a perfect gas relationship.			
The unit system selected applies to both input and outputs.			
Parameters			
Units: Metric (MKS)			
Specification: MIL-STD-210C			
Atmospheric model type: Profile			
Extreme parameter: High temperature			
Frequency of occurrence: 1%			
Altitude of extreme value: 5 km (16404 ft)			
Action for out of range input: Warning			
OK Cancel Help Apply			

Units

Specifies the input and output units:

Units	Height	Temperature	Speed of Sound	Air Pressure	Air Density
Metric (MKS)	Meters	Kelvin	Meters per second	Pascal	Kilograms per cubic meter
English (Velocity in ft/s)	Feet	Degrees Rankine	Feet per second	Pound force per square inch	Slug per cubic foot
English (Velocity in kts)	Feet	Degrees Rankine	Knots	Pound force per square inch	Slug per cubic foot

Specification

Specify the atmosphere model type from one of the following atmosphere models. The default is MIL-STD-210C.

1976 COESA-extended U.S. Standard Atmosphere

This selection is linked to the COESA Atmosphere Model block. See the block reference for more information.

MIL-HDBK-310

This selection is linked to the Non-Standard Day 310 block. See the block reference for more information.

MIL-STD-210C

This selection is linked to the Non-Standard Day 210C block. See the block reference for more information.

Atmospheric model type

Select the representation of the atmospheric data.

Profile	Realistic atmospheric profiles associated with extremes at specified altitudes. Recommended for simulation of vehicles vertically traversing the atmosphere or when the total influence of the atmosphere is needed.
Envelope	Uses extreme atmospheric values at each altitude.

Recommended for vehicles only horizontally traversing the atmosphere without much change in altitude.

Extreme parameter

Select the atmospheric parameter that is the extreme value.

High temperature	Option always available
Low temperature	Option always available
High density	Option always available
Low density	Option always available
High pressure	This option is available only when Envelope is selected for Atmospheric model type
Low pressure	This option is available only when Envelope is selected for Atmospheric model type

Frequency of occurrence

Select percent of time the values would occur.

Extreme values	This option is available only when Envelope is selected for Atmospheric model type.
1%	Option always available
5%	This option is available only when Envelope is selected for Atmospheric model type .

	selected for Atmospheric model type .
20%	This option is available only when Envelope is
10%	Option always available

Altitude of extreme value

Select geometric altitude at which the extreme values occur. Applies to the profile atmospheric model only.

5 km (16404 ft) 10 km (32808 ft) 20 km (65617 ft) 30 km (98425 ft) 40 km (131234 ft)

Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the geopotential height.
	Output	Dimension Type	Description
	First		Contains the temperature.
	Second		Contains the speed of sound.
	Third		Contains the air pressure.
	Fourth		Contains the air density.
Assumptions and Limitations	All values are held below the geometric altitude of 0 m (0 feet) and above the geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope atmospheric model has a few exceptions where values are held below the geometric altitude of 1 kilometer (approximately 3,281		

98,425 feet). These exceptions arise from lack of data in MIL-STD-210C for these conditions.

In general, temperature values are interpolated linearly, and density values are interpolated logarithmically. Pressure and speed of sound are calculated using a perfect gas law. The envelope atmospheric model has a few exceptions where the extreme value is the only value provided as an output. Pressure in these cases is interpolated logarithmically. These envelope atmospheric model exceptions apply to all cases of high and low pressure, high and low temperature, and high and low density, excluding the extreme values and 1% frequency of occurrence. These exceptions arise from lack of data in MIL-STD-210C for these conditions.

Another limitation is that climatic data for the region south of 60°S latitude is excluded from consideration in MIL-STD-210C.

This block uses the metric version of data from the MIL-STD-210C specifications. Certain data within the envelope are inconsistent between metric and English versions for low density, low temperature, high temperature, low pressure, and high pressure. The most significant differences occur in the following values:

- For low density envelope data with 5% frequency, the density values in metric units are inconsistent at 4 km and 18 km and the density values in English units are inconsistent at 14 km.
- For low density envelope data with 10% frequency,
 - The density values in metric units are inconsistent at 18 km.
 - The density values in English units are inconsistent at 14 km.
- For low density envelope data with 20% frequency, the density values in English units are inconsistent at 14 km.
- For low temperature envelope data with 20% frequency, the temperature values at 20 km are inconsistent.
- For high pressure envelope data with 10% frequency, the pressure values in metric units at 8 km are inconsistent.

Reference	Global Climatic Data for Developing Military Products (MIL-STD-210C), 9 January 1987, Department of Defense, Washington, D.C.
See Also	COESA Atmosphere Model
	ISA Atmosphere Model
	Non-Standard Day 310

Non-Standard Day 310

Purpose Implement MIL-HDBK-310 climatic data

Library

Environment/Atmosphere

Description

The Non-Standard Day 310 block implements a portion of the climatic data of the MIL-HDBK-310 worldwide air environment to 80 km (geometric or approximately 262,000 feet geometric) for absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 310 block icon displays the input and output units selected from the **Units** list.

Dialog Box

Block Parameters: Non-Standard Day 310			
Atmosphere Model (mask) (link)			
Calculate various atmosphere models including 1976 CDESA-extended U.S. Standard Atmosphere, MIL-HDBK-310, and MIL-STD-210C. Given geopotential altitude, calculate absolute temperature, pressure and density using standard interpolation formulas.			
The COESA model extrapolates temperature linearly and pressure/density logarithmically beyond the range			
0 <= altitude <= 84852 meters (geopotential)			
The MIL specifications are not extrapolated beyond their defined altitudes which are typically			
0 <= altitude <= 80000 meters (geometric)			
Depending on the given information either density or pressure is calculated using a perfect gas relationship.			
The unit system selected applies to both input and outputs.			
Parameters			
Units: Metric (MKS)			
Specification: MIL-HDBK-310			
Atmospheric model type: Profile			
Extreme parameter: High temperature			
Frequency of occurrence: 1%			
Altitude of extreme value: 5 km (16404 ft)			
Action for out of range input: Warning			
OK Cancel Help Apply			

Units

Specifies the input and output units:

Units	Height	Temperature	Speed of Sound	Air Pressure	Air Density
Metric (MKS)	Meters	Kelvin	Meters per second	Pascal	Kilograms per cubic meter
English (Velocity in ft/s)	Feet	Degrees Rankine	Feet per second	Pound force per square inch	Slug per cubic foot
English (Velocity in kts)	Feet	Degrees Rankine	Knots	Pound force per square inch	Slug per cubic foot

Specification

Specify the atmosphere model type from one of the following atmosphere models. The default is MIL-HDBK-310.

1976 COESA-extended U.S. Standard Atmosphere

This selection is linked to the COESA Atmosphere Model block. See the block reference for more information.

MIL-HDBK-310

This selection is linked to the Non-Standard Day 310 block. See the block reference for more information.

MIL-STD-210C

This selection is linked to the Non-Standard Day 210C block. See the block reference for more information.

Atmospheric model type

Select the representation of the atmospheric data.

Profile	Realistic atmospheric profiles associated with extremes at specified altitudes. Recommended for simulation of vehicles vertically traversing the atmosphere or when the total influence of the atmosphere is needed.
Envelope	Uses extreme atmospheric values at each altitude. Recommended for vehicles only horizontally traversing the atmosphere without much change in altitude.

Extreme parameter

Select the atmospheric parameter which is the extreme value.

High temperature	Option always available
Low temperature	Option always available
High density	Option always available
Low density	Option always available
High pressure	This option is available only when Envelope is selected for Atmospheric model type.
Low pressure	This option is available only when Envelope is selected for Atmospheric model type.

Frequency of occurrence

Select percent of time the values would occur.

Extreme values	This option is available only when Envelope is selected for Atmospheric model type.
1%	Option always available
5%	This option is available only when Envelope is selected for Atmospheric model type.

10% Option always available

Altitude of extreme value

Select geometric altitude at which the extreme values occur. Applies to the profile atmospheric model only.

5 km (16404 ft) 10 km (32808 ft) 20 km (65617 ft) 30 km (98425 ft) 40 km (131234 ft)

Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the geopotential height.
	Output	Dimension Type	Description
	First		Contains the temperature.
	Second		Contains the speed of sound.
	Third		Contains the air pressure.
	Fourth		Contains the air density.
Assumptions and Limitations	All values are held below the geometric altitude of 0 m (0 feet) and above the geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope atmospheric model has a few exceptions where values are held below the geometric altitude of 1 kilometer (approximately 3,281 feet) and above the geometric altitude of 30,000 meters (approximately		

98,425 feet). These exceptions arise from lack of data in MIL-HDBK-310 for these conditions.

In general, temperature values are interpolated linearly, and density values are interpolated logarithmically. Pressure and speed of sound are calculated using a perfect gas law. The envelope atmospheric model has a few exceptions where the extreme value is the only value provided as an output. Pressure in these cases is interpolated logarithmically. These envelope atmospheric model exceptions apply to all cases of high and low pressure, high and low temperature, and high and low density, excluding the extreme values and 1% frequency of occurrence. These exceptions arise from lack of data in MIL-HDBK-310 for these conditions.

Another limitation is that climatic data for the region south of 60°S latitude is excluded from consideration in MIL-HDBK-310.

This block uses the metric version of data from the MIL-STD-310 specifications. Certain data within the envelope are inconsistent between metric and English versions for low density, low temperature, high temperature, low pressure, and high pressure. The most significant differences occur in the following values:

- For low density envelope data with 5% frequency, the density values in metric units are inconsistent at 4 km and 18 km and the density values in English units are inconsistent at 14 km.
- For low density envelope data with 10% frequency,
 - The density values in metric units are inconsistent at 18 km.
 - The density values in English units are inconsistent at 14 km.
- For low density envelope data with 20% frequency, the density values in English units are inconsistent at 14 km.
- For low temperature envelope data with 20% frequency, the temperature values at 20 km are inconsistent.
- For high pressure envelope data with 10% frequency, the pressure values in metric units at 8 km are inconsistent.

Reference	Global Climatic Data for Developing Military Products (MIL-HDBK-310), 23 June 1997, Department of Defense, Washington, D.C.
See Also	COESA Atmosphere Model
	ISA Atmosphere Model

Non-Standard Day 210C

PurposeImplement mathematical representation of 2001 United States Naval
Research Laboratory Mass Spectrometer and Incoherent Scatter Radar
Exosphere

Library Environment/Atmosphere

Description

Atmosphere Model

The NRLMSISE-00 Atmosphere Model block implements the mathematical representation of the 2001 United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE-00). This block calculates the neutral atmosphere empirical model from the surface to lower exosphere (0 to 1,000,000 meters). When configuring the block for this calculation, you can also take into account the anomalous oxygen, which can affect the satellite drag above 500,000 meters.

Note This block is valid only for altitudes between 0 and 1,000,000 meters (1,000 kilometers).

Dialog Box	Function Block Parameters: NRLMSISE-00 Atmosphere Model NRLMSISE-00 Model (mask) (link) Implement the mathematical representation of the 2001 United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE-00). NRLMSISE-00 calculates the neutral atmosphere empirical model from the surface to lower exosphere (0 to 1,000,000 meters) with the option of including contributions from anomalous oxygen which can affect satellite drag above 500,000 meters.
	Parameters Units: Metric (MKS) Input local apparent solar time Input flux and magnetic index information Source for flags: Internal Flags: ones(1,23) Include anomalous oxygen number density in total mass density Action for out of range input: Warning
	OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Temperature	Height	Density
Metric (MKS)	Kelvin	Meters	kg/m ³ , some density outputs 1m ³
English	Rankine	Feet	lbm/ft ³ , some density outputs 1/ft ³

Input local apparent solar time

Select this check box to input the local apparent solar time, in hours. Otherwise, the block inputs the default value.

Input flux and magnetic index information

Select this check box to input the 81-day average of F10.7, the daily F10.7 flux for the previous day, and the array of 7 magnetic index information (see the aph argument in the atmosnrlmsise00 function of the *Aerospace Toolbox User's Guide*). Otherwise, the block inputs the default value.

Source for flags

Specify the variation flag source. If you specify External, you must enter the variation flag as an array of 23. If you specify Internal, the flag source is internal to the block.

Flags

Specify the variation flag as an array of 23. This parameter applies only when **Source for flags** has a value of Internal. You can specify one of the following values for a field. The default value for each field is 1.

• 0.0

Removes that value's effect on the output.

• 1.0

Applies the main and the cross-term effects of that value on the output.

• 2.0

Applies only the cross-term effect of that value on the output. The array has the following fields.

Field	Description
Flags(1)	F10.7 effect on mean
Flags(2)	Independent of time
Flags(3)	Symmetrical annual
Flags(4)	Symmetrical semiannual
Flags(5)	Asymmetrical annual
Flags(6)	Asymmetrical semiannual
Flags(7)	Diurnal
Flags(8)	Semidiurnal
Flags(9)	Daily AP. If you set this field to -1, the block uses the entire matrix of magnetic index information (APH) instead of APH(:,1)
Flags(10)	All UT, longitudinal effects
Flags(11)	Longitudinal
Flags(12)	UT and mixed UT, longitudinal
Flags(13)	Mixed AP, UT, longitudinal
Flags(14)	Terdiurnal
Flags(15)	Departures from diffusive equilibrium
Flags(16)	All exospheric temperature variations
Flags(17)	All variations from 120,000 meter temperature (TLB)
Flags(18)	All lower thermosphere (TN1) temperature variations

Field	Description
Flags(19)	All 120,000 meter gradient (S) variations
Flags(20)	All upper stratosphere (TN2) temperature variations
Flags(21)	All variations from 120,000 meter values (ZLB)
Flags(22)	All lower mesosphere temperature (TN3) variations
Flags(23)	Turbopause scale height variations

Include anomalous oxygen number density in total mass density Select this check box to take into account the anomalous oxygen when calculating the neutral atmosphere empirical model from the surface to lower exosphere (0 to 1,000,000 meters). Taking into account this number can affect the satellite drag above 500,000 meters.

Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

Inputs and Outputs	Input	Dimension Type	Description
	First	Array	Contains N altitude, in meters.
	Second	Array	Contains N latitudes, in degrees.
	Third	Array	Contains N longitude, in degrees.
	Fourth	Array	Contains N years.
	Fifth	Array	Contains N days of a year (1 to 365 (or 366)).
	Sixth	Array	Contains N seconds in a day, in universal time (UT).

Input	Dimension Type	Description
Seventh	Array	Contains N local apparent solar time, in hours.
Eighth	Array	Contains N 81-day average of F10.7 flux, centered on day of year (doy).
Ninth	Array	Contains N daily F10.7 flux for previous day.
Tenth	N-by-7 array	Contains N-by-7 of magnetic index information.
Eleventh	Array of 23	Contains flags to enable or disable particular variations for the outputs. See following table.
Twelfth	String	Specifies total mass density output.
		'Oxygen' Total mass density outputs include anomalous oxygen number density.
		'NoOxygen' Total mass density outputs do not include anomalous oxygen number density.
Thirteent	h Action	Determines action for out-of-range input. Specify if out-of-range input invokes a 'Warning', 'Error', or no action ('None'). The default is 'Warning'.

These flags, associated with the eleventh input, enable or disable particular variations for the outputs.

Field	Description
Flags(1)	F10.7 effect on mean
Flags(2)	Independent of time

Field	Description
Flags(3)	Symmetrical annual
Flags(4)	Symmetrical semiannual
Flags(5)	Asymmetrical annual
Flags(6)	Asymmetrical semiannual
Flags(7)	Diurnal
Flags(8)	Semidiurnal
Flags(9)	Daily AP. If you set this field to -1, the block uses the entire matrix of magnetic index information (APH) instead of APH(:,1)
Flags(10)	All UT, longitudinal effects
Flags(11)	Longitudinal
Flags(12)	UT and mixed UT, longitudinal
Flags(13)	Mixed AP, UT, longitudinal
Flags(14)	Terdiurnal
Flags(15)	Departures from diffusive equilibrium
Flags(16)	All exospheric temperature variations
Flags(17)	All variations from 120,000 meter temperature (TLB)
Flags(18)	All lower thermosphere (TN1) temperature variations
Flags(19)	All 120,000 meter gradient (S) variations
Flags(20)	All upper stratosphere (TN2) temperature variations
Flags(21)	All variations from 120,000 meter values (ZLB)
Flags(22)	All lower mesosphere temperature (TN3) variations
Flags(23)	Turbopause scale height variations
Assumptions and Limitations

The F107 and F107A values that are used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values:

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

Pur	pose	Generate net	fdmı	packet for	FlightGear

Library Animation/Flight Simulator Interfaces

Description

>I >µ >h >φ packe >θ >Ψ	t
--	---

The Pack net_fdm Packet for FlightGear block creates, from separate inputs, a FlightGear net_fdm data packet compatible with a particular version of FlightGear flight simulator. All the signals supported by the FlightGear net_fdm data packet are supported by this block. The signals are arranged into six groups. Any group can be turned on or off. Zeros are inserted for packet values that are part of inactive signal groups.

See "Inputs and Outputs" on page 5-362 for details on signals and signal groups.

Supported FlightGear versions: v0.9.3, v0.9.8/0.9.8a, v0.9.9, v0.9.10, v1.0, v1.9.1

Dialog	Function Block Parameters: Pack net_fdm Packet for FlightGear					
Box	FlightGearPackNetFdm (mask) (link)					
	Create a FlightGear net_fdm data packet compatible with a particular version of FlightGear Flight Simulator.					
	Zeros are inserted for packet values that are part of inactive signal groups. Press the help button for details on signals and signal groups.					
	Parameters					
	FlightGear version: v1.9.1					
	Show position / attitude inputs					
	Show velocity / acceleration inputs					
	Show control surface position inputs					
	Show engine / fuel inputs					
	Show landing gear inputs					
	Show environment inputs					
	Sample time (-1 for inherited):					
	1/30					
	OK Cancel Help Apply					

FlightGear version

Select your FlightGear software version.

Supported FlightGear versions: v0.9.3, v0.9.8/0.9.8a, v0.9.9, v0.9.10, v1.0, v1.9.1.

Show position/altitude inputs

Select this check box to include the position and altitude inputs (signal group 1) into the FlightGear net_fdm data packet.

Show velocity/acceleration inputs

Select this check box to include the velocity and acceleration inputs (signal group 2) into the FlightGear net_fdm data packet.

	Show control sur Select this cho (signal group	face position a eck box to inclu 3) into the Flig	inputs de the contro htGear n e t	l surface position inputs fdm data packet.			
	Show engine/fuel Select this cho group 4) into	inputs eck box to inclu the FlightGear	- de the engine net_fdm dat	e and fuel inputs (signal a packet.			
	Show landing gea Select this ch group 5) into	Show landing gear inputs Select this check box to include the landing gear inputs (signal group 5) into the FlightGear net fdm data packet.					
	Show environment inputs Select this check box to include the environment inputs (signal group 6) into the FlightGear net fdm data packet.						
	Sample time Specify the sa	umple time (-1 f	or inherited)				
Inputs and Outputs	Input Signals Su This table lists all t	pported for F he input signal	lightGear (s supported f	D.9.3 for Version 0.9.3:			
Name	Units	Туре	Width	Description			
Signal Group	1: ShowPositionAttit	udeInputs					
1	rad	double	1	Geodetic longitude			
μ	rad	double	1	Geodetic altitude			
h	m	double	1	Altitude above sea level			
Φ	rad	single	1	Roll			

single

single

1

1

Pitch

Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

rad

rad

Θ

Ψ

Name	Units	Туре	Width	Description
dΦ/dt	rad/sec	single	1	Roll rate
$d\Phi/dt$	rad/sec	single	1	Pitch rate
dψ/dt	rad/sec	single	1	Yaw rate
vcas	kts	single	1	Calibrated airspeed
climb_rate	ft/sec	single	1	Climb rate
v_north	ft/sec	single	1	North velocity in local/body frame
v_east	ft/sec	single	1	East velocity in local/body frame
v_down	ft/sec	single	1	Down/vertical velocity in local/body frame
v_wind_body_north	ft/sec	single	1	Body north velocity relative to local airmass
v_wind_body_east	ft/sec	single	1	Body east velocity relative to local airmass
v_wind_body_down	ft/sec	single	1	Body down/vertical velocity relative to local airmass
stall_warning	_	single	1	0.0–1.0, indicating the amount of stall
A_X_pilot	ft/sec^2	single	1	X acceleration in body frame
A_Y_pilot	ft/sec^2	single	1	Y acceleration in body frame

Name	Units	Туре	Width	Description
A_Z_pilot	ft/sec^2	single	1	Z acceleration in body frame
Signal Group 3: ShowCo	ntrolSurfaceP	ositionInput	S	
elevator	geometry- specific units	single	1	Elevator position
flaps	geometry- specific units	single	1	Flaps position
left_aileron	geometry- specific units	single	1	Left aileron position
right_aileron	geometry- specific units	single	1	Right aileron position
rudder	geometry- specific units	single	1	Rudder position
speedbrake	geometry- specific units	single	1	Speed brake position
spoilers	geometry- specific units	single	1	Spoilers position
Signal Group 4: ShowEn	gineFuelInpu	ts		
num_engines	_	int32	1	Number of valid engines
eng_state	enum	int32	4	Engine state (0=off, 1=cranking, 2=running)
rpm	rev/min	single	4	Engine RPM
fuel_flow	gal/hr	single	4	Fuel flow
EGT	°F	single	4	Exhaust gas temp
oil_temp	٥F	single	4	Oil temp

Name	Units	Туре	Width	Description
oil_px	lbf/in ²	single	4	Oil pressure
num_tanks	_	int32	1	Max number of fuel tanks
fuel_quantity		single	4	Amount of fuel in tanks (0–1 fraction)
Signal Group 5: Sho	wLandingGear	Inputs		
num_wheels	—	int32	1	Maximum number of wheels
wow	—	boolean	3	Weight on wheels signal (1=wheel is on ground)
gear_pos	_	single	3	Landing gear position (0-1, indicating amount deployed)
gear_steer	—	single	3	Landing gear steering angle
gear_compression	—	single	3	Landing gear compression
Signal Group 6: Sho	wEnvironment	Inputs		
agl	m	single	1	Above ground level
cur_time	sec	int32	1	Current UNIX time
warp	sec	int32	1	Offset in seconds to UNIX time
visibility	m	single	1	Visibility in meters (for visual effects)

Input Signals Supported for FlightGear 0.9.8/0.9.8a

This table lists all the input signals supported for Versions 0.9.8/0.9.8a:

Name	Units	Туре	Width	Description		
Signal Group 1: ShowPositionAttitudeInputs						
1	rad	double	1	Geodetic longitude		
μ	rad	double	1	Geodetic altitude		
h	m	double	1	Altitude above sea level		
Φ	rad	single	1	Roll		
Θ	rad	single	1	Pitch		
Ψ	rad	single	1	Yaw or true heading		
Signal Group 2: ShowVe	elocityAccele	rationInputs				
α	rad	single	1	Angle of attack		
β	rad	single	1	sideslip angle		
$d\Phi/dt$	rad/sec	single	1	Roll rate		
$d\Phi/dt$	rad/sec	single	1	Pitch rate		
dψ/dt	rad/sec	single	1	Yaw rate		
vcas	kts	single	1	Calibrated airspeed		
climb_rate	ft/sec	single	1	Climb rate		
v_north	ft/sec	single	1	North velocity in local/body frame		
v_east	ft/sec	single	1	East velocity in local/body frame		

Name	Units	Туре	Width	Description
v_down	ft/sec	single	1	Down/vertical velocity in local/body frame
v_wind_body_north	ft/sec	single	1	Body north velocity relative to local airmass
v_wind_body_east	ft/sec	single	1	Body east velocity relative to local airmass
v_wind_body_down	ft/sec	single	1	Body down/vertical velocity relative to local airmass
A_X_pilot	ft/sec^2	single	1	X acceleration in body frame
A_Y_pilot	ft/sec^2	single	1	Y acceleration in body frame
A_Z_pilot	ft/sec^2	single	1	Z acceleration in body frame
stall_warning		single	1	0.0–1.0, indicating the amount of stall
slip_deg	deg	single	1	Slip ball deflection
Signal Group 3: ShowCo	ontrolSurface	PositionInputs	8	
elevator	geometry- specific units	single	1	Elevator position
elevator_trim_tab	geometry- specific units	single	1	Elevator trim position

Name	Units	Туре	Width	Description
left_flap	geometry- specific units	single	1	Left flap position
right_flap	geometry- specific units	single	1	Right flap position
left_aileron	geometry- specific units	single	1	Left aileron position
right_aileron	geometry- specific units	single	1	Right aileron position
rudder	geometry- specific units	single	1	Rudder position
nose_wheel	geometry- specific units	single	1	Nose wheel position
speedbrake	geometry- specific units	single	1	Speed brake position
spoilers	geometry- specific units	single	1	Spoilers position
Signal Group 4: ShowE	ngineFuelInp	outs		
num_engines	_	int32	1	Number of valid engines
eng_state	enum	int32	4	Engine state (0=off, 1=cranking, 2=running)

Name	Units	Туре	Width	Description
rpm	rev/min	single	4	Engine RPM
fuel_flow	gal/hr	single	4	Fuel flow
EGT	$^{\mathrm{o}}\mathrm{F}$	single	4	Exhaust gas temp
cht	$^{\mathrm{o}}\mathrm{F}$	single	4	Cylinder head temperature
mp_osi	psi	single	4	Manifold pressure
tit	٥F	single	4	Turbine inlet temperature
oil_temp	$^{\mathrm{o}}\mathrm{F}$	single	4	Oil temp
oil_px	lbf/in ²	single	4	Oil pressure
num_tanks	—	int32	1	Max number of fuel tanks
fuel_quantity	—	single	4	Amount of fuel in tanks (0–1 fraction)
Signal Group 5: Sh	owLandingGea	rInputs		
num_wheels	—	int32	1	Maximum number of wheels
wow	—	boolean	3	Weight on wheels signal (1=wheel is on ground)
gear_pos	_	single	3	Landing gear position (0–1, indicating amount deployed)
gear_steer	—	single	3	Landing gear steering angle

Name	Units	Туре	Width	Description
gear_compression		single	3	Landing gear compression
Signal Group 6: ShowE	nvironmentI	nputs		
agl	m	single	1	Above ground level
cur_time	sec	int32	1	Current UNIX time
warp	sec	int32	1	Offset in seconds to UNIX time
visibility	m	single	1	Visibility in meters (for visual effects)

Input Signals Supported for FlightGear 0.9.9

This table lists all the input signals supported for Version 0.9.9:

Name	Units	Туре	Width	Description
Signal Group 1: S	howPosition	AttitudeInput	s	
1	rad	double	1	Geodetic longitude
μ	rad	double	1	Geodetic latitude
h	m	double	1	Altitude above sea level
Φ	rad	single	1	Roll
Θ	rad	single	1	Pitch
Ψ	rad	single	1	Yaw or true heading
Signal Group 2: S	howVelocity	AccelerationI	nputs	
α	rad	single	1	Angle of attack
β	rad	single	1	sideslip angle
$d\Phi/dt$	rad/sec	single	1	Roll rate
dΦ/dt	rad/sec	single	1	Pitch rate

Name	Units	Туре	Width	Description
dψ/dt	rad/sec	single	1	Yaw rate
vcas	kts	single	1	Calibrated airspeed
climb_rate	ft/sec	single	1	Climb rate
v_north	ft/sec	single	1	North velocity in local/body frame
v_east	ft/sec	single	1	East velocity in local/body frame
v_down	ft/sec	single	1	Down/vertical velocity in local/body frame
v_wind_body_north	ft/sec	single	1	Body north velocity relative to local airmass
v_wind_body_east	ft/sec	single	1	Body east velocity relative to local airmass
v_wind_body_down	ft/sec	single	1	Body down/vertical velocity relative to local airmass
A_X_pilot	ft/sec^2	single	1	X acceleration in body frame
A_Y_pilot	ft/sec^2	single	1	Y acceleration in body frame
A_Z_pilot	ft/sec^2	single	1	Z acceleration in body frame
stall_warning	—	single	1	0.0–1.0, indicating the amount of stall
slip_deg	deg	single	1	Slip ball deflection

Signal Group 3: ShowControlSurfacePositionInputs

Name	Units	Туре	Width	Description
elevator	geometry- specific units	single	1	Elevator position
elevator_trim_tab	geometry- specific units	single	1	Elevator trim position
left_flap	geometry- specific units	single	1	Left flap position
right_flap	geometry- specific units	single	1	Right flap position
left_aileron	geometry- specific units	single	1	Left aileron position
right_aileron	geometry- specific units	single	1	Right aileron position
rudder	geometry- specific units	single	1	Rudder position
nose_wheel	geometry- specific units	single	1	Nose wheel position
speedbrake	geometry- specific units	single	1	Speed brake position
spoilers	geometry- specific units	single	1	Spoilers position

Signal Group 4: ShowEngineFuelInputs

Name	Units	Туре	Width	Description
num_engines	—	uint32	1	Number of valid engines
eng_state	enum	uint32	4	Engine state (0=off, 1=cranking, 2=running)
rpm	rev/min	single	4	Engine RPM
fuel_flow	gal/hr	single	4	Fuel flow
EGT	٥F	single	4	Exhaust gas temp
cht	٥F	single	4	Cylinder head temperature
mp_osi	psi	single	4	Manifold pressure
tit	٥F	single	4	Turbine inlet temperature
oil_temp	٥F	single	4	Oil temp
oil_px	lbf/in ²	single	4	Oil pressure
num_tanks	—	uint32	1	Max number of fuel tanks
fuel_quantity	—	single	4	Amount of fuel in tanks (0–1 fraction)
Signal Group 5: Sh	nowLanding	GearInputs		
num_wheels	—	uint32	1	Maximum number of wheels
wow	—	uint32	3	Weight on wheels signal (1=wheel is on ground)
gear_pos	_	single	3	Landing gear position (0-1, indicating amount deployed)

Name	Units	Туре	Width	Description
gear_steer	—	single	3	Landing gear steering angle
gear_compression	—	single	3	Landing gear compression
Signal Group 6: S	howEnvir	onmentInput	s	
agl	m	single	1	Above ground level
cur_time	sec	uint32	1	Current UNIX time
warp	sec	int32	1	Offset in seconds to UNIX time
visibility	m	single	1	Visibility in meters (for visual effects)

Input Signals Supported for FlightGear 0.9.10/1.0/1.9.1

This table lists all the input signals supported for Version 0.9.10, 1.0, and 1.9.1:

Name	Units	Туре	Width	Description
Signal Group 1	: ShowPositi	onAttitudeIn	puts	
1	rad	double	1	Geodetic longitude
μ	rad	double	1	Geodetic latitude
h	m	double	1	Altitude above sea level
Φ	rad	single	1	Roll
Θ	rad	single	1	Pitch
Ψ	rad	single	1	Yaw or true heading
Signal Group 2	: ShowVeloc	ityAcceleratio	onInputs	
α	rad	single	1	Angle of attack

Name	Units	Туре	Width	Description
β	rad	single	1	sideslip angle
dΦ/dt	rad/sec	single	1	Roll rate
dΦ/dt	rad/sec	single	1	Pitch rate
dψ/dt	rad/sec	single	1	Yaw rate
vcas	kts	single	1	Calibrated airspeed
climb_rate	ft/sec	single	1	Climb rate
v_north	ft/sec	single	1	North velocity in local/body frame
v_east	ft/sec	single	1	East velocity in local/body frame
v_down	ft/sec	single	1	Down/vertical velocity in local/body frame
v_wind_body_north	ft/sec	single	1	Body north velocity relative to local airmass
v_wind_body_east	ft/sec	single	1	Body east velocity relative to local airmass
v_wind_body_down	ft/sec	single	1	Body down/vertical velocity relative to local airmass
A_X_pilot	ft/sec^2	single	1	X acceleration in body frame
A_Y_pilot	ft/sec^2	single	1	Y acceleration in body frame
A_Z_pilot	ft/sec^2	single	1	Z acceleration in body frame

Name	Units	Туре	Width	Description
stall_warning	_	single	1	0.0–1.0, indicating the amount of stall
slip_deg	deg	single	1	Slip ball deflection
Signal Group 3: S	howContro	SurfacePos	sitionInputs	
elevator	geometry- specific units	single	1	Elevator position
elevator_trim_tab	geometry- specific units	single	1	Elevator trim position
left_flap	geometry- specific units	single	1	Left flap position
right_flap	geometry- specific units	single	1	Right flap position
left_aileron	geometry- specific units	single	1	Left aileron position
right_aileron	geometry- specific units	single	1	Right aileron position
rudder	geometry- specific units	single	1	Rudder position
nose_wheel	geometry- specific units	single	1	Nose wheel position

Name	Units	Туре	Width	Description
speedbrake	geometry- specific units	single	1	Speed brake position
spoilers	geometry- specific units	single	1	Spoilers position
Signal Group 4: S	howEngine	FuelInputs		
num_engines	_	uint32	1	Number of valid engines
eng_state	enum	uint32	4	Engine state (0=off, 1=cranking, 2=running)
rpm	rev/min	single	4	Engine RPM
fuel_flow	gal/hr	single	4	Fuel flow
fuel_px	psi	single	4	Fuel pressure
EGT	٥F	single	4	Exhaust gas temp
cht	٥F	single	4	Cylinder head temperature
mp_osi	psi	single	4	Manifold pressure
tit	٥Ł	single	4	Turbine inlet temperature
oil_temp	٥F	single	4	Oil temp
oil_px	lbf/in ²	single	4	Oil pressure
num_tanks	—	uint32	1	Max number of fuel tanks
fuel_quantity		single	4	Amount of fuel in tanks (0–1 fraction)

Signal Group 5: ShowLandingGearInputs

Name	Units	Туре	Width	Description
num_wheels	—	uint32	1	Maximum number of wheels
wow	_	uint32	3	Weight on wheels signal (1=wheel is on ground)
gear_pos	_	single	3	Landing gear position (0–1, indicating amount deployed)
gear_steer	—	single	3	Landing gear steering angle
gear_compression	—	single	3	Landing gear compression
Signal Group 6: S	howEnvir	onmentInput	s	
agl	m	single	1	Above ground level
cur_time	sec	uint32	1	Current UNIX time
warp	sec	int32	1	Offset in seconds to UNIX time
visibility	m	single	1	Visibility in meters (for visual effects)
	Output Sig	gnal		

The output signal is the FlightGear net_fdm data packet.

Examples See the asbh120 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation Generate Run Script Send net_fdm Packet to FlightGear

Purpose Provide joystick interface on Windows platform

Library Animation/Animation Support Utilities

Description

The Pilot Joystick block provides a pilot joystick interface for a Windows platform. Roll, pitch, yaw, and throttle are mapped to the joystick X, Y, R, and Z channels respectively.

You can also configure the block to output all channels by setting the **Output configuration** parameter to AllOutputs.

This block does not produce deployable code.

Dialog Box

Source Block Parameters: Pil	ot Joystick				
-PilotJoystick (mask) (link)					
Joystick interface for Windows plat values, [0,1] for non-centered value Output sense is positive for right-ha and yaw).	form. Outputs val es, and uint32 for and rule rotations o	ues are [-1,1] for (the buttons in All I in centered value	centered Outputs mode. s (roll, pitch,		
Roll, pitch, yaw, and throttle are mapped to the joystick X, Y, R, and Z channels resepectively. If the joystick does not support an R (a.k.a. rudder or "twist") channel, yaw output is set to zero. Outputs are of type double except for the buttons output in All Outputs mode. On non-windows platforms, this block currently outputs zeros. Note: pitch value has the opposite sense as that delivered by FlightGear's joystick interface.					
In the AllOutputs configuration, 6 analog channels are output from the first port, buttons are output from the second port as an unsigned 32-bit flag word, and the POV (point of view) indication is output from the third port in degrees as a scalar double. Different joystick devices can map individual channels in different ways. Buttons can be mapped differently as well. While the POV is being pressed, the output values range from 0 to 315 in increments of 45 degrees (360 is the same as 0). When the POV button is NOT being pressed, the operating system typically returns 655.35 degrees, so plan your logic accordingly.					
buttons are output from the second POV (point of view) indication is ou double. Different joystick devices of Buttons can be mapped differently output values range from 0 to 315 i 0). When the POV button is NOT b returns 655.35 degrees, so plan yo	naiog channels ar I port as an unsign tput from the third can map individua as well. While the in increments of 45 being pressed, the ur logic according	e output from the led 32-bit flag wor port in degrees a I channels in diffe POV is being pre 5 degrees (360 is operating system ly.	first port, rd, and the s a scalar erent ways. assed, the the same as typically		
Duttons are output from the second POV (point of view) indication is ou double. Different joystick devices of Buttons can be mapped differently output values range from 0 to 315 if 0). When the POV button is NOT b returns 655.35 degrees, so plan yo Parameters	naiog channels ar I port as an unsign toput from the third can map individua as well. While the in increments of 45 weing pressed, the ur logic according	e output from the ied 32-bit flag wor port in degrees a I channels in diffe POV is being pre 5 degrees (360 is operating system y.	first port, rd, and the s a scalar arent ways. essed, the the same as typically		
buttons are output from the second POV (point of view) indication is ou double. Different joystick devices s Buttons can be mapped differently output values range from 0 to 315 i 0). When the POV button is NOT b returns 655.35 degrees, so plan you Parameters Joystick ID: Joystick1	naiog channels an I port as an unsign tiput from the third can map individua as well. While the in increments of 45 being pressed, the ur logic according	e output from the ied 32-bit flag wor port in degrees a: I channels in diffe POV is being pre 5 degrees (360 is operating system ly.	first port, rd, and the s a scalar rent ways. assed, the the same as typically		
Duttons are output from the second POV (point of view) indication is ou double. Different joystick devices of Buttons can be mapped differently output values range from 0 to 315 i 0). When the POV button is NOT b returns 655.35 degrees, so plan yo Parameters Joystick ID: Joystick1 Output configuration: FourAxis	naiog channels an I port as an unsign tput from the third can map individua as well. While the in increments of 45 being pressed, the ur logic according	e output from the ied 32-bit flag wor port in degrees a I channels in diffe POV is being pre 5 degrees (360 is operating system ly.	first port, rd, and the s a scalar srent ways. assed, the the same as typically		
buttons are output from the second POV (point of view) indication is ou double. Different joystick devices s Buttons can be mapped differently output values range from 0 to 315 if 0). When the POV button is NOT b returns 655.35 degrees, so plan yo Parameters Joystick ID: Joystick1 Output configuration: FourAxis Sample time (-1 for inherited):	naiog channels ar I port as an unsign tput from the third can map individua as well. While the in increments of 45 weing pressed, the ur logic according	e output from the red 32-bit flag wor port in degrees a I channels in diffe POV is being pre 5 degrees (360 is operating system ly.	first port, rd, and the s a scalar arent ways. assed, the the same as typically		
buttons are output from the second POV (point of view) indication is ou double. Different joystick devices s Buttons can be mapped differently output values range from 0 to 315 i 0). When the POV button is NOT b returns 655.35 degrees, so plan you Parameters Joystick ID: Joystick1 Output configuration: FourAxis Sample time (-1 for inherited): [1/30]	halog channels ar tput from the third can map individua as well. While the in increments of 45 leing pressed, the ur logic according	e output from the red 32-bit flag wor port in degrees a I channels in diffe POV is being pre 5 degrees (360 is operating system y.	first port, rd, and the s a scalar arent ways. essed, the the same as typically		

	Joystick ID Specify the joystick ID: Joystick 1, Joystick 2, or None.
	Output configuration Specify the output configuration: FourAxis or AllOutputs (see Pilot Joystick All). FourAxis is the default.
	Sample time Specify the sample time (-1 for inherited).
Inputs and Outputs	The block has the following outputs.

Four Axis Mode (All Double Precision Values)

Port Number	Output Range	Joystick	Description
1	[-1, 1]	[left, right]	Roll command
2	[-1, 1]	[forward/down, back/up]	Pitch command
3	[-1, 1]	[left, right]	Yaw command
4	[0,1]	[min, max]	Throttle command

All Outputs Mode (All Values Double Precision, Except for Buttons)

Port Number	Array Number	Channel	Output Range	Joystick	Description
1	1	Х	[-1, 1]	[left, right]	Roll command
1	2	Y	[-1, 1]	[forward/down, back/up]	Pitch command
1	3	Z	[0,1]	[min, max]	Throttle command
1	4	R	[-1, 1]	[left, right]	Yaw command

Port Number	Array Number	Channel	Output Range	Joystick	Description
1	5	U	[0,1]	[min, max]	U channel value
1	6	V	[0,1]	[min, max]	V channel value
2		buttons			uint32 flagword containing up to 32 button states. Bit 0 is button 1, etc.
3		POV			Point-of-view hat value in degrees as a double. Zero degrees is straight ahead, 90 is to the left, etc.
	Output values, is posit and ya	values are [- and uint32 fo ive for right-h w).	1,1] for center or the buttons nand rule rota	red values, [0,1] f s in All Outputs m ations on centered	or noncentered ode. Output sense values (roll, pitch,
Assumptio	ns If the j	ovstick does n	ot support ar	n R (rudder or "tw	ist") channel, vaw

All Outputs Mode (All Values Double Precision, Except for Buttons) (Continued)

Assumptions
and
LimitationsIf the joystick does not support an R (rudder or "twist") channel, yaw
output is set to zero. Outputs are of type double except for the buttons
output in AllOutputs mode, which is a uint32 flagword of bits. On
non-Windows platforms, this block currently outputs zeros.

Note Pitch value has the opposite sense as that delivered by FlightGear's joystick interface.

See Also Pilot Joystick All, Simulation Pace

Purpose Provide joystick interface on Windows platform

Library

Description

analog p buttons p POV p The Pilot Joystick block provides a pilot joystick interface for a Windows platform. Roll, pitch, yaw, and throttle are mapped to the joystick X, Y, R, and Z channels respectively.

You can also configure the block to output four axes by setting the **Output configuration** parameter to FourAxis.

This block does not produce deployable code.

Animation/Animation Support Utilities

Dialog Box

Source Block Parameters: Pile	ot Joystick All		×		
PilotJoystick (mask) (link)					
Joystick interface for Windows platform. Outputs values are [-1,1] for centered values, [0,1] for non-centered values, and uint32 for the buttons in All Outputs mode. Output sense is positive for right-hand rule rotations on centered values (roll, pitch, and yaw).					
Roll, pitch, yaw, and throttle are mapped to the joystick X, Y, R, and Z channels resepectively. If the joystick does not support an R (a.k.a. rudder or "twist") channel, yaw output is set to zero. Outputs are of type double except for the buttons output in All Outputs mode. On non-windows platforms, this block currently outputs zeros. Note: pitch value has the opposite sense as that delivered by FlightGear's joystick interface.					
In the AllOutputs configuration, 6 analog channels are output from the first port, buttons are output from the second port as an unsigned 32-bit flag word, and the POV (point of view) indication is output from the third port in degrees as a scalar double. Different joystick devices can map individual channels in different ways. Buttons can be mapped differently as well. While the POV is being pressed, the output values range from 0 to 315 in increments of 45 degrees (360 is the same as 0). When the POV button is NOT being pressed, the operating system typically returns 655.35 degrees, so plan your logic accordingly.					
-Parameters					
Joystick ID: Joystick1					
Output configuration: AllOutputs					
Sample time (-1 for inherited):					
1/30					
	ОК	Cancel	Help		

	Joystick ID Specify the joystick ID: Joystick 1, Joystick 2, or None.
	Output configuration Specify the output configuration: FourAxis (see Pilot Joystick) or AllOutputs. AllOutputs is the default.
	Sample time Specify the sample time (-1 for inherited).
Inputs and Outputs	The block has the following outputs.

Four Axis Mode (All Double Precision Values)

Port Number	Output Range	Joystick	Description
1	[-1, 1]	[left, right]	Roll command
2	[-1, 1]	[forward/down, back/up]	Pitch command
3	[-1, 1]	[left, right]	Yaw command
4	[0,1]	[min, max]	Throttle command

All Outputs Mode (All Values Double Precision, Except for Buttons)

Port Number	Array Number	Channel	Output Range	Joystick	Description
1	1	Х	[-1, 1]	[left, right]	Roll command
1	2	Y	[-1, 1]	[forward/down, back/up]	Pitch command
1	3	Ζ	[0,1]	[min, max]	Throttle command
1	4	R	[-1, 1]	[left, right]	Yaw command

Port Number	Array Number	Channel	Output Range	Joystick	Description
1	5	U	[0,1]	[min, max]	U channel value
1	6	V	[0,1]	[min, max]	V channel value
2		buttons			uint32 flagword containing up to 32 button states. Bit 0 is button 1, etc.
3		POV			Point-of-view hat value in degrees as a double. Zero degrees is straight ahead, 90 is to the left, etc.
	Output values, is posit and ya	values are [and uint32 f ive for right- w).	1,1] for cente or the button hand rule rot	ered values, [0,1] s in All Outputs a ations on centere	for noncentered node. Output sense d values (roll, pitch,
Assumption and Limitations	IS If the joutput output non-Wi	oystick does n is set to zero in AllOutput ndows platfo	not support a: Outputs are ts mode, which rms, this bloc	n R (rudder or "tw of type double ex ch is a uint32 flag ck currently outpu	vist") channel, yaw ccept for the buttons gword of bits. On ats zeros.
	Note 1 Flight(Pitch value h Jear's joysticl	as the opposi x interface.	te sense as that	delivered by
See Also	Pilot Jo	oystick, Simu	lation Pace		

All Outputs Mode (All Values Double Precision, Except for Buttons) (Continued)

Pressure Altitude

Purpose	Calculate pressure	altitude based of	n ambient pressure
---------	--------------------	-------------------	--------------------

Library Environment/Atmosphere

Description

The Pressure Altitude block computes the pressure altitude based on ambient pressure. Pressure altitude is the altitude in the 1976 Committee on the Extension of the Standard Atmosphere (COESA) United States with specified ambient pressure.

Pressure altitude is also known as the mean sea level (MSL) altitude.

The Pressure Altitude block icon displays the input and output units selected from the **Units** list.

Dialog
Box

Block Parameters: Pressure Altitude 🛛 🛛 🛛				
Pressure Altitude (mask) (link)				
Calculate pressure altitude based on ambient pressure.				
Pressure altitude is the altitude in the 1976 CDESA-extended U.S. Standard Atmosphere with specified ambient pressure. Pressure altitude is also known as the mean sea level altitude (MSL).				
Units: Metric (MKS)				
Action for out of range input: Warning				
OK Cancel Help Apply				

Units

Specifies the input units:

Units	Pstatic	Alt_p
Metric (MKS)	Pascal	Meters
English	Pound force per square inch	Feet

Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the static pressure.
	Output	Dimension Type	Description
	First		Contains the pressure altitude.
Assumptions and Limitations	Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above the pressure of 101325 Pa (approximately 14.7 psi), altitude values are extrapolated logarithmically.		
	Air is assur	ned to be dry and an	ideal gas.
Reference	U.S. Standa Washingtor	ard Atmosphere, 1976 n, D.C.	3, U.S. Government Printing Office,
See Also	COESA Atr	nosphere Model	

Pressure Conversion

Purpose	Convert from	pressure	units t	o desired	pressure	units

Library Utilities/Unit Conversions

Description

>psi → Pa>

The Pressure Conversion block computes the conversion factor from specified input pressure units to specified output pressure units and applies the conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Block Parameters: Pressure Conversion	×			
Pressure Conversion (mask) (link)				
Convert units of input signal to desired output units.				
Parameters	1			
Initial units: psi				
Final units: Pa				
OK Cancel Help Apply				

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

psi	Pound mass per square inch
Ра	Pascals
psf	Pound mass per square foot
atm	Atmospheres

Inputs and	Input	Dimension Type	Description	
Outputs	First		Contains the pressure in initial pressure units.	
	Output	Dimension Type	Description	
	First		Contains the pressure in final pressure units.	
See Also	Acceleratio	n Conversion		
	Angle Conversion			
	Angular Acceleration Conversion			
	Angular Velocity Conversion			
	Density Conversion			
	Force Conversion			
	Length Conversion			
	Mass Conversion			
	Temperature Conversion			
	Velocity Co	nversion		

Quaternion Conjugate

Library Utilities/MathOperations

Description

ď

The Quaternion Conjugate block calculates the conjugate for a given quaternion.

The quaternion has the form of

 $q = q_0 + \mathbf{i}q_1 + \mathbf{j}q_2 + \mathbf{k}q_3$

The quaternion conjugate has the form of

$$q' = q_0 - \boldsymbol{i}q_1 - \boldsymbol{j}q_2 - \boldsymbol{k}q_3$$

 Dialog
 Function Block Parameters: Quaternion Conjugate

 Box
 Quaternion Conjugate (mask) (link)

 Calculate the conjugate of a quaternion.

 OK
 Cancel

 Help
 Apply

Inputs and	Input	Dimension Type	Description
Colpuis	First	Quaternion or vector	Contains quaternions in the form of $[q_0, r_0, \ldots, q_1, r_1, \ldots, q_2, r_2, \ldots, q_3, r_3, \ldots].$
	Output	Dimension Type	Description
	First	Quaternion conjugate or vector	Contains quaternion conjugates in the form of $[q_0', r_0',, q_1', r_1',, q_2', r_2',, q_3', r_3',].$

See Also

Quaternion Division

Quaternion Inverse Quaternion Modulus Quaternion Multiplication Quaternion Norm Quaternion Normalize Quaternion Rotation

Quaternion Division

Purpose	Divide quaternion	by another	quaternion
			1

Utilities/Math Operations

Description

q/rþ

Library

γk

The Quaternion Division block divides a given quaternion by another. The quaternions have the form of

$$q = q_0 + \boldsymbol{i}q_1 + \boldsymbol{j}q_2 + \boldsymbol{k}q_3$$

and

$$r = r_0 + \boldsymbol{i}r_1 + \boldsymbol{j}r_2 + \boldsymbol{k}r_3$$

The resulting quaternion from the division has the form of

$$t = \frac{q}{r} = t_0 + \mathbf{i}t_1 + \mathbf{j}t_2 + \mathbf{k}t_3$$

where

$$\begin{split} t_0 &= \frac{(r_0q_0+r_1q_1+r_2q_2+r_3q_3)}{r_0^2+r_1^2+r_2^2+r_3^2} \\ t_1 &= \frac{(r_0q_1-r_1q_0-r_2q_3+r_3q_2)}{r_0^2+r_1^2+r_2^2+r_3^2} \\ t_2 &= \frac{(r_0q_2+r_1q_3-r_2q_0-r_3q_1)}{r_0^2+r_1^2+r_2^2+r_3^2} \\ t_3 &= \frac{(r_0q_3-r_1q_2+r_2q_1-r_3q_0)}{r_0^2+r_1^2+r_2^2+r_3^2} \end{split}$$

Dialog Box

🙀 Function Block Parameters: Quaternion Division	×
_Quaternion Division (mask) (link)	
Divide a quaternion by another quaternion.	
Cancel Help	Apply

Inputs and Outputs

Input	Dimension Type	Description
First	Quaternion or vector	Contains quaternions in the form of $[q_0, p_0,, q_1, p_1,, q_2, p_2,, q_3, p_3,].$
Second	Quaternion or vector	Contains quaternions in the form of $[s_0, r_0,, s_1, r_1,, s_2, r_2,, s_3, r_3,].$

Output	Dimension Type	Description
First	Quaternion or vector	Contains resulting quaternion or vector of resulting quaternions from division.

The output is the resulting quaternion from the division or vector of resulting quaternions from division.

See Also Quaternion Conjugate Quaternion Inverse Quaternion Modulus Quaternion Multiplication Quaternion Norm Quaternion Normalize Quaternion Rotation

Quaternion Inverse

Purpose	Calculate inverse of quaternion
---------	---------------------------------

Library Utilities/Math Operations

Description

inv (q)

ıαk

The Quaternion Inverse block calculates the inverse for a given quaternion.

The quaternion has the form of

 $q = q_0 + \boldsymbol{i}q_1 + \boldsymbol{j}q_2 + \boldsymbol{k}q_3$

The quaternion inverse has the form of

$$q^{-1} = \frac{q_0 - \mathbf{i}q_1 - \mathbf{j}q_2 - \mathbf{k}q_3}{q_0^2 + q_1^2 + q_2^2 + q_3^2}$$

Dialog	Function Block Parameters: Quaternion Inverse		
Box	_Quaternion Inverse (mask) (link)		
	Calculate inverse of a quaternion.		
	Cancel Help Apply		

Inputs and Outputs	Input	Dimension Type	Description
	First	Quaternion or vector	Contains quaternions in the form of $[q_0, r_0,, q_1, r_1,, q_2, r_2,, q_3, r_3,].$
	• • •	_· · _	
	Output	Dimension Type	Description
	Output First	Dimension Type Quaternion inverse or vector	Contains quaternion inverse or vector of quaternion inverses.
Quaternion Division Quaternion Modulus Quaternion Multiplication Quaternion Norm Quaternion Normalize Quaternion Rotation

Quaternion Modulus

Purpose	Calculate	modulus	of quaternion
---------	-----------	---------	---------------

Library Utilities/Math Operations

Description

lai.

The Quaternion Modulus block calculates the magnitude for a given quaternion.

The quaternion has the form of

 $q = q_0 + \mathbf{i}q_1 + \mathbf{j}q_2 + \mathbf{k}q_3$

The quaternion modulus has the form of

 Dialog
 Function Block Parameters: Quaternion Modulus

 Box
 Quaternion Modulus (mask) (link)

 Calculate the modulus of a quaternion.

 DK
 Cancel
 Help
 Oply

Inputs and Outputs

Dimension Type	Description
Quaternion or vector	Contains quaternions in the form of $[q_0, r_0,, q_1, r_1,, q_2, r_2,, q_3, r_3,].$
Dimension Type	Description
Quaternion modulus or vector	Contains quaternion modulus or vector of quaternion modulus in the form of $[q , r ,]$.
	Dimension Type Quaternion or vector Dimension Type Quaternion modulus or vector

See Also

Quaternion Conjugate

Quaternion Division Quaternion Inverse Quaternion Multiplication Quaternion Norm Quaternion Normalize

Quaternion Rotation

Quaternion Multiplication

Purpose	Calculate pro	oduct of two	quaternions
---------	---------------	--------------	-------------

Library Utilities/Math Operations

Description

q*r

The Quaternion Multiplication block calculates the product for two given quaternions.

The quaternions have the form of

$$q = q_0 + \boldsymbol{i}q_1 + \boldsymbol{j}q_2 + \boldsymbol{k}q_3$$

and

$$r = r_0 + \boldsymbol{i}r_1 + \boldsymbol{j}r_2 + \boldsymbol{k}r_3$$

The quaternion product has the form of

$$t = q \times r = t_0 + \boldsymbol{i} t_1 + \boldsymbol{j} t_2 + \boldsymbol{k} t_3$$

where

$$\begin{split} t_0 &= (r_0q_0 - r_1q_1 - r_2q_2 - r_3q_3) \\ t_1 &= (r_0q_1 + r_1q_0 - r_2q_3 + r_3q_2) \\ t_2 &= (r_0q_2 + r_1q_3 + r_2q_0 - r_3q_1) \\ t_3 &= (r_0q_3 - r_1q_2 + r_2q_1 + r_3q_0) \end{split}$$

Dialog
Box

Function Block Parameters: Quaternion Multiplication				
-Quaternion Multiplication (mask) (link) Calculate the product of two quaternions.				
Cancel Help	Apply			

Inputs and	Input	Dimension Type	Description		
Outputs	First	Quaternion or vector	Contains quaternions in the form of $[q_0, p_0,, q_1, p_1,, q_2, p_2,, q_3, p_3,].$		
	Second	Quaternion or vector	Contains quaternions in the form of $[s_0, r_0,, s_1, r_1,, s_2, r_2,, s_3, r_3,].$		
	Output	Dimension Type	Description		
	First	Quaternion product or vector	Contains quaternion product or vector of quaternion products.		
See Also	Quaternion	Conjugate			
	Quaternion Division				
	Quaternion Inverse				
	Quaternion Modulus				
	Quaternion Norm				
	Quaternion Normalize				
	Quaternion Rotation				

Quaternion Norm

Purpose	Calculate norm of quaternion
---------	------------------------------

Library Utilities/Math Operations

Description

yla norm(a)¢

The Quaternion Norm block calculates the norm for a given quaternion. The quaternion has the form of

 $q = q_0 + \boldsymbol{i}q_1 + \boldsymbol{j}q_2 + \boldsymbol{k}q_3$

The quaternion norm has the form of

$$norm(q) = q_0^2 + q_1^2 + q_2^2 + q_3^2$$

Dialog	🙀 Function Block Parameters: Quaternion Norm
Box	Quaternion Norm (mask) (link) Calculate the norm of a quaternion.
	OK Cancel Help Apply

Inputs and	Input	Dimension Type	Description
Oupurs	First	Quaternion or vector	Contains quaternions in the form of $[q_0, r_0,, q_1, r_1,, q_2, r_2,, q_3, r_3,].$
	Output	Dimension Type	Description
	First	Quaternion norm or vector	Contains quaternion norm or vector of quaternion norms in the form of [<i>norm</i> (q), <i>norm</i> (r),].
See Also	Quaternior	n Conjugate	

Quaternion Division

Quaternion Inverse Quaternion Modulus Quaternion Multiplication Quaternion Normalize Quaternion Rotation

Quaternion Normalize

Purpose	Normalize quaternion
Library	Utilities/Math Operations
Description	The Quaternion Normalize block calculates a normalized quaternion for a given quaternion.
>q normal(q)>	The quaternion has the form of
	$q = q_0 + \boldsymbol{i}q_1 + \boldsymbol{j}q_2 + \boldsymbol{k}q_3$
	The normalized quaternion has the form of
	$normal(q) = \frac{q_0 + iq_1 + jq_2 + kq_3}{\sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}}$

 Dialog
 Function Block Parameters: Quaternion Normalize

 Box
 Quaternion Normalize (mask) (link) Normalize a quaternion.

 OK
 Cancel
 Help
 Apply

Inputs and Outputs	Input	Dimension Type	Description
	First	Quaternion or vector	Contains quaternions in the form of $[q_0, r_0,, q_1, r_1,, q_2, r_2,, q_3, r_3,].$
	Output	Dimension Type	Description
	First	Normalized quaternion or vector	Contains normalized quaternion or vector of normalized quaternions.

See AlsoQuaternion ConjugateQuaternion DivisionQuaternion InverseQuaternion ModulusQuaternion MultiplicationQuaternion NormQuaternion Rotation

Quaternion Rotation

Purpose	Rotate vector	by	quaternion
			1

Library Utilities/Math Operations

Description

Dialog Box The Quaternion Rotation block rotates a vector by a quaternion. The quaternion has the form of

$$q = q_0 + \boldsymbol{i}q_1 + \boldsymbol{j}q_2 + \boldsymbol{k}q_3$$

The vector has the form of

$$v = \mathbf{i}v_1 + \mathbf{j}v_2 + \mathbf{k}v_3$$

The rotated vector has the form of

$$\boldsymbol{v}' = \begin{bmatrix} \boldsymbol{v}_1' \\ \boldsymbol{v}_2' \\ \boldsymbol{v}_3' \end{bmatrix} = \begin{bmatrix} (1 - 2q_2^2 - 2q_3^2) & 2(q_1q_2 + q_0q_3) & 2(q_1q_3 - q_0q_2) \\ 2(q_1q_2 - q_0q_3) & (1 - 2q_1^2 - 2q_3^2) & 2(q_2q_3 + q_0q_1) \\ 2(q_1q_3 + q_0q_2) & 2(q_2q_3 - q_0q_1) & (1 - 2q_1^2 - 2q_2^2) \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{bmatrix}$$

🙀 Function Block Parameters: Quaternion Rotation	×
Quaternion Rotation (mask) (link) Rotate a vector by a quaternion.	
OK Cancel Help	Apply

Inputs and	Input	Dimension Type	Description		
Corpors	First	Quaternion or vector	Contains quaternions in the form of $[q_0, r_0,, q_1, r_1,, q_2, r_2,, q_3, r_3,].$		
	Second	Vector	Contains vector or vector of vectors in the form of $[v_1, u_1, \dots, v_2, u_2, \dots, v_3, u_3, \dots]$.		
	Output	Dimension Type	Description		
	First	Rotated quaternion or vector	Contains rotated vector or vector of rotated vectors.		
See Also	Quaternion	Conjugate			
	Quaternion Division				
	Quaternion Inverse				
	Quaternion Modulus				
	Quaternion Multiplication				
	Quaternion Norm				
	Quaternion	Normalize			

Quaternions to Direction Cosine Matrix

Purpose Convert quaternion vector to direction cosine matrix

Library Utilities/Axes Transformations

Description

Quat2DCM

The Quaternions to Direction Cosine Matrix block transforms the four-element unit quaternion vector (q_0, q_1, q_2, q_3) into a 3-by-3 direction cosine matrix (DCM). The outputted DCM performs the coordinate transformation of a vector in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described by a quaternion q, it changes to P' given by the following relationship:

$$P' = qPq^{c}$$

$$q = q_{0} + iq_{1} + jq_{2} + kq_{3}$$

$$q^{c} = q_{0} - iq_{1} - jq_{2} - kq_{3}$$

$$P = 0 + ix + jy + kz$$

Expanding P' and collecting terms in x, y, and z gives the following for P' in terms of P in the vector quaternion format:

$$P' = \begin{bmatrix} 0\\ x'\\ y'\\ z' \end{bmatrix} = \begin{bmatrix} 0\\ (q_0^2 + q_1^2 - q_2^2 - q_3^2)x + 2(q_1q_2 - q_0q_3)y + 2(q_1q_3 + q_0q_2)z\\ 2(q_0q_3 + q_1q_2)x + (q_0^2 - q_1^2 + q_2^2 - q_3^2)y + 2(q_2q_3 - q_0q_1)z\\ 2(q_1q_3 - q_0q_2)x + 2(q_0q_1 + q_2q_3)y + (q_0^2 - q_1^2 - q_2^2 + q_3^2)z \end{bmatrix}$$

Since individual terms in P' are linear combinations of terms in x, y, and z, a matrix relationship to rotate the vector (x, y, z) to (x', y', z') can be extracted from the preceding. This matrix rotates a vector in inertial axes, and hence is transposed to generate the DCM that performs the coordinate transformation of a vector in inertial axes into body axes.

Quaternions to Direction Cosine Matrix

	DCM =	$\begin{bmatrix} (q_0^2 + q_1^2 - q_2^2 - q_3^2) \\ 2(q_1q_2 - q_0q_3) \\ 2(q_1q_3 + q_0q_2) \end{bmatrix}$	$\begin{array}{l} 2(q_1q_2+q_0q_3)\\ (q_0^2-q_1^2+q_2^2-q_3^2)\\ 2(q_2q_3-q_0q_1) \end{array}$	$2(q_1q_3 - q_0q_2) \\ 2(q_2q_3 + q_0q_1) \\ (q_0^2 - q_1^2 - q_2^2 + q_3^2) \end{bmatrix}$	
Dialog Box	Block Parameters Quaternion2DCM Determine the 3-by quaternion orientat inertial axes to bod	Cuaternions to Direction Cosine (mask) (link) Girection cosine matrix (DCM) from a 4 ion vector. The output DCM transforms 4 y axes. Cancel Help	Matrix X H-by-1 vectors from Apply X		
Inputs and	Input	Dimension Type	Description		
Outputs	First	4-by-1 quaternion vector	Contains the qu	aternion vector.	
	Output	Dimension Type	Description		
	First	3-by-3 direction cosine matrix.	Contains the di	rection cosine matrix.	
See Also	Direction (Cosine Matrix to Ro	tation Angles		
	Direction (Cosine Matrix to Qu	aternions		
	Rotation A	ngles to Direction (Cosine Matrix		
	Rotation Angles to Quaternions				

Quaternions to Rotation Angles

Determine rotation vector from quaternio

Library Utilities/Axes Transformations

Description

>q [R₁.R₂.R₃] >

The Quaternions to Rotation Angles block converts the four-element quaternion vector (q_0, q_1, q_2, q_3) into the rotation described by the three rotation angles (R1, R2, R3). The block generates the conversion by comparing elements in the direction cosine matrix (DCM) as a function of the rotation angles. The elements in the DCM are functions of a unit quaternion vector. For example, for the rotation order z - y - x, the DCM is defined as:

$$DCM = \begin{bmatrix} \cos\theta\cos\psi & -\sin\theta\\ (\sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi) & (\sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi) & \sin\phi\cos\theta\\ (\cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi) & (\cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi) & \cos\phi\cos\theta \end{bmatrix}$$

The DCM defined by a unit quaternion vector is:

$$DCM = \begin{bmatrix} (q_0^2 + q_1^2 - q_2^2 - q_3^2) & 2(q_1q_2 + q_0q_3) & 2(q_1q_3 - q_0q_2) \\ 2(q_1q_2 - q_0q_3) & (q_0^2 - q_1^2 + q_2^2 - q_3^2) & 2(q_2q_3 + q_0q_1) \\ 2(q_1q_3 + q_0q_2) & 2(q_2q_3 - q_0q_1) & (q_0^2 - q_1^2 - q_2^2 + q_3^2) \end{bmatrix}$$

From the preceding equation, you can derive the following relationships between DCM elements and individual rotation angles for a ZYX rotation order:

$$\begin{split} \phi &= \operatorname{atan}(DCM(2,3), DCM(3,3)) \\ &= \operatorname{atan}(2(q_2q_3 + q_0q_1), (q_0^2 - q_1^2 - q_2^2 + q_3^2)) \\ \theta &= \operatorname{asin}(-DCM(1,3)) \\ &= \operatorname{asin}(-2(q_1q_3 - q_0q_2)) \\ \psi &= \operatorname{atan}(DCM(1,2), DCM(1,1)) \\ &= \operatorname{atan}(2(q_1q_2 + q_0q_3), (q_0^2 + q_1^2 - q_2^2 - q_3^2)) \end{split}$$

where Ψ is R1, Θ is R2, and Φ is R3.

Function Bloc	k Parameters: Quat	ernions to Rot	ation Angles	×
Quat2Ang (mask)	(link)			
Determine rotatio	n vector (R1,R2,R3) fro	om quaternion (qC),q1,q2,q3).	
The limitations fo generate an R2 a lie between +/- 1	the ZYX', ZXY', YXZ' angle that lies between 80 degrees.	', 'YZX', 'XYZ', ar +/- 90 degrees, a	nd XXY" implemen and Ky and R3 a	ntations ngles that
The limitations fo generate an R2 a that lie between ·	the 'ZYZ', 'ZXZ', 'YXY' angle that lies between H/- 180 degrees.	', 'YZY', 'XYX', ar 0 and 180 degre	nd 'XZX' implemer es, and R1 and F	ntations 33 angles
Parameters				
Rotation Order:	21X			•

Rotation Order

Specifies the output rotation order for three rotation angles. From the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, or XZX. The default is ZYX.

Inputs and Outputs

Dialog Box

Input	Dimension Type	Description
First	4-by-1 quaternion vector	Contains the quaternion vector.

	Output	Dimension Type	Description		
	First	3-by-3 vector	Contains the rotation angles.		
Assumptions and Limitations	The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' implementations generate an R2 angle that is between ±90 degrees, and R1 and R3 angles that are between ±180 degrees.				
	The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and ' implementations generate an R2 angle that is between 0 and 180 degrees, and R1 and R3 angles that are between ±180 degrees.				
See Also	Direction Cosine Matrix to Rotation Angles				
	Direction Cosine Matrix to Quaternions Quaternions to Direction Cosine Matrix				
	Rotation Angles to Direction Cosine Matrix				
	Rotation Angles to Quaternions				

Purpose Estimate radius of ellipsoid planet at geocentric latitude

Library Flight Parameters

Description

> ^As r_s >

The Radius at Geocentric Latitude block estimates the radius (r_s) of an ellipsoid planet at a particular geocentric latitude (λ_s) .

The following equation estimates the ellipsoid radius (r_s) using flattening (\overline{f}) , geocentric latitude $(\overline{\lambda}_s)$, and equatorial radius (\overline{R}) .

$$r_{s} = \sqrt{\frac{R^{2}}{1 + \left[1 / (1 - f)^{2} - 1\right] \sin^{2} \lambda_{s}}}$$

	Parameters: R	adius at Geoce	entric Latitude	×
-Radius at Geocent	tric Latitude (mask	() (link)		
Estimate radius of	ellipsoid planet al	geocentric latitu	de.	
Parameters				
Lipiter Motrie (Mi	(5)			
Units. Mette (Mr	(3)			
Planet model: Ea	arth (WGS84)			<u> </u>
	0K	Cancel	Help	Apply
🙀 Function Block	Parameters: R	adius at Geoce	entric Latitude	×
-Radius at Geocent	tric Latitude (mask	(link)		
Estimate radius of	ellipsoid planet at	; geocentric latitu	de.	
- Parameters				
Planet model: Cu	ustom			_
Planet model: Cu Flattening:	ustom			_
Planet model: Cu Flattening: 1/298.25722356	ustom i3			•
Planet model: Cl Flattening: 1/298.25722356 Equatorial radius	ustom i3 of planet:			•
Planet model: Cu Flattening: 1/298.25722356 Equatorial radius 6378137	ustom i3 of planet:			_
Planet model: Cu Flattening: 1/298.25722356 Equatorial radius 6378137	ustom 33 of planet:			×
Planet model: Cu Flattening: 1/298.25722356 Equatorial radius 6378137	ustom 33 of planet:			

Dialog Box

Units

Specifies the parameter and output units:

Units	Equatorial Radius	Radius at Geocentric Latitude	
Metric (MKS)	Meters	Meters	
English	Feet	Feet	

This option is only available when ${\bf Planet\ model}$ is set to Earth (WGS84).

Planet model

Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening

Specifies the flattening of the planet. This option is only available with **Planet model** set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. This option is only available with **Planet model** set to Custom.

Inputs and	Input	Dimension Type	Description	
Outputs	First		Contains the geocentric latitude, in degrees.	
	Output	Dimension Type	Description	
	First		Contains the radius of planet at geocentric latitude, in the same as the units as flattening.	
References	S Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation</i> , Wiley & Sons, New York, 1992.			
	Zipfel, P. H., <i>Modeling and Simulation of Aerospace Vehicle Dynamics</i> , AIAA Education Series, Reston, Virginia, 2000.			
See Also	ECEF Posit	tion to LLA		
	Direction Cosine Matrix ECEF to NED			
	Direction Cosine Matrix ECEF to NED to Latitude and Longitude			
	Geocentric to Geodetic Latitude			

Geodetic to Geocentric Latitude LLA to ECEF Position

Purpose Calculate relative atmospheric ratios

Library Flight Parameters

Description

> Mach	8 >
Х у √т (K)	sqrt(θ)>
, P_ (Pa)	5>
> ρູັ(kg/m ³)	σ>

The Relative Ratio block computes the relative atmospheric ratios,

including relative temperature ratio (θ), $\sqrt{\theta}$, relative pressure ratio (δ), and relative density ratio (σ).

 θ represents the ratio of the air stream temperature at a chosen reference station relative to sea level standard atmospheric conditions.

$$\theta = \frac{T}{T_0}$$

 δ represents the ratio of the air stream pressure at a chosen reference station relative to sea level standard atmospheric conditions.

$$\delta = \frac{P}{P_0}$$

 σ represents the ratio of the air stream density at a chosen reference station relative to sea level standard atmospheric conditions.

$$\sigma = \frac{\rho}{\rho_0}$$

The Relative Ratio block icon displays the input units selected from the **Units** list.

Relative Ratio

Dialog Box

Units

Specifies the input units:

Units	Tstatic	Pstatic	rho_static
Metric (MKS)	Kelvin	Pascal	Kilograms per cubic meter
English	Degrees Rankine	Pound force per square inch	Slug per cubic foot

Theta

When selected, the θ is calculated and static temperature is a required input.

Square root of theta

When selected, the $\sqrt{\theta}\,$ is calculated and static temperature is a required input.

Delta

When selected, the δ is calculated and static pressure is a required input.

Sigma

When selected, the σ is calculated and static density is a required input.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the Mach number.
	Second		Contains the static temperature.
	Third		Contains the static pressure.
	Fourth		Contains the static density.
	Output	Dimension Type	Description
	First		Contains the θ .
	Second		Contains the $\sqrt{\theta}$.
	Third		Contains the δ .
	Fourth		Contains the σ .
Assumptions	For cases in ratio is des total pressu (with const constant sp	n which total tempera ired (Mach number is ure, and total densitie ant molecular weight, ecific heat ratio) and	ture, total pressure, or total density nonzero), the total temperature, s are calculated assuming perfect gas constant pressure specific heat, and dry air.
Reference	Aeronautico Whitney, A	al Vestpocket Handbo ugust, 1986.	ok, United Technologies Pratt &

Rotation Angles to Direction Cosine Matrix

Purpose Convert rotation angles to direction cosine matrix

Library Utilities/Axes Transformations

Description

The Rotation Angles to Direction Cosine Matrix block determines the direction cosine matrix (DCM) from a given set of rotation angles, R1, R2, and R3, respectively the first, second, and third rotation angles. The output is a 3-by-3 DCM that performs the coordinate transformation of a vector in inertial axes into a vector in body axes.

Dialog Box

Function Block Parameters: Rotation Angles to Direction Cosine Ma 🗙
Ang2DCM (mask) (link)
Determine the 3-by-3 direction cosine matrix (DCM) from a given set of rotation angles.
Parameters
Rotation Order: ZYX
OK Cancel Help Apply

Rotation Order

Specifies the input rotation order for three rotation angles. From the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, or XZX. The default is ZYX.

Inputs and Outputs	Input	Dimension Type	Description
Outputs	First	3-by-1 vector	Contains the rotation angles, in radians.

Rotation Angles to Direction Cosine Matrix

	Output	Dimension Type	Description	
	First	3-by-3 matrix	Contains the direction cosine matrix.	
See Also	Direction (Direction Cosine Matrix to Quaternions		
	Direction Cosine Matrix to Rotation Angles			
	Quaternio	ns to Direction Cosine	e Matrix	

Rotation Angles to Quaternions

Purpose Calculate quaternion from rotation angles

Library Utilities/Axes Transformations

Description

>[R₁,R₂,R₃] q>

The Rotation Angles to Quaternions block converts the rotation described by the three rotation angles (R1, R2, R3) into the four-element quaternion vector (q_0 , q_1 , q_2 , q_3). A quaternion vector represents a

rotation about a unit vector (μ_x, μ_y, μ_z) through an angle θ . A unit quaternion itself has unit magnitude, and can be written in the following vector format.

$$q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} \cos(\theta / 2) \\ \sin(\theta / 2) \mu_x \\ \sin(\theta / 2) \mu_y \\ \sin(\theta / 2) \mu_z \end{bmatrix}$$

An alternative representation of a quaternion is as a complex number,

$$q = q_0 + \boldsymbol{i}q_1 + \boldsymbol{j}q_2 + \boldsymbol{k}q_3$$

where, for the purposes of multiplication,

$$i^{2} = j^{2} = k^{2} = -1$$
$$ij = -ji = k$$
$$jk = -kj = i$$
$$ki = -ik = j$$

The benefit of representing the quaternion in this way is the ease with which the quaternion product can represent the resulting transformation after two or more rotations.

Dialog Box

🙀 Function Block Parameters: Rotation Angles to Quaternions	×
Ang2Quat (mask) (link)	
Calculate quaternion (q0,q1,q2,q3) from rotation angles (R1,R2,R3).	
Parameters	
Rotation Order: ZYX	•
OK Cancel Help	Apply

Rotation Order

Specifies the output rotation order for three wind rotation angles. From the list, select ZYX, ZYZ, ZXY, ZXZ, YXZ, YXY, YZX, YZY, XYZ, XYX, XZY, or XZX. The default is ZYX.

Inputs and Outputs	Input	Dimension Type	Description	
	First	3-by-1 vector	Contains the rotation angles, in radians.	
	O urtheast	D' ' T	N • • •	
	Output	Dimension Type	Description	
	First	4-by-1 matrix	Contains the quaternion vector.	
Assumptions and Limitations	5 The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZ implementations generate an R2 angle that is between ±90 degrees, R1 and R3 angles that are between ±180 degrees.			
	The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' implementations generate an R2 angle that is between 0 and 180 degrees, and R1 and R3 angles that are between ±180 degrees.			

Rotation Angles to Quaternions

See Also

Direction Cosine Matrix to Quaternions Quaternions to Direction Cosine Matrix Quaternions to Rotation Angles Rotation Angles to Direction Cosine Matrix Purpose Implement second-order linear actuator

Library

Actuators

Description

A_{actual} XA_{dem and}

Dialog Box

Block Parameters: Second Order Linear Actuator	×
Second Order Linear Actuator (mask) (link)	
Implement a second-order actuator model	
Parameters	-
Natural frequency:	
150	
Damping ratio:	
0.7	
Initial position:	
0	
OK Cancel Help Apply	

parameters that define the system.

Natural frequency

The natural frequency of the actuator. The units of natural frequency are radians per second.

The Second Order Linear Actuator block outputs the actual actuator position using the input demanded actuator position and other dialog

Damping ratio

The damping ratio of the actuator. A dimensionless parameter.

Initial position

The initial position of the actuator. The units of initial position should be the same as the units of demanded actuator position.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the demanded actuator position.
	-		

Output	Dimension Type	Description
First		Contains the actual actuator position.

See Also Second Order Nonlinear Actuator

Purpose Implement second-order actuator with rate and deflection limits

parameters that define the system.

Library Actuators

Description

>A_{demand} A_{actual} >

Dialog

Box

Diade Davamatawa Casand Ouday Nanlingay Astustay	vI
Block Parameters: Second Urder Nonlinear Actuator	<u> </u>
Second Urder Nonlinear Actuator (mask) (link)	
Implement a second-order actuator model with saturation and rate limits.	
	-
Natural frequency:	
150	
Damping ratio:	
0.7	
Maximum deflection:	
20*pi/180	
Minimum deflection:	
-20*pi/180	
Maximum rate:	
500*pi/180	
Initial position:	
0	
UN Cancel Help Apply	

Natural frequency

The natural frequency of the actuator. The units of natural frequency are radians per second.

The Second Order Nonlinear Actuator block outputs the actual actuator position using the input demanded actuator position and other dialog

Damping ratio

The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection

The largest actuator position allowable. The units of maximum deflection should be the same as the units of demanded actuator position.

Minimum deflection

The smallest actuator position allowable. The units of minimum deflection should be the same as the units of demanded actuator position.

Maximum rate

The fastest speed allowable for actuator motion. The units of maximum rate should be the units of demanded actuator position per second.

Initial position

The initial position of the actuator. The units of initial position should be the same as the units of demanded actuator position.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the demanded actuator position.
	Output	Dimension Type	Description
	First		Contains the actual actuator position.
Examples	See the Ai and the A example o	rframe & Autopilot su ctuators subsystem ir f this block.	absystem in the aero_guidance model a the aeroblk_HL20 model for an
See Also	Second Or	der Linear Actuator	

Purpose Implement state-space controller in self-conditioned form

Library GNC/Controls

Description

u meas

u dem

The Self-Conditioned [A,B,C,D] block can be used to implement the state-space controller defined by

$$\begin{bmatrix} \dot{x} = Ax + Be \\ u = Cx + De \end{bmatrix}$$

in the self-conditioned form

$$\dot{z} = (A - HC)z + (B - HD)e + Hu_{meas}$$

$$u_{dem} = Cz + De$$

The input u_{meas} is a vector of the achieved actuator positions, and the output u_{dem} is the vector of controller actuator demands. In the case

that the actuators are not limited, then $u_{meas} = u_{dem}$ and substituting the output equation into the state equation returns the nominal controller. In the case that they are not equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track

 u_{meas} but at the same time not so fast that noise on e is propagated to

 u_{dem} . The matrix H is designed by a callback to the Control System Toolbox command place to place the poles at defined locations.

Self-Conditioned [A,B,C,D]

Dialog Box

lock Parameters: Self-Conditioned [A,B,C,D]	×
- Self-Conditioned (mask) (link)	
Implement a state-space controller [A,B,C,D] in a self-conditione u_meas = u_dem, then the implemented controller is [A,B,C,D]. is limited, e.g., rate limiting, then the poles of the controller beco defined in the mask dialog box. Uses call to Control Systems To function place.m when initializing.	ed form. If If u_meas me those polbox
Parameters	
A-matrix:	
[-1 -0.2;0 -3]	
B-matrix:	
[1:1]	
C-matrix:	
[1 0]	
D-matrix:	
0.02	
Initial state, x_initial:	
0	
Poles of A-H*C = [w1 wn]:	
[-5 -2]	
	nlu Í
UN Carricel Help Ap	Ply

A-matrix

A-matrix of the state-space implementation.

B-matrix

B-matrix of the state-space implementation.

C-matrix

C-matrix of the state-space implementation.

D-matrix

D-matrix of the state-space implementation.

Initial state, x_initial

This is a vector of initial states for the controller, i.e., initial values for the state vector, z. It should have length equal to the size of the first dimension of A.

Poles of A-H*C

This is a vector of the desired poles of A-H*C. Hence the number of pole locations defined should be equal to the dimension of the A-matrix.

Inputs and Outputs	Input	Dimension Type	Description
	First		Contains the control error.
	Second		Contains the measured actuator position.
	Outrast	Dimension Trans	Description
	Output	Dimension Type	Description
	First		Contains the actuator demands.
Assumptions			
and	Note This block requires the Control System Toolbox product.		
Limitations			
Examples	This Simulink model shows a state-space controller implemented in both self-conditioned and standard state-space forms. The actuator authority limits of ± 0.5 units are modeled by the saturation block.		

Notice that the *A*-matrix has a zero in the 1,1 element, indicating integral action.

The top trace shows the conventional state-space implementation. The output of the controller winds up well past the actuator upper authority limit of +0.5. The lower trace shows that the self-conditioned form
results in an actuator demand that tracks the upper authority limit, which means that when the sign of the control error, e, is reversed, the actuator demand responds immediately.

- **Reference** The algorithm used to determine the matrix H is defined in Kautsky, Nichols, and Van Dooren, "Robust Pole Assignment in Linear State Feedback," *International Journal of Control*, Vol. 41, No. 5, pages 1129-1155, 1985.
- See Also1D Self-Conditioned [A(v),B(v),C(v),D(v)]
 - 2D Self-Conditioned [A(v),B(v),C(v),D(v)]
 - 3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Send net_fdm Packet to FlightGear

Purpose Transmit net_fdm packet to destination IP address and port for FlightGear session FlightGear session

Animation/Flight Simulator Interfaces

Description

Send net_fdm packet to Flight Gear

Library

The Send net_fdm Packet to FlightGear block transmits the net_fdm packet to FlightGear on the current computer, or a remote computer on the network. The packet is constructed using the Pack net_fdm Packet for FlightGear block. The destination port should be an unused port that you can use when you launch FlightGear with the FlightGear command line flag:

--fdm=network,localhost,5501,5502,5503

The second port in the list, 5502, is the network flight dynamics model (fdm) port.

This block does not product deployable code.

Determining the Destination IP Address

You can use one of several techniques to determine the destination IP address, such as:

- Use 127.0.0.1 for "this" computer
- Ping another computer from a Windows cmd.exe (or UNIX shell) prompt:

C:\> ping andyspc Pinging andyspc [144.213.175.92] with 32 bytes of data: Reply from 144.213.175.92: bytes=32 time=30ms TTL=253 Reply from 144.213.175.92: bytes=32 time=20ms TTL=253 Reply from 144.213.175.92: bytes=32 time=20ms TTL=253 Reply from 144.213.175.92: bytes=32 time=20ms TTL=253 Ping statistics for 144.010 475.00:

naaA	Packets: Sent = 4, Received = 4, Lost = 0 (0% loss) oximate round trip times in milli-seconds:
F F	Minimum = 20ms, Maximum = 30ms, Average = 22ms
 On a W Address 	indows machine, type ipconfig and use the returned <i>IP</i> s:
H:\>i	pconfig
Windo	ws IP Configuration
Ether	net adapter Local Area Connection:
	Connection-specific DNS Suffix . : IP Address : 192.168.42.178 Subnet Mask : 255.255.255.0 Default Gateway : 192.168.42.254
🙀 Sink Block	Parameters: Send net_fdm Packet to FlightGear
— FlightGearSen Transmit a ne Simulator via	idNetFdm (mask) (link) etwork flight dynamics model (net_fdm) packet to FlightGear Flight UDP at the specified IP Address and UDP port.
-Parameters-	
Destination I	P address:
127.0.0.1	
Destination p	port:
5502	
C	(-1 for inherited):
Sample time	
1/30	
1/30	

Destination IP address

Dialog Box

Specify your destination IP address.

Send net_fdm Packet to FlightGear

	Destination port Specify your destination port.
	Sample time Specify the sample time (-1 for inherited).
Inputs and Outputs	The input signal is the FlightGear net_fdm data packet.
Examples	See the asbh120 for an example of this block.
See Also	FlightGear Preconfigured 6DoF Animation Generate Run Script Pack net. fdm Packet for FlightGear
	r den net_tum r denet for r light deal

Purpose Implement three-degrees-of-freedom equations of motion of simple variable mass with respect to body axes

Library

Equations of Motion/3DoF

Description

	E (01)	< (ber) θ
	· × ***	ຜູ (rad/s)
>	F _z (N) Sim	oke Vaniabke d∞,/dto
>	M (N-m)	♦ × Z (m)
>	dm/dt (kg/s)	
>	g (m/s ²)	A _x A _z (m/s ⁺) >

The Simple Variable Mass 3DoF (Body Axes) block considers the rotation in the vertical plane of a body-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

$$\begin{split} \dot{u} &= \frac{F_x}{m} - \frac{\dot{m}U}{m} - qw - g\sin\theta \\ \dot{w} &= \frac{F_z}{m} - \frac{\dot{m}w}{m} + qu + g\cos\theta \\ \dot{q} &= \frac{M - \dot{I}_{yy}q}{I_{yy}} \\ \dot{\theta} &= q \\ \dot{I}_{yy} &= \frac{I_{yyfull} - I_{yyempty}}{m_{full} - m_{empty}} \dot{m} \end{split}$$

where the applied forces are assumed to act at the center of gravity of the body.

bo	egrate the three-degrees-of-freedom equations of motion to determi dy position, velocity, attitude, and related values.
E P.	arameters
U	nits: Metric (MKS)
м	ass type: Simple Variable
Ir	itial velocity:
1	00
lr	itial body attitude:
0)
lr	itial incidence:
0)
Ir	itial body rotation rate:
0)
Ir	itial position (x z):
I	D 0]
lr	itial mass:
1	.0
E	mpty mass:
0	1.5
F	ull mass:
3	3.0
E	mpty inertia:
	1.5
Fi	ull inertia:
	1.0
G	ravity source: External

Units

Dialog Box

Specifies the input and output units:

Simple Variable Mass 3DoF (Body Axes)

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described equations of motion.

Initial velocity

A scalar value for the initial velocity of the body, (V_0) .

Initial body attitude

A scalar value for the initial pitch attitude of the body, (θ_0) .

Initial incidence

A scalar value for the initial angle between the velocity vector and the body, (α_0) .

Initial body rotation rate

A scalar value for the initial body rotation rate, (q_0) .

Initial position (x,z)

A two-element vector containing the initial location of the body in the Earth-fixed reference frame.

Initial mass

A scalar value for the initial mass of the body.

Empty mass

A scalar value for the empty mass of the body.

Full mass

A scalar value for the full mass of the body.

Empty inertia

A scalar value for the empty inertia of the body.

Full inertia

A scalar value for the full inertia of the body.

Gravity source

Specify source of gravity:

External	Variable gravity input to block
Internal	Constant gravity specified in mask

Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Inputs and Outputs

Input	Dimension Type	Description
First		Contains the force acting along the body x-axis, (F_x) .
Second		Contains the force acting along the body z-axis, (F_z) .
Third		Contains the applied pitch moment, (M) .
Fourth		Contains the rate of change of mass, (\dot{m}) .
Fifth (Optional)		Contains the gravity in the selected units.

Output	Dimension Type	Description
First		Contains the pitch attitude, in radians (θ).
Second		Contains the pitch angular rate, in radians per second (q) .
Third		Contains the pitch angular acceleration, in radians per second squared (\dot{q}) .
Fourth	Two-element vector	Contains the location of the body, in the Earth-fixed reference frame, (Xe , Ze).
Fifth	Two-element vector	Contains the velocity of the body resolved into the body-fixed coordinate frame, (u, w) .

Dimension Type	Description
Two-element vector	Contains the acceleration of the body resolved into the body-fixed coordinate frame, (Ax,Az) .
Scalar element	Contains a flag for fuel tank status, (<i>Fuel</i>):
	• 1 indicates that the tank is full.
	• 0 indicates that the integral is neither full nor empty.
	• -1 indicates that the tank is empty.
	Dimension Type Two-element vector Scalar element

See Also3DoF (Body Axes)3DoF (Wind Axes)Custom Variable Mass 3DoF (Body Axes)Custom Variable Mass 3DoF (Wind Axes)Simple Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Wind Axes)

Purpose Implement three-degrees-of-freedom equations of motion of simple variable mass with respect to wind axes

Library

Equations of Motion/3DoF

Description

> > > >	$ \begin{array}{c c} F_{\chi}\left(N\right) & \forall i \text{ (ad)} \\ F_{\chi}\left(N\right) & \text{Simple Variable} & \phi_{\chi}\left(reads\right) \\ F_{\chi}\left(N\right) & \text{Simple Variable} & \phi_{\chi}\left(z_{\chi}^{\prime}(m)\right) \\ M\left(N\text{-}m\right) & \psi_{\chi}\left(rws\right) \\ \text{dm/dt}\left(kg/s\right) & \text{Mass} & A_{\chi}\left(nys_{\chi}^{2}\right) \\ \text{a. (ad)} \end{array} $
>	g (m/s ²) α. (rad) g (m/s ²) Fuel

The Simple Variable Mass 3DoF (Wind Axes) block considers the rotation in the vertical plane of a wind-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

$$\dot{V} = \frac{F_{x_{wind}}}{m} - \frac{\dot{m}V}{m} - g\sin\gamma$$
$$\dot{\alpha} = \frac{F_{z_{wind}}}{mV} + q + \frac{g}{V}\cos\gamma$$
$$\dot{q} = \dot{\theta} = \frac{M_{y_{body}} - \dot{I}_{yy}q}{I_{yy}}$$
$$\dot{\gamma} = q - \dot{\alpha}$$
$$\dot{I}_{yy} = \frac{I_{yyfull} - I_{yyempty}}{m_{full} - m_{empty}} \dot{m}$$

where the applied forces are assumed to act at the center of gravity of the body.

Simple Variable Mass 3DoF (Wind Axes)

Dialog Box

🙀 Function Block Paramet	ers: Simple Variable Mass 3DoF (Wind Axes) 💦 🔀
- 3DoF Wind EoM (mask) (link)	
Integrate the three-degrees-o position, velocity, attitude, an	f-freedom equations of motion in wind axes to determine id related values.
-Parameters	
Units: Metric (MKS)	
Mass type: Simple Variable	_
Initial airspeed:	
100	
Initial flight path angle:	
0	
Initial incidence:	
0	
Initial body rotation rate:	
Jo	
Initial position (x z):	
Initial mass:	
Franku manan	
0.5	
Full mass:	
3.0	
Empty inertia body axes:	
0.5	
Full inertia body axes:	
3.0	
Gravity source: External	
OK	Cancel Help Apply

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described equations of motion.

Initial airspeed

A scalar value for the initial velocity of the body, (V_0) .

Initial flight path angle

A scalar value for the initial flight path angle of the body, (γ_0) .

Initial incidence

A scalar value for the initial angle between the velocity vector and the body, (α_0) .

Initial body rotation rate

A scalar value for the initial body rotation rate, (q_0) .

Initial position (x,z)

A two-element vector containing the initial location of the body in the Earth-fixed reference frame.

Initial mass

A scalar value for the initial mass of the body.

Empty mass

A scalar value for the empty mass of the body.

Full mass

A scalar value for the full mass of the body.

Empty inertia

A scalar value for the empty inertia of the body.

Full inertia

A scalar value for the full inertia of the body.

Gravity source

Specify source of gravity:

External	Variable gravity input to block
Internal	Constant gravity specified in
	mask

Acceleration due to gravity

A scalar value for the acceleration due to gravity used if internal gravity source is selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Inputs and Outputs

Input	Dimension Type	Description
First		Contains the force acting along the wind x-axis, (F_x) .
Second		Contains the force acting along the wind z -axis, (F_z) .
Third		Contains the applied pitch moment in body axes, (M) .
Fourth		Contains the rate of change of mass, (\dot{m}) .
Fifth (Option	al)	Contains the gravity in the selected units.

Output	Dimension Type	Description
First		Contains the flight path angle, in radians (γ).
Second		Contains the pitch angular rate, in radians per second (ω_y) .
Third		Contains the pitch angular acceleration, in radians per second squared $(d\omega_y/dt)$.
Fourth	Two-element vector	Contains the location of the body, in the Earth-fixed reference frame, (Xe, Ze) .
Fifth	Two-element vector	Contains the velocity of the body resolved into the wind-fixed coordinate frame, $(V, 0)$.
Sixth	Two-element vector	Contains the acceleration of the body resolved into the body-fixed coordinate frame, (<i>Ax, Az</i>).

	Output	t Dimension Type	Description	
	Seventl	hScalar	Contain the angle of attack, (α_0) .	
	Eight	Scalar element	Contains a flag for fuel tank status, (<i>Fuel</i>):	
			• 1 indicates that the tank is full.	
			• 0 indicates that the integral is neither full nor empty.	
			• -1 indicates that the tank is empty.	
Reference	Stevens, Wiley &	B. L., and F. L Sons, New Yor	. Lewis, Aircraft Control and Simulation, John k, 1992.	
See Also	3DoF (B	ody Axes)		
	3DoF (W	/ind Axes)		
	Custom	Variable Mass	3DoF (Body Axes)	
	Custom	Variable Mass	3DoF (Wind Axes)	
	Simple V	Simple Variable Mass 3DoF (Body Axes)		

Purpose Implement Euler angle representation of six-degrees-of-freedom equations of motion of simple variable mass

Library

Equations of Motion/6DoF

Description

	_		V _e (m/s) >
>	F _{xyz} (N)		× _e (m)>
		EulerAngles	φθψ(nad)>
		. ह ि	> DGM >
>	M _{xy∞} (N-m)	ŹЬ	V _b (m/s) >
		Simple Variable	ω (rad/s)>
		Mass	dco/dt >
>	dm/dt (kg/s)		A _b (m/s²) >
			FuelP

The Simple Variable Mass 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate frame (X_b, Y_b, Z_b) about a flat Earth reference frame (X_e, Y_e, Z_e) . The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

Flat Earth reference frame

The translational motion of the body-fixed coordinate frame is given below, where the applied forces $[F_x F_y F_z]^T$ are in the body-fixed frame.

$$\begin{split} \bar{F}_{b} &= \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m(\bar{V}_{b} + \bar{\omega} \times \bar{V}_{b}) + \dot{m}\bar{V}_{b} \\ \bar{V}_{b} &= \begin{bmatrix} u_{b} \\ v_{b} \\ w_{b} \end{bmatrix}, \bar{\omega} = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \end{split}$$

The rotational dynamics of the body-fixed frame are given below, where the applied moments are $[L M N]^T$, and the inertia tensor *I* is with respect to the origin O.

$$\begin{split} \bar{M}_B = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = I \dot{\bar{\omega}} + \bar{\omega} \times (I \bar{\omega}) + \dot{I} \bar{\omega} \\ I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix} \end{split}$$

The inertia tensor is determined using a table lookup which linearly interpolates between I_{full} and I_{empty} based on mass (*m*). While the rate of change of the inertia tensor is estimated by the following equation.

$$\dot{I} = \frac{I_{full} - I_{empty}}{m_{full} - m_{empty}} \dot{m}$$

The relationship between the body-fixed angular velocity vector, $[p q r]^T$,

and the rate of change of the Euler angles, $[\dot{\phi}\dot{\theta}\dot{\psi}]^{T}$, can be determined by resolving the Euler rates into the body-fixed coordinate frame.

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \psi \end{bmatrix} \equiv J^{-1} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \psi \end{bmatrix}$$

Inverting ${\cal J}$ then gives the required relationship to determine the Euler rate vector.

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \psi \end{bmatrix} = J \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & (\sin\phi\tan\theta) & (\cos\phi\tan\theta) \\ 0 & \cos\phi & -\sin\phi \\ 0 & \frac{\sin\phi}{\cos\theta} & \frac{\cos\phi}{\cos\theta} \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

Simple Variable Mass 6DoF (Euler Angles)

Dialog Box

🙀 Function Block Parameters: Simple Variable Mass 6DoF (Euler Angles) 🗴
6DoF EoM (Body Axis) (mask) (link)
Integrate the six-degrees-of-freedom equations of motion in body axis.
Parameters
Units: Metric (MKS)
Mass type: Simple Variable
Representation: Euler Angles
Initial position in inertial axes [Xe,YeZe]:
[0 0 0]
Initial velocity in body axes [U,v,w]:
Initial Euler orientation [roll, pitch, yaw]:
Initial body rotation rates (p,q,r):
[0 0 0]
Initial mass:
1.0
Empty mass:
0.5
Full mass:
2.0
Empty inertia matrix:
eye(3)
Full inertia matrix:
2*eye(3)
OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Euler Angles	Use Euler angles within equations of motion.
Quaternion	Use quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Initial mass

The initial mass of the rigid body.

Empty mass

A scalar value for the empty mass of the body.

Full mass

A scalar value for the full mass of the body.

Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body.

Inputs and Outputs	Input	Dimension Type	Description
	First	Vector	Contains the three applied forces.
	Second	Vector	Contains the three applied moments.
	Third	Scalar	Contains the rate of change of mass.

	Output	Dimension Type	Description
	First	Three-element vector	Contains the velocity in the flat Earth reference frame.
	Second	Three-element vector	Contains the position in the flat Earth reference frame.
	Third	Three-element vector	Contains the Euler rotation angles [roll, pitch, yaw], in radians.
	Fourth	3-by-3 matrix	Applies to the coordinate transformation from flat Earth axes to body-fixed axes.
	Fifth	Three-element vector	Contains the velocity in the body-fixed frame.
	Sixth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
	Seventh	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.
Eight		Three-element vector	Contains the accelerations in body-fixed axes.
	Ninth	Scalar element	Contains a flag for fuel tank status:1 indicates that the tank is full.
			• 0 indicates that the integral is neither full nor empty.
			• -1 indicates that the tank is empty.
Assumptions and	The block gravity o	x assumes that f the body.	the applied forces are acting at the center of

LI	n	111	a	TI	0	n	5

Reference Mangiacasale, L., Flight Mechanics of a µ-Airplane with a MATLAB Simulink Helper, Edizioni Libreria CLUP, Milan, 1998.

Simple Variable Mass 6DoF (Euler Angles)

See Also 6DoF (Euler Angles) 6DoF (Quaternion) 6DoF ECEF (Quaternion) 6DoF Wind (Quaternion) 6DoF Wind (Wind Angles) 6th Order Point Mass (Coordinated Flight) Custom Variable Mass 6DoF (Euler Angles) Custom Variable Mass 6DoF (Quaternion) Custom Variable Mass 6DoF ECEF (Quaternion) Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Wind Angles)

Purpose

Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass with respect to body axes

Library

Equations of Motion/6DoF

Description

For a description of the coordinate system and the translational dynamics, see the block description for the Simple Variable Mass 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below. The gain K drives the norm of the quaternion state vector to 1.0 should ε become nonzero. You must choose the value of this gain with care, because a large value improves the decay rate of the error in the norm, but also slows the simulation because fast dynamics are introduced. An error in the magnitude in one element of the quaternion vector is spread equally among all the elements, potentially increasing the error in the state vector.

$$\begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -p & -q & -r \\ p & 0 & r & -q \\ q & -r & 0 & p \\ r & q & -p & 0 \end{bmatrix} \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix} + K\varepsilon \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix}$$

$$\varepsilon = 1 - \left(q_{0}^{2} + q_{1}^{2} + q_{3}^{2} + q_{4}^{2} \right)$$

Simple Variable Mass 6DoF (Quaternion)

Dialog Box

🙀 Function Block Parameters: Simple Variable Mass 6DoF (Quateri	nion) 🔀
6DoF EoM (Body Axis) (mask) (link)	
Integrate the six-degrees-of-freedom equations of motion in body axis.	
Parameters	
Units: Metric (MKS)	•
Mass type: Simple Variable	•
Representation: Quaternion	•
Initial position in inertial axes [Xe,YeZe]:	
[0 0 0]	
Initial velocity in body axes [U,v,w]:	
[[0 0 0]	
Initial Euler orientation [roll, pitch, yaw]:	
Initial body rotation rates (p,q,r):	
Initial mass:	
Findu masse	
0.5	
Full mass:	
2.0	
Empty inertia matrix:	
eye(3)	
Full inertia matrix:	
2*eye(3)	
Gain for quaternion normalization:	
1.0	
OK Cancel Help	Apply

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Simple Variable Mass 6DoF (Quaternion)

Euler Angles

Use Euler angles within equations of motion.

Quaternion

Use quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch, yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Initial mass

The initial mass of the rigid body.

Empty mass

A scalar value for the empty mass of the body.

Full mass

A scalar value for the full mass of the body.

Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body.

Gain for quaternion normalization

The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and Outputs

Input	Dimension Type	Description
First	Vector	Contains the three applied forces.
Second	Vector	Contains the three applied moments.
Third	Scalar	Contains the rate of change of mass.

Output	Dimension Type	Description
First	Three-element vector	Contains the velocity in the flat Earth reference frame.
Second	Three-element vector	Contains the position in the flat Earth reference frame.
Third	Three-element vector	Contains the Euler rotation angles [roll, pitch, yaw], in radians.
Fourth	3-by-3 matrix	Applies to the coordinate transformation from flat Earth axes to body-fixed axes.
Fifth	Three-element vector	Contains the velocity in the body-fixed frame.
Sixth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
Seventh	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.

	Output	Dimension Type	Description		
	Eight	Three-element vector	Contains the accelerations in body-fixed axes.		
	Ninth	Scalar element	Contains a flag for fuel tank status:1 indicates that the tank is full.		
			• 0 indicates that the integral is neither full nor empty.		
			• -1 indicates that the tank is empty.		
Assumptions and Limitations	The block gravity o	x assumes that f the body.	the applied forces are acting at the center of		
Reference	Mangiacasale, L., <i>Flight Mechanics of a µ-Airplane with a MATLAB Simulink Helper</i> , Edizioni Libreria CLUP, Milan, 1998.				
See Also	6DoF (Euler Angles)				
	6DoF (Qu	uaternion)			
	6DoF ECEF (Quaternion)				
	6DoF Wind (Quaternion)				
	6DoF Wind (Wind Angles)				
	6th Order Point Mass (Coordinated Flight)				
	Custom Variable Mass 6DoF (Euler Angles)				
	Custom Variable Mass 6DoF (Quaternion)				
	Custom Variable Mass 6DoF ECEF (Quaternion)				
	Custom V	Variable Mass 6	DoF Wind (Quaternion)		
	Custom Variable Mass 6DoF Wind (Wind Angles)				

Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion) Simple Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF ECEF (Quaternion)

Purpose

Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass in Earth-centered Earth-fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description

The Simple Variable Mass 6DoF ECEF (Quaternion) block considers the rotation of a Earth-centered Earth-fixed (ECEF) coordinate frame $(X_{ECEF}, Y_{ECEF}, Z_{ECEF})$ about an Earth-centered inertial (ECI) reference frame $(X_{ECF}, Y_{ECF}, Z_{ECI})$. The origin of the ECEF coordinate frame is the center of the Earth, additionally the body of interest is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is simplified to consider only the constant rotation of the ellipsoid Earth (ω_e) including an initial celestial longitude ($L_G(0)$). This excellent approximation allows the forces due to the Earth's complex motion relative to the "fixed stars" to be neglected.

The translational motion of the ECEF coordinate frame is given below, where the applied forces $[F_x F_y F_z]^T$ are in the body frame.

$$\begin{split} \bar{F}_{b} = \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m \left(\dot{\bar{V}}_{b} + \bar{\omega}_{b} \times \bar{V}_{b} + DCM_{bf} \bar{\omega}_{e} \times \bar{V}_{b} \right) + DCM_{bf} \left(\bar{\omega}_{e} \times (\bar{\omega}_{e} \times \bar{X}_{f}) \right) \\ + \dot{m} \left(\bar{V}_{b} + DCM_{bf} (\bar{\omega}_{e} \times \bar{X}_{f}) \right) \end{split}$$

where the change of position in ECEF $\dot{ar{x}}_f(\dot{ar{x}}_i)$ is calculated by

$$\dot{\bar{x}}_f = DCM_{fb}\bar{V}_b$$

and the velocity of the body with respect to ECEF frame, expressed in body frame (\bar{V}_b) , angular rates of the body with respect to ECI frame,

expressed in body frame $(\bar{\omega}_b)$. Earth rotation rate $(\bar{\omega}_e)$, and relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body frame $(\bar{\omega}_{rel})$ are defined as

$$\bar{V}_{b} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \bar{\varpi}_{rel} = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \bar{\varpi}_{e} = \begin{bmatrix} 0 \\ 0 \\ \omega_{e} \end{bmatrix}$$

$$\overline{\omega}_{b} = \overline{\omega}_{rel} + DCM_{bf}\overline{\omega}_{e} + DCM_{be}\overline{\omega}_{ned}$$

$$\bar{\omega}_{ned} = \begin{bmatrix} \dot{l}\cos\mu \\ -\dot{\mu} \\ -\dot{l}\sin\mu \end{bmatrix} = \begin{bmatrix} V_E/(N+h) \\ -V_N/(M+h) \\ V_E\tan\mu/(N+h) \end{bmatrix}$$

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied moments are $[L M N]^{T}$, and the inertia tensor I is with respect to the origin O.

$$\bar{M}_{b} = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = \bar{I} \, \bar{\omega}_{b} + \bar{\omega}_{b} \times (\bar{I} \, \bar{\omega}_{b}) + \bar{I} \bar{\omega}_{b}$$

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}$$

The inertia tensor is determined using a table lookup which linearly interpolates between I_{full} and I_{empty} based on mass (*m*). The rate of change of the inertia tensor is estimated by the following equation.
$$\dot{I} = \frac{I_{full} - I_{empty}}{m_{full} - m_{empty}} \dot{m}$$

The integration of the rate of change of the quaternion vector is given below.

$$\begin{bmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & \omega_b (1) & \omega_b (2) & \omega_b (3) \\ -\omega_b (1) & 0 & -\omega_b (3) & \omega_b (2) \\ -\omega_b (2) & \omega_b (3) & 0 & -\omega_b (1) \\ -\omega_b (3) & -\omega_b (2) & \omega_b (1) & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

Simple Variable Mass 6DoF ECEF (Quaternion)

Dialog Box

🙀 Function Block Parameters: Simple Variable Mass 6DoF ECEF (Quaterni 🗙				
-6DoF EoM (ECEF) (mask) (link)				
Integrate the six-degrees-of-freedom equations of motion using a quaternion representation for the orientation of the body in space.				
Main Planet				
Units: Metric (MKS)				
Mass type: Simple Variable				
Initial position in geodetic latitude, longitude, altitude [mu,l,h]:				
[0 0 0]				
Initial velocity in body axes (U,v,w):				
[0 0 0]				
Initial Euler orientation [roll, pitch, yaw]:				
[[0 0 0]				
Initial body rotation rates (p,q,r):				
Initial mass:				
Empty mass:				
Full mass:				
2.0				
Empty inertia matrix:				
eye(3)				
Full inertia matrix:				
2*eye(3)				
OK Cancel Help Apply				

Function Block Parameters: Simple Variable Mass 6DoF ECEF (Quate 🗙				
-6DoF EoM (ECEF) (mask) (link)				
Integrate the six-degrees-of-freedom equations of motion using a quaternion representation for the orientation of the body in space.				
Main Planet				
Planet model: Earth (WGS84)				
Celestial longitude of Greenwich source: Internal				
Celestial longitude of Greenwich [deg]:				
0				
OK Cancel Help Apply				

Units

Specifies the input and output units:

Simple Variable Mass 6DoF ECEF (Quaternion)

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation (see 6DoF ECEF (Quaternion)).
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable (see Custom Variable Mass 6DoF ECEF (Quaternion)).

The Simple Variable selection conforms to the previously described equations of motion.

Initial position in geodetic latitude, longitude and altitude

The three-element vector for the initial location of the body in the geodetic reference frame.

Initial velocity in body axes

The three-element vector containing the initial velocity of the body with respect to the ECEF frame, expressed in the body frame.

Initial Euler orientation

The three-element vector containing the initial Euler rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between the body and NED coordinate systems.

Initial body rotation rates

The three-element vector for the initial angular rates of the body with respect to the NED frame, expressed the body frame, in radians per second.

Initial mass

The mass of the rigid body.

Empty mass

A scalar value for the empty mass of the body.

Full mass

A scalar value for the full mass of the body.

Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body.

Planet model

Specifies the planet model to use: Custom or Earth (WGS84).

Flattening

Specifies the flattening of the planet. This option is only available when **Planet model** is set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial radius parameter should be the same as the units for ECEF position. This option is only available when **Planet model** is set to **Custom**.

Rotational rate

Specifies the scalar rotational rate of the planet in rad/s. This option is only available when **Planet model** is set to Custom.

Simple Variable Mass 6DoF ECEF (Quaternion)

Celestial longitude of Greenwich source

Specifies the source of Greenwich meridian's initial celestial longitude:

Internal	Use celestial longitude value from mask dialog.
External	Use external input for celestial longitude value.

Celestial longitude of Greenwich

The initial angle between Greenwich meridian and the *x*-axis of the ECI frame.

_			
Inputs and	Input	Dimension Type	Description
Outputs	First	Vector	Contains the three applied forces in body-fixed axes.
	Second	Vector	Contains the three applied moments in body-fixed axes.
	Third	Scalar	Contains the rate of change of mass.
	Output	Dimension Type	Description
	First	Three-element vector	Contains the velocity of body respect to ECEF frame, expressed in ECEF frame.
	Second	Three-element vector	Contains the position in the ECEF reference frame.
	Third	Three-element vector	Contains the position in geodetic latitude, longitude and altitude, in degrees, degrees and selected units of length respectively.

Output	Dimension Type	Description
Fourth	Three-element vector	Contains the body rotation angles [roll, pitch, yaw], in radians. Euler rotation angles are those between body and NED coordinate systems.
Fifth	3-by-3 matrix	Applies to the coordinate transformation from ECI axes to body-fixed axes.
Sixth	3-by-3 matrix	Applies to the coordinate transformation from NED axes to body-fixed axes.
Seventh	3-by-3 matrix	Applies to the coordinate transformation from ECEF axes to NED axes.
Eighth	Three-element vector	Contains the velocity of body with respect to ECEF frame, expressed in body frame.
Ninth	Three-element vector	Contains the relative angular rates of body with respect to NED frame, expressed in body frame, in radians per second.
Tenth	Three-element vector	Contains the angular rates of the body with respect to ECI frame, expressed in body frame, in radians per second.
Eleventh	Three-element vector	Contains the angular accelerations of the body with respect to ECI frame, expressed in body frame, in radians per second.

Output	Dimension Type	Description
Twelfth	Three-element vector	Contains the accelerations in body-fixed axes.
Thirteenth	Scalar	Is an element containing a flag for fuel tank status:
		• 1 indicates that the tank is full.
		• 0 indicates that the integral is neither full nor empty.
		• -1 indicates that the tank is empty.

Assumptions This implementation assumes that the applied forces are acting at the center of gravity of the body.

Limitations

This implementation generates a geodetic latitude that lies between ± 90 degrees, and longitude that lies between ± 180 degrees. Additionally, the MSL altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be achieved. The Earth's precession, nutation, and polar motion are neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is at the center of the planet, the *x*-axis intersects the Greenwich meridian and the equator, the *z*-axis is the mean spin axis of the planet, positive to the north, and the *y*-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the origin is at the center of the planet, the *x*-axis is the continuation of the line from the center of the Earth through the center of the Sun toward the vernal equinox, the *z*-axis points in the direction of the mean equatorial plane's north pole, positive to the north, and the *y*-axis completes the right-hand system.

References	Stevens, B. L., and F. L. Lewis, <i>Aircraft Control and Simulation, Second Edition</i> , John Wiley & Sons, New York, 2003.					
	McFarland, Richard E., A Standard Kinematic Model for Flight simulation at NASA-Ames, NASA CR-2497.					
	"Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I - Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2-A.					
See Also	6DoF (Euler Angles)					
	6DoF (Quaternion)					
	6DoF ECEF (Quaternion)					
	6DoF Wind (Quaternion)					
	6DoF Wind (Wind Angles)					
	6th Order Point Mass (Coordinated Flight)					
	Custom Variable Mass 6DoF (Euler Angles)					
	Custom Variable Mass 6DoF (Quaternion)					
	Custom Variable Mass 6DoF ECEF (Quaternion)					
	Custom Variable Mass 6DoF Wind (Quaternion)					
	Custom Variable Mass 6DoF Wind (Wind Angles)					
	Simple Variable Mass 6DoF (Euler Angles)					
	Simple Variable Mass 6DoF (Quaternion)					
	Simple Variable Mass 6DoF Wind (Quaternion)					
	Simple Variable Mass 6DoF Wind (Wind Angles)					

Simple Variable Mass 6DoF Wind (Quaternion)

Purpose

Implement quaternion representation of six-degrees-of-freedom equations of motion of simple variable mass with respect to wind axes

Library Equations of Motion/6DoF

Description

The Simple Variable Mass 6DoF Wind (Quaternion) block considers the rotation of a wind-fixed coordinate frame (X_w, Y_w, Z_w) about an flat Earth reference frame (X_e, Y_e, Z_e) . The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is assumed to be rigid, an assumption that eliminates the need to consider the forces acting between individual elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation that allows the forces due to the Earth's motion relative to the "fixed stars" to be neglected.

Flat Earth reference frame

The translational motion of the wind-fixed coordinate frame is given below, where the applied forces $[F_x F_v F_z]^T$ are in the wind-fixed frame.

$$\begin{split} \bar{F}_{w} &= \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = m(\dot{\bar{V}}_{w} + \bar{\omega}_{w} \times \bar{V}_{w}) + \dot{m}\bar{V}_{w} \\ \bar{V}_{w} &= \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix}, \bar{\omega}_{w} = \begin{bmatrix} p_{w} \\ q_{w} \\ r_{w} \end{bmatrix} = DMC_{wb} \begin{bmatrix} p_{b} - \dot{\beta}\sin\alpha \\ q_{b} - \dot{\alpha} \\ r_{b} + \dot{\beta}\cos\alpha \end{bmatrix}, \bar{w}_{b} \begin{bmatrix} p_{b} \\ q_{b} \\ r_{b} \end{bmatrix} \end{split}$$

The rotational dynamics of the body-fixed frame are given below, where the applied moments are $[L M N]^T$, and the inertia tensor *I* is with respect to the origin O. Inertia tensor *I* is much easier to define in body-fixed frame.

$$\begin{split} \bar{M}_{b} &= \begin{bmatrix} L \\ M \\ N \end{bmatrix} = I\dot{\overline{\omega}}_{b} + \overline{\omega}_{b} \times (I\overline{\omega}_{b}) + \dot{I}\overline{\omega}_{b} \\ I &= \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix} \end{split}$$

The inertia tensor is determined using a table lookup which linearly interpolates between I_{full} and I_{empty} based on mass (*m*). While the rate of change of the inertia tensor is estimated by the following equation.

$$\dot{I} = \frac{I_{full} - I_{empty}}{m_{full} - m_{empty}} \dot{m}$$

The integration of the rate of change of the quaternion vector is given below.

$$\begin{bmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = -1/2 \begin{bmatrix} 0 & p & q & r \\ -p & 0 & -r & q \\ -q & r & 0 & -p \\ -r & -q & p & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

Dialog Box

🖬 Function Block Parameters: Simple Variable Mass 6DoF Wind (Quate 🗴					
- 6DoF EoM (Wind Axis) (mask) (link)					
Integrate the six-degrees-of-freedom equations of motion in wind axis.					
Parameters					
Units: Metric (MKS)					
Mass type: Simple Variable					
Representation: Quaternion					
Initial position in inertial axes [Xe,Ye,Ze]:					
[0 0 0]					
Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]:					
][000]					
Initial wind orientation [bank angle,flight path angle,heading angle]: [[0 0 0]					
Initial body rotation rates [p,q,r]:					
[0 0 0]					
Initial mass:					
1.0					
Empty mass:					
0.5					
Full mass:					
2.0					
Empty inertia matrix in body axis:					
eye(3)					
Full inertia matrix in body axis:					
2*eye(3)					
OK Cancel Help Apply					

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Simple Variable Mass 6DoF Wind (Quaternion)

Wind Angles

Use wind angles within equations of motion.

Quaternion

Use quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip angle and initial angle of attack.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Initial mass

The initial mass of the rigid body.

Empty mass

A scalar value for the empty mass of the body.

Full mass

A scalar value for the full mass of the body.

Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body, in body-fixed axes.

Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed axes.

Inputs and Outputs

Input	Dimension Type	Description
First	Vector	Contains the three applied forces in wind-fixed axes.
Second	Vector	Contains the three applied moments in body-fixed axes.
Third	Scalar	Contains the rate of change of mass.

Output	Dimension Type	Description
First	Three-element vector	Contains the velocity in the flat Earth reference frame.
Second	Three-element vector	Contains the position in the flat Earth reference frame.
Third	Three-element vector	Contains the wind rotation angles [bank, flight path, heading], in radians.
Fourth	3-by-3 matrix	Applies to the coordinate transformation from flat Earth axes to wind-fixed axes.
Fifth	Three-element vector	Contains the velocity in the wind-fixed frame.
Sixth	Two-element vector	Contains the angle of attack and sideslip angle, in radians.
Seventh	Two-element vector	Contains the rate of change of angle of attack and rate of change of sideslip angle, in radians per second.
Eighth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
Ninth	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second.

	Output	Dimension Type	Description
	Tenth	Three-element vector	t Contains the accelerations in body-fixed axes.
	Eleventh	Scalar element	Contains a flag for fuel tank status:1 indicates that the tank is full.
			• 0 indicates that the integral is neither full nor empty.
			• -1 indicates that the tank is empty.
Assumptions and Limitations	The block gravity of	assumes that t the body.	he applied forces are acting at the center of
References	Mangiacas Simulink I	ale, L., <i>Flight .</i> Helper, Edizion	Mechanics of a μ-Airplane with a MATLAB i Libreria CLUP, Milan, 1998.
	Stevens, B Wiley & Se	. L., and F. L. I ons, New York,	Lewis, <i>Aircraft Control and Simulation</i> , John , 1992.
See Also	6DoF (Eul	er Angles)	
	6DoF (Qua	aternion)	
	6DoF ECE	F (Quaternion))
	6DoF Win	d (Quaternion)	
	6DoF Win	d (Wind Angles	3)
	6th Order	Point Mass (Co	pordinated Flight)
	Custom Va	ariable Mass 6I	DoF (Euler Angles)
	Custom Va	ariable Mass 6I	DoF (Quaternion)
	Custom Va	ariable Mass 6I	DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF Wind (Wind Angles)

Purpose Implement wind angle representation of six-degrees-of-freedom equations of motion of simple variable mass

Library Equations of Motion/6DoF

Description

For a description of the coordinate system employed and the translational dynamics, see the block description for the Simple Variable Mass 6DoF (Quaternion) block.

The relationship between the wind angles, $[\mu\gamma\chi]^T$, can be determined by resolving the wind rates into the wind-fixed coordinate frame.

$$\begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = \begin{bmatrix} \dot{\mu} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \mu & \sin \mu \\ 0 & -\sin \mu & \cos \mu \end{bmatrix} \begin{bmatrix} 0 \\ \dot{\gamma} \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \mu & \sin \mu \\ 0 & -\sin \mu & \cos \mu \end{bmatrix} \begin{bmatrix} \cos \gamma & 0 & -\sin \gamma \\ 0 & 1 & 0 \\ \sin \gamma & 0 & \cos \gamma \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\chi} \end{bmatrix} \equiv J^{-1} \begin{bmatrix} \dot{\mu} \\ \dot{\gamma} \\ \dot{\chi} \end{bmatrix}$$

Inverting J then gives the required relationship to determine the wind rate vector.

$$\begin{bmatrix} \dot{\mu} \\ \dot{\gamma} \\ \dot{\chi} \end{bmatrix} = J \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = \begin{bmatrix} 1 & (\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\ 0 & \cos \mu & -\sin \mu \\ 0 & \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma} \end{bmatrix} \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix}$$

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.

$$\begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = DMC_{wb} \begin{bmatrix} p_b - \dot{\beta} \sin \alpha \\ q_b - \dot{\alpha} \\ r_b + \dot{\beta} \cos \alpha \end{bmatrix}$$

Using this relationship in the wind rate vector equations, gives the relationship between the wind rate vector and the body-fixed angular rates.

$$\begin{bmatrix} \dot{\mu} \\ \dot{\gamma} \\ \dot{\chi} \end{bmatrix} = J \begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = \begin{bmatrix} 1 & (\sin \mu \tan \gamma) & (\cos \mu \tan \gamma) \\ 0 & \cos \mu & -\sin \mu \\ 0 & \frac{\sin \mu}{\cos \gamma} & \frac{\cos \mu}{\cos \gamma} \end{bmatrix} DMC_{wb} \begin{bmatrix} p_b - \dot{\beta} \sin \alpha \\ q_b - \dot{\alpha} \\ r_b + \dot{\beta} \cos \alpha \end{bmatrix}$$

Simple Variable Mass 6DoF Wind (Wind Angles)

Dialog Box

🙀 Function Block Parameters: Simple Variable Mass 6DoF Win	d (Wind 🗴					
- 6DoF EoM (Wind Axis) (mask) (link)						
Integrate the six-degrees-of-freedom equations of motion in wind axis.						
Parameters						
Units: Metric (MKS)	-					
Mass type: Simple Variable	-					
Representation: Wind Angles	-					
Initial position in inertial axes [Xe,YeZe]:						
[0 0 0]						
Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta]:						
[0 0 0]						
Initial wind orientation [bank angle,flight path angle,heading angle]:						
[0 0 0]						
Initial body rotation rates (p,q,r):						
[0 0 0]						
Initial mass:						
1.0	1.0					
Empty mass:						
0.5						
Full mass:						
2.0						
Empty inertia matrix in body axis:						
eye(3)						
Full inertia matrix in body axis:						
2*eye(3)						
OK Cancel Help	Apply					

Units

Specifies the input and output units:

Units	Forces	Moment	Acceleration	Velocity	Position	Mass	Inertia
Metric (MKS)	Newton	Newton meter	Meters per second squared	Meters per second	Meters	Kilogram	Kilogram meter squared
English (Velocity in ft/s)	Pound	Foot pound	Feet per second squared	Feet per second	Feet	Slug	Slug foot squared
English (Velocity in kts)	Pound	Foot pound	Feet per second squared	Knots	Feet	Slug	Slug foot squared

Mass Type

Select the type of mass to use:

Fixed	Mass is constant throughout the simulation.
Simple Variable	Mass and inertia vary linearly as a function of mass rate.
Custom Variable	Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described equations of motion.

Representation

Select the representation to use:

Wind Angles	Use wind angles within equations of motion.
Quaternion	Use quaternions within equations of motion.

The Wind Angles selection conforms to the previously described equations of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the flat Earth reference frame.

Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip angle and initial angle of attack.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians per second.

Initial mass

The initial mass of the rigid body.

Empty mass

A scalar value for the empty mass of the body.

Full mass

A scalar value for the full mass of the body.

Empty inertia matrix

A 3-by-3 inertia tensor matrix for the empty inertia of the body, in body-fixed axes.

Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed axes.

Inputs and Outputs

Input	Dimension Type	Description
First	Vector	Contains the three applied forces in wind-fixed axes.
Second	Vector	Contains the three applied moments in body-fixed axes.
Third	Scalar	Contains the rate of change of mass.

Output	Dimension Type	Description
First	Three-element vector	Contains the velocity in the fixed Earth reference frame.
Second	Three-element vector	Contains the position in the flat Earth reference frame.
Third	Three-element vector	Contains the wind rotation angles [bank, flight path, heading], in radians.
Fourth	3-by-3 matrix	Applies to the coordinate transformation from flat Earth axes to wind-fixed axes.
Fifth	Three-element vector	Contains the velocity in the wind-fixed frame.
Sixth	Two-element vector	Contains the angle of attack and sideslip angle, in radians.
Seventh	Two-element vector	Contains the rate of change of angle of attack and rate of change of sideslip angle, in radians per second.
Eighth	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
Ninth	Three-element vector	Contain the angular accelerations in body-fixed axes, in radians per second.

	Output	Dimension Type	Description
	Tenth	Three-elemen vector	t Contains the accelerations in body-fixed axes.
	Eleventh	Scalar element	Contains a flag for fuel tank status:1 indicates that the tank is full.
			• 0 indicates that the integral is neither full nor empty.
			• -1 indicates that the tank is empty.
Assumptions and Limitations	The block gravity of	assumes that t the body.	he applied forces are acting at the center of
References	Mangiacas Simulink I	ale, L., <i>Flight</i> <i>Helper,</i> Edizion	Mechanics of a μ-Airplane with a MATLAB ii Libreria CLUP, Milan, 1998.
	Stevens, B Wiley & Se	. L., and F. L. ons, New York	Lewis, <i>Aircraft Control and Simulation</i> , John , 1992.
See Also	6DoF (Eul	er Angles)	
	6DoF (Qua	aternion)	
	6DoF ECE	F (Quaternion)
	6DoF Wine	d (Quaternion)	
	6DoF Wine	d (Wind Angles	3)
	6th Order	Point Mass (Co	oordinated Flight)
	Custom Va	ariable Mass 61	DoF (Euler Angles)
	Custom Va	ariable Mass 61	DoF (Quaternion)
	Custom Va	ariable Mass 61	DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion) Custom Variable Mass 6DoF Wind (Wind Angles) Simple Variable Mass 6DoF (Euler Angles) Simple Variable Mass 6DoF (Quaternion) Simple Variable Mass 6DoF ECEF (Quaternion) Simple Variable Mass 6DoF Wind (Quaternion)

Simulation Pace

Purpose	Set simulation rate for improved animation viewing		
Library	Animation/Animation Support Utilities		
Description	The Simulation Pace block lets you run the simulation at the specified pace so that connected animations appear aesthetically pleasing.		
Set Pace	This block does not produce deployable code.		
	Use the Sample time parameter to set how often the Simulink interface synchronizes with the wall clock.		
	The sample time of this block should be considered for human		

The sample time of this block should be considered for human interaction with visualizations. The default is 1/30th of a second, chosen to correspond to a 30 frames-per-second visualization rate (typical for desktop computers).

Caution

Choose as slow of a sample time as needed for smooth animation, since oversampling has little benefit and undersampling can cause animation "jumpiness" and potentially block the MATLAB main thread on your computer.

Dialog Box

Block Parameters: Simulation Pace				
Simulation Pace (mask) (link)				
Run the simulation at the specified pace so that connected animations appear aestetically pleasing.				
The pace is the ratio: simulation seconds / clock seconds, such as 1 sim second per clock second, 86400 sec/sec, 0.001 sec/sec, etc. You can optionally output the "pace error" value from the block (simulationTime - ClockTime), in seconds. This means that the pace error is positive if the simulation is running faster than the specified pace and negative if slower than the specified pace. When Simulink is ahead of the pace, this block puts all MATLAB/Simulink computations to sleep so that other processes on the computer can run. NOTE: This block does NOT make the simulation run in real-time, it merely attempts to make the aggregate simulation pace match the specified clock pace.				
Parameters				
Simulation pace (sim sec per clock sec):				
]1]				
Sleep mode: MATLAB Thread				
Output pace error (sec)				
Sample time (-1 for inherited):				
1/30				
OK Cancel Help Apply				

Simulation pace

Specifies the ratio of simulation time to clock time. The default is 1 second of simulation time per second of clock time.

Sleep mode

Setting the **Sleep mode** parameter to **off** lets you disable the pace functionality and run as fast as possible.

Output pace error

If you select this check box, the block outputs the "pace error" value (simulationTime minus ClockTime), in seconds. The pace error is positive if the simulation is running faster than the specified pace and negative if slower than the specified pace.

	Sample time Specify the sample time (-1 for inherited). Larger sample times result in more efficient simulations, but less smooth in output pace when there are multiple Simulink time steps between pacer block samples. If the Sample time is too large, the MATLAB interface may become less responsive as MATLAB and Simulink calculations are blocked from running when the block puts the MATLAB interface to sleep.
Inputs and Outputs	The block optionally outputs the "pace error" value (simulationTime minus ClockTime), in seconds. The pace error is positive if the simulation is running faster than the specified pace and negative if slower than the specified pace.
	Outputting the pace error from the block lets you record the overall pace achieved during the simulation or routing the signal to other blocks to make decisions about the simulation if the simulation is too slow to keep up with the specified pace.
Assumptions and Limitations	The simulation pace is implemented by putting the entire MATLAB thread to sleep until it needs to run again to keep up the pace. The Simulink software is single threaded and runs on the one MATLAB thread, so only one Simulation Pace block can be active at a time.
Examples	See the asbh120 demo for an example of this block.
See Also	Pilot Joystick

Purpose	Compute	sine	and	cosine	of	angle
	1					0

Library Utilities/Math Operations

The SinCos block computes the sine and cosine of the input angle, theta.

Dialog Box

Description

Block Pa	rameters:	SinCos				
_ SinCos	(mask) (link)				
Compute	e the sine ar	nd cosine of i	nput, u. u	s in radiar	ns.	
	OK I	Canaal	1	Lala	1	Applu
	UN	Cancer		пер		нрру

Inputs and
OutputsThe first input is an angle, in radians.OutputsThe first output is the sine of the input angle.The second output is the cosine of the input angle.

Spherical Harmonic Gravity Model

Purpose Implement spherical harmonic representation of planetary gravity

Library Environment/Gravity

Description

Spherical Harmonic Gravity Model

The Spherical Harmonic Gravity Model block implements the mathematical representation of spherical harmonic planetary gravity based on planetary gravitational potential. It provides a convenient way to describe a planet gravitational field outside of its surface in spherical harmonic expansion.

You can use spherical harmonics to modify the magnitude and direction of spherical gravity (- GM/r^2). The most significant or largest spherical harmonic term is the second degree zonal harmonic, J2, which accounts for oblateness of a planet.

Use this block if you want more accurate gravity values than spherical gravity models. For example, non-atmospheric flight applications might require higher accuracy.

Dialog	Function Block Parameters: Spherical Harmonic Gravity Model
Box	Spherical Harmonic Gravity Model (mask) (link)
	Calculate a spherical harmonic representation of planetary gravity at a specific location based on planetary gravitational potential.
	The maximum degree available depends upon the planet model selected. For EGM2008, the maximum degree and order is 2159. For EGM96, the maximum degree and order is 360. For LP100K, the maximum degree and order is 100. For LP165P, the maximum degree and order is 165. For GMM2B, the maximum degree and order is 80.
	Position is entered in length units of selected unit system.
	Main Planet
	Units: Metric (MKS)
	Degree:
	120
	Action for out of range input: Warning
	OK Cancel Help Apply

🙀 Function Block Parameters: Spherical Harmonic Gravity Model 🛛 🔀				
Spherical Harmonic Gravity Model (mask) (link)				
Calculate a spherical harmonic representation of planetary gravity at a specific location based on planetary gravitational potential.				
The maximum degree available depends upon the planet model selected. For EGM2008, the maximum degree and order is 2159. For EGM96, the maximum degree and order is 360. For LP100K, the maximum degree and order is 100. For LP165P, the maximum degree and order is 165. For GMM2B, the maximum degree and order is 80. Position is entered in length units of selected unit system.				
Main Planet				
Planet model: EGM2008				
OK Cancel Help Apply				

Units

Specifies the parameter and output units:

Units	Height
Metric (MKS)	Meters
English	Feet

Degree

Specify the degree of harmonic model. Recommended degrees are:

Planet Model	Degree
EGM2008	120
EGM96	70

Planet Model	Degree
LP100K	60
LP165P	60
GMM2B	60

Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

Planet model

Specify the planetary model. From the list, select EGM2008 (Earth), EGM96 (Earth), LP100K (Moon), LP165P (Moon), GMM2B (Mars), or Custom.

Selecting Custom enables you to specify your own planetary model. This option enables the **Planet mat-file** parameter.

When defining your own planetary model, the **Degree** parameter is limited to the maximum value for int16. When inputting a large degree, you might receive an out-of-memory error. For more information about avoiding out-of-memory errors in the MATLAB environment, see:

http://www.mathworks.com/support/tech-notes/1100/1107.html

http://www.mathworks.com/support/tech-notes/1100/1110.html

EGM2008 is the latest Earth spherical harmonic gravitational model from National Geospatial-Intelligence Agency (NGA). This block provides the WGS-84 version of this gravitational model. You can use the EGM96 planetary model if you need to use the older standard for Earth.

LP100K and LP165P were created in approximately the same year with similar data. LP100K is best for lunar orbit determination

based upon computational time required to compute orbits. LP165P is best for extended lunar mission orbit accuracy.

Planet mat-file

Specify a MAT-file that contains definitions for a custom planetary model. The aerogmm2b.mat file in the Aerospace Toolbox is the default MAT-file for a custom planetary model.

This file must contain:

Variable	Description
Re	Scalar of planet equatorial radius in meters (m).
GM	Scalar of planetary gravitational parameter in meters cubed per second squared (m ³ /s ²)
degree	Scalar of maximum degree.
С	(<i>degree</i> +1)-by-(<i>degree</i> +1) matrix containing normalized spherical harmonic coefficients matrix, <i>C</i> .
S	(<i>degree</i> +1)-by-(<i>degree</i> +1) matrix containing normalized spherical harmonic coefficients matrix, <i>S</i> .

When using a large value for **Degree**, you might receive an out-of-memory error. For more information about avoiding out-of-memory errors in the MATLAB environment, see:

http://www.mathworks.com/support/tech-notes/1100/1107.html

http://www.mathworks.com/support/tech-notes/1100/1110.html

References Vallado, D. A., *Fundamentals of Astrodynamics and Applications*, McGraw-Hill, New York, 1997.

"NIMA TR8350.2: Department of Defense World Geodetic System 1984, "Its Definition and Relationship with Local Geodetic Systems". Konopliv, A. S., S. W. Asmar, E. Carranza, W. L. Sjogen, D. N. Yuan., "Recent Gravity Models as a Result of the Lunar Prospector Mission, Icarus", Vol. 150, no. 1, pp 1–18, 2001.

Lemoine, F. G., D. E. Smith, D.D. Rowlands, M.T. Zuber, G. A. Neumann, and D. S. Chinn, "An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor", J. Geophys. Res., Vol. 106, No. E10, pp 23359-23376, October 25, 2001.

Kenyon S., J. Factor, N. Pavlis, and S. Holmes, "Towards the Next Earth Gravitational Model", Society of Exploration Geophysicists 77th Annual Meeting, San Antonio, Texas, September 23-28, 2007.

Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor, "An Earth Gravitational Model to Degree 2160: EGM2008", presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18, 2008.

Grueber, T., and A. Köhl, "Validation of the EGM2008 Gravity Field with GPS-Leveling and Oceanographic Analyses", presented at the IAG International Symposium on Gravity, Geoid & Earth Observation 2008, Chania, Greece, June 23-27, 2008.

Symmetric Inertia Tensor

Purpose Create inertia tensor from moments and products of inertia

Library N

Mass Properties

Description

The Symmetric Inertia Tensor block creates an inertia tensor from moments and products of inertia. Each input corresponds to an element of the tensor.

The inertia tensor has the form of

$$Inertia = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{yz} \\ -I_{xy} & I_{yy} & -I_{xz} \\ -I_{yz} & -I_{xz} & I_{zz} \end{bmatrix}$$

Dialog Box

Inputs and Outputs

Input	Dimension Type	Description
First		Contains the moment of inertia about the <i>x</i> -axis.
Second		Contains the product of inertia in the <i>xy</i> plane.
Third		Contains the product of inertia in the xz plane.
Fourth		Contains the moment of inertia about the <i>y</i> -axis.
Input	Dimension Type	Description
-------	-----------------------	--
Fifth		Contains the product of inertia in the yz plane.
Sixth		Contains the moment of inertia about the <i>z</i> -axis.

Output	Dimension Type	Description
First		Contains a symmetric 3-by-3 inertia tensor.

See Also

Create 3x3 Matrix

Temperature Conversion

Purpose Convert from temperature units to desired temperature units

Library Utilities/Unit Conversions

Description

κþ

The Temperature Conversion block computes the conversion factor from specified input temperature units to specified output temperature units and applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Яk

Block Parameters: Temperature Conversion
Temperature Conversion (mask) (link)
Convert units of input signal to desired output units.
Parameters
Initial units: R
Final units: K
OK Cancel Help Apply

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

К	Kelvin
F	Degrees Fahrenheit
С	Degrees Celsius
R	Degrees Rankine

Inputs and	Input	Dimension Type	Description		
Outputs	First		Contains the temperature in initial temperature units.		
	Output	Dimension Type	Description		
	First		Contains the temperature in final temperature units.		
See Also	Acceleration Conversion				
	Angle Conversion				
	Angular Acceleration Conversion				
	Angular Velocity Conversion				
	Density Conversion				
	Force Conversion				
	Length Conversion				
	Mass Conversion				
	Pressure Conversion				
	Velocity Co	nversion			

Three-Axis Accelerometer

Library GNC/Navigation

Description

> A_b (m/s²) > to (rad/s) > do/dt A_{m eas} (m/s²) > CG (m) > g (m/s²) The Three-Axis Accelerometer block implements an accelerometer on

each of the three axes. The ideal measured accelerations (\bar{A}_{imeas})

include the acceleration in body axes at the center of gravity (\bar{A}_b), lever arm effects due to the accelerometer not being at the center of gravity, and, optionally, gravity in body axes can be removed.

$$\bar{A}_{imeas} = \bar{A}_b + \bar{\omega}_b \times (\bar{\omega}_b \times \bar{d}) + \dot{\bar{\omega}}_b \times \bar{d} - \bar{g}$$

where $\bar{\omega}_b$ are body-fixed angular rates, $\dot{\bar{\omega}}_b$ are body-fixed angular accelerations and \bar{d} is the lever arm. The lever arm (\bar{d}) is defined as the distances that the accelerometer group is forward, right and below the center of gravity.

 $\overline{d} = \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix} = \begin{bmatrix} -(x_{acc} - x_{CG}) \\ y_{acc} - y_{CG} \\ -(z_{acc} - z_{CG}) \end{bmatrix}$

The orientation of the axes used to determine the location of the accelerometer group $(x_{acc}, y_{acc}, z_{acc})$ and center of gravity (x_{CG}, y_{CG}, z_{CG}) is from the zero datum (typically the nose) to aft, to the right of the vertical centerline and above the horizontal centerline. The *x*-axis and *z*-axis of this measurement axes are opposite the body-fixed axes producing the negative signs in the lever arms for *x*-axis and *z*-axis.

Measured accelerations (\bar{A}_{meas}) output by this block contain error sources and are defined as

$$\overline{A}_{meas} = \overline{A}_{imeas} \times \overline{A}_{SFCC} + \overline{A}_{bias} + noise$$

where \bar{A}_{SFCC} is a 3-by-3 matrix of scaling factors on the diagonal and misalignment terms in the nondiagonal, and \bar{A}_{bias} are the biases.

Optionally discretizations can be applied to the block inputs and dynamics along with nonlinearizations of the measured accelerations via a Saturation block.

Function Block	Parameters: T	hree-axis Ac	celerometer		
- Three-axis Accele	rometer (mask) (lir	k)			
Implement a three	e-axis accelerome	er.			
Main Noise					
Units: Metric (MK)	6)				-
Accelerometer loca	ation:				
[0 0 0]					
🔽 Subtract gravity	r.				
🔽 Second-order d	ynamics				
Natural frequency	(rad/sec):				
190					
Damping ratio:					
0.707					
Scale factors and (cross-coupling:				
[100;010;001]				
Measurement bias:					
[0 0 0]					
Update rate (sec):					
0.025					
	OK	Cancel	Help	A	pply

Dialog Box

Function Block Parameters: Three-axis Accelerometer
Three-axis Accelerometer (mask) (link)
Implement a three-axis accelerometer.
Luin Noise
V Noise on
Noise seeds:
[23093 23094 23095]
Noise power:
[0.001 0.001 0.001]
Lower and upper output limits:
[-inf -inf inf inf inf]
OK Cancel Help Apply

Units

Specifies the input and output units:

Units	Acceleration	Length
Metric (MKS)	Meters per second squared	Meters
English	Feet per second squared	Feet

Accelerometer location

The location of the accelerometer group is measured from the zero datum (typically the nose) to aft, to the right of the vertical centerline and above the horizontal centerline. This measurement reference is the same for the center of gravity input. The units are in selected length units.

Subtract gravity

Select to subtract gravity from acceleration readings.

Second order dynamics

Select to apply second-order dynamics to acceleration readings.

Natural frequency (rad/sec)

The natural frequency of the accelerometer. The units of natural frequency are radians per second.

Damping ratio

The damping ratio of the accelerometer. A dimensionless parameter.

Scale factors and cross-coupling

The 3-by-3 matrix used to skew the accelerometer from body axes and to scale accelerations along body axes.

Measurement bias

The three-element vector containing long-term biases along the accelerometer axes. The units are in selected acceleration units.

Update rate (sec)

Specify the update rate of the accelerometer. An update rate of 0 will create a continuous accelerometer. If noise is selected and the update rate is 0, then the noise will be updated at the rate of 0.1. The units of update rate are seconds.

Noise on

Select to apply white noise to acceleration readings.

Noise seeds

The scalar seeds for the Gaussian noise generator for each axis of the accelerometer.

Noise power

The height of the PSD of the white noise for each axis of the accelerometer.

Lower and upper output limits

The six-element vector containing three minimum values and three maximum values of acceleration in each of the accelerometer axes. The units are in selected acceleration units.

Inputs and	Input	Dimension Type	Description		
Outputs	First	Three-element vector	Contains the actual accelerations in body-fixed axes, in selected units.		
	Second	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.		
	Third	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second squared.		
	Fourth	Three-element vector	Contains the location of the center of gravity, in selected units.		
	Fifth (Optional)	Three-element vector	Contains the gravity, in selected units.		
	Output	Dimension Type	Description		
	First	Three-element vector	Contains the measured accelerations from the accelerometer, in selected units.		
Assumptions and Limitations	Vibropendulous error and hysteresis effects are not accounted for in this block. Additionally, this block is not intended to model the internal dynamics of different forms of the instrument.				
	Note This discrete ope	block requires the C eration (nonzero sam	ontrol System Toolbox product for ple time).		

Reference	Rogers, R. M., <i>Applied Mathematics in Integrated Navigation Systems</i> , AIAA Education Series, 2000.		
See Also	Three-Axis Gyroscope		

Three-Axis Inertial Measurement Unit

Three-Axis Gyroscope

Purpose	Implement three-axis	gyroscope
	implement mile and	SJIOSCOPC

Library GNC/Navigation

Description

The Three-Axis Gyroscope block implements a gyroscope on each of the three axes. The measured body angular rates $(\bar{\omega}_{meas})$ include the body angular rates $(\bar{\omega}_b)$, errors, and optionally discretizations and nonlinearizations of the signals.

 $\bar{\omega}_{meas} = \bar{\omega}_b \times \bar{\omega}_{SFCC} + \bar{\omega}_{bias} + Gs \times \bar{\omega}_{gsens} + noise$

where $\bar{\omega}_{SFCC}$ is a 3-by-3 matrix of scaling factors on the diagonal and misalignment terms in the nondiagonal, $\bar{\omega}_{bias}$ are the biases, (Gs) are the Gs on the gyroscope, and $\bar{\omega}_{gsens}$ are the g-sensitive biases.

Optionally discretizations can be applied to the block inputs and dynamics along with nonlinearizations of the measured body angular rates via a Saturation block.

Three-Axis Gyroscope

Dialog Box

Implement a three	ope (mask) (link)—			
	-axis gyroscope.			
Main Noise				
	mamica			
 Second-order dy 	priamics			
Natural nequency (i 190	rauzsec).			
Domping ratio:				
0 707				
Scale factors and c	ross-coupling:			
[100;010;001]]			
Measurement bias:				
[0 0 0]				
G-sensitive bias:				
[0 0 0]				
Update rate (sec):				
0.025				
	ОК	Cancel	Help	Apply
Function Block	Parameters: T	hree-axis Gyros	scope	>
- Three-axis Gyrosco	ope (mask) (link)—			
Implement a three	⊷axis gyroscope.			
Implement a three	⊷axis gyroscope.			
Implement a three Main Noise	⊷axis gyroscope.			
Implement a three Main Noise ▼ Noise on Noise seeds:	⊷axis gyroscope.			
Implement a three Main Noise Noise on Noise seeds: [23093 23094 230	axis gyroscope.			
Implement a three Main Noise Voise on Noise seeds: [23093 23094 230 Noise power:	axis gyroscope. 95]			
Implement a three Main Noise ✓ Noise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.00	axis gyroscope. 95]			
Implement a three Main Noise Voise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.0 Lower and upper of	axis gyroscope. 95] 0001] utput limits:			
Implement a three Main Noise Noise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.0 Lower and upper or [inf_inf_inf_inf_inf_inf_inf_inf_inf_inf_	 axis gyroscope. 95] 0001] utput limits: inf] 			
Implement a three Main Noise ✓ Noise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.0 Lower and upper or [-infinfinf_inf_inf]	95] 9001] utput limits:			
Implement a three Main Noise ✓ Noise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.0 Lower and upper or [inf_inf_inf_inf_inf]	→axis gyroscope. 95] 0001] utput limits: iinf]			
Implement a three Main Noise ✓ Noise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.0 Lower and upper or [inf_inf_inf_inf_inf_inf]	+axis gyroscope. 95] 0001] utput limits: i inf]			
Implement a three Main Noise ✓ Noise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.0 Lower and upper or [-infinfinf_inf_inf]	+axis gyroscope. 95] 0001] utput limits: i inf]			
Implement a three Main Noise ✓ Noise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.0 Lower and upper or [-infinfinf_inf_inf]	+axis gyroscope. 95] 0001] utput limits: i inf]			
Implement a three Main Noise Noise on Noise seeds: [23093 23094 230 Noise power: [0.0001 0.0001 0.0 Lower and upper or [-infinfinf_inf_inf]	+axis gyroscope. 95] 0001] utput limits: i inf]			

Second order dynamics

Select to apply second-order dynamics to gyroscope readings.

Natural frequency (rad/sec)

The natural frequency of the gyroscope. The units of natural frequency are radians per second.

Damping ratio

The damping ratio of the gyroscope. A dimensionless parameter.

Scale factors and cross-coupling

The 3-by-3 matrix used to skew the gyroscope from body axes and to scale angular rates along body axes.

Measurement bias

The three-element vector containing long-term biases along the gyroscope axes. The units are in radians per second.

G-sensitive bias

The three-element vector contains the maximum change in rates due to linear acceleration. The units are in radians per second per g-unit.

Update rate (sec)

Specify the update rate of the gyroscope. An update rate of 0 will create a continuous gyroscope. If noise is selected and the update rate is 0, then the noise will be updated at the rate of 0.1. The units of update rate are seconds.

Noise on

Select to apply white noise to gyroscope readings.

Noise seeds

The scalar seeds for the Gaussian noise generator for each axis of the gyroscope.

Noise power

The height of the PSD of the white noise for each axis of the gyroscope.

Lower and upper output limits

The six-element vector containing three minimum values and three maximum values of angular rates in each of the gyroscope axes. The units are in radians per second.

Inputs and	Input	Dimension Type	Description
Outputs	First	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.
	Second	Three-element vector	Contains the accelerations in body-fixed axes, in Gs.
	Output	Dimension Type	Description
	First	Three-element vector	Contains the measured angular rates from the gyroscope, in radians per second.
Assumptions and Limitations	Anisoelastic bias and anisoinertial bias effects are not accounted for in this block. Additionally, this block is not intended to model the internal dynamics of different forms of the instrument.		
	Note This block requires the Control System Toolbox product for discrete operation (nonzero sample time).		
Reference	Rogers, R. M., <i>Applied Mathematics in Integrated Navigation Systems</i> , AIAA Education Series, 2000.		
See Also	Three-Axis	Accelerometer	
	Three-Axis Inertial Measurement Unit		

Three-Axis Inertial Measurement Unit

Purpose Implement three-axis inertial measurement unit (IMU)

Library

GNC/Navigation

Description

The Three-Axis Inertial Measurement Unit block implements an inertial measurement unit (IMU) containing a three-axis accelerometer and a three-axis gyroscope.

For a description of the equations and application of errors, see the Three-Axis Accelerometer block and the Three-Axis Gyroscope block reference pages.

Dialog Box

🙀 Function Block Parameters: Three-axis Inertial Measurement Unit
-Three-axis Inertial Measurement Unit (mask) (link)
Implement a three-axis inertial measurement unit (IMU).
Main Accelerometer Gyroscope Noise
Units: Metric (MKS)
IMU location:
[0 0 0]
Update rate:
0.025
OK Cancel Apply

Function Block Parameters: Three-axis Inertial Measurement Unit				
Three-axis Inertial Measurement Unit (mask) (link)				
Implement a three-axis inertial measurement unit (IMU).				
Main Accelerometer Gyroscope Noise				
Second-order dynamics for accelerometer				
Accelerometer natural frequency (rad/sec):				
190				
Accelerometer damping ratio:				
0.707				
Accelerometer scale factor and cross-coupling:				
[1 0 0; 0 1 0; 0 0 1]				
Accelerometer measurement bias:				
[0 0 0]				
Accelerometer upper and lower limits:				
[-inf -inf inf inf inf]				
OK Cancel Help Apply				

🙀 Function Block Parameters: Three-axis Inertial Measurement Unit
Three-axis Inertial Measurement Unit (mask) (link)
Implement a three-axis inertial measurement unit (IMU).
Main Accelerometer Gyroscope Noise
Second-order dynamics for gyro
Gyro natural frequency (rad/sec):
190
Gyro damping ratio:
0.707
Gyro scale factors and cross-coupling:
[1 0 0; 0 1 0; 0 0 1]
Gyro measurement bias:
[0 0 0]
G-sensitive bias:
[0 0 0]
Gyro upper and lower limits:
[-inf -inf inf inf inf]
OK Cancel Help Apply

🚺 Func	tion Block Param	eters: Three	-axis Ine	ertial Measurement l	Jnit 🔀
Three-axis Inertial Measurement Unit (mask) (link)					
Implen	nent a three-axis ine	rtial measureme	ent unit (IM	1U).	
Main	Accelerometer	Gyroscope	Noise	1	
🔽 Nois	e on				
Noise s	eeds:				
[23093	23094 23095 2309	6 23097 23098	3]		
Noise p	ower:				
[0.001	0.001 0.001 0.0001	0.0001 0.0001]		
		DK	Cancel	Help	Apply

Units

Specifies the input and output units:

Units	Acceleration	Length
Metric (MKS)	Meters per second squared	Meters
English	Feet per second squared	Feet

IMU location

The location of the IMU, which is also the accelerometer group location, is measured from the zero datum (typically the nose) to aft, to the right of the vertical centerline and above the horizontal centerline. This measurement reference is the same for the center of gravity input. The units are in selected length units.

Update rate (sec)

Specify the update rate of the accelerometer and gyroscope. An update rate of 0 will create a continuous accelerometer and continuous gyroscope. If noise is selected and the update rate is 0, then the noise will be updated at the rate of 0.1. The units of update rate are seconds.

Second order dynamics for accelerometer

Select to apply second-order dynamics to acceleration readings.

Accelerometer natural frequency (rad/sec)

The natural frequency of the accelerometer. The units of natural frequency are radians per second.

Accelerometer damping ratio

The damping ratio of the accelerometer. A dimensionless parameter.

Accelerometer scale factors and cross-coupling

The 3-by-3 matrix used to skew the accelerometer from body-axis and to scale accelerations along body-axis.

Accelerometer measurement bias

The three-element vector containing long-term biases along the accelerometer axes. The units are in selected acceleration units.

Accelerometer lower and upper output limits

The six-element vector containing three minimum values and three maximum values of acceleration in each of the accelerometer axes. The units are in selected acceleration units.

Gyro second order dynamics

Select to apply second-order dynamics to gyroscope readings.

Gyro natural frequency (rad/sec)

The natural frequency of the gyroscope. The units of natural frequency are radians per second.

Gyro damping ratio

The damping ratio of the gyroscope. A dimensionless parameter.

Gyro scale factors and cross-coupling

The 3-by-3 matrix used to skew the gyroscope from body axes and to scale angular rates along body axes.

Gyro measurement bias

The three-element vector containing long-term biases along the gyroscope axes. The units are in radians per second.

G-sensitive bias

The three-element vector contains the maximum change in rates due to linear acceleration. The units are in radians per second per g-unit.

Gyro lower and upper output limits

The six-element vector containing three minimum values and three maximum values of angular rates in each of the gyroscope axes. The units are in radians per second.

Noise on

Select to apply white noise to acceleration and gyroscope readings.

Noise seeds

The scalar seeds for the Gaussian noise generator for each axis of the accelerometer and gyroscope.

Noise power

The height of the PSD of the white noise for each axis of the accelerometer and gyroscope.

Inputs and Outputs

Input	Dimension Type	Description
First	Three-element vector	Contains the actual accelerations in body-fixed axes, in selected units.
Second	Three-element vector	Contains the angular rates in body-fixed axes, in radians per second.

	Input	Dimension Type	Description
	Third	Three-element vector	Contains the angular accelerations in body-fixed axes, in radians per second squared.
	Fourth	Three-element vector	Contains the location of the center of gravity, in selected units.
	Fifth	Three-element vector	Contains the gravity, in selected units.
	Output	Dimension Type	Description
	First	Three-element vector	Contains the measured accelerations from the accelerometer, in selected units.
	Second	Three-element vector	Contains the measured angular rates from the gyroscope, in radians per second.
Assumptions and Limitations	Vibropend anisoinerti this block forms of th	ulous error, hysteresi al bias are not accour is not intended to mod le instrument.	s affects, anisoelastic bias and nted for in this block. Additionally, del the internal dynamics of different
	Note This discrete op	s block requires the C eration (nonzero sam	ontrol System Toolbox product for ple time).
Examples	See the as	bh120 demo for an ex	ample of this block.
Reference	Rogers, R. AIAA Educ	M., <i>Applied Mathemo</i> cation Series, 2000.	ttics in Integrated Navigation Systems,

Three-Axis Inertial Measurement Unit

See Also Three-Axis Accelerometer Three-Axis Gyroscope

Purpose Implement first-order representation of turbofan engine with controller

Library Propulsion

Description

>	Throttle positio	on	Thrust (N)	p
>	Mach			-
>	Altitude (m)	Fuel	flow (kg/s)	լ հ

The Turbofan Engine System block computes the thrust and the weight of fuel flow of a turbofan engine and controller at a specific throttle position, Mach number, and altitude.

This system is represented by a first-order system with unitless heuristic lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine time constant. For the lookup table data, thrust is a function of throttle position and Mach number, TSFC is a function of thrust and Mach number, and engine time constant is a function of thrust. The unitless lookup table outputs are corrected for altitude using the relative pressure ratio δ and relative temperature ratio θ , and scaled by maximum sea level static thrust, fastest engine time constant at sea level static, sea level static thrust specific fuel consumption, and ratio of installed thrust to uninstalled thrust.

The Turbofan Engine System block icon displays the input and output units selected from the **Units** list.

Turbofan Engine System

Dialog Box

🙀 Function Block Parameters: Turbofan Engine System 🛛 🛛 🔀
-Turbofan Engine System (mask) (link)
Implement a turbofan engine system. The turbofan engine system includes both engine and controller.
Throttle position can vary from zero to one, corresponding to no and full throttle. Altitude, initial thrust, and maximum thrust are entered in the same unit system as selected from the block for thrust and fuel flow output.
Parameters
Units: Metric (MKS)
Initial thrust source: Internal
Initial thrust:
0
Maximum sea-level static thrust:
45000
Fastest engine time constant at sea-level static (sec):
1
Sea-level static thrust specific fuel consumption:
0.35
Ratio of installed thrust to uninstalled thrust:
0.9
Cancel Help Apply

Units

Specifies the input and output units:

Units	Altitude	Thrust	Fuel Flow
Metric (MKS)	Meters	Newtons	Kilograms per second
English	Feet	Pound force	Pound mass per second

Initial thrust source

Specifies the source of initial thrust:

Turbofan Engine System

Contains the altitude in specified

length units.

	In	ternal	Use initial thrust value from mask dialog.
	Ex	ternal	Use external input for initial thrust value.
	Initial th Init	n rust ial value for thrust.	
	Maximu Max	m sea-level static th ximum thrust at sea-le	rust evel and at Mach = 0.
	Fastest e Fas	e ngine time constan test engine time at sea	t at sea-level static a level.
	Sea-level Thr max thru	l static thrust specif ust specific fuel consu kimum thrust, in speci ust units.	fic fuel consumption mption at sea level, at Mach = 0, and at ified mass units per hour per specified
	Ratio of Coe inst	installed thrust to u fficient representing t callation.	uninstalled thrust he loss in thrust due to engine
Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the throttle position, which can vary from zero to one, corresponding to no and full throttle.
	Second		Contains the Mach number.

Third

	Output	Dimension Type	Description	
	First		Contains the thrust in specified force units.	
	Second		Contains the fuel flow in specified mass units per second.	
Assumptions	The atmos	ohere is at standard d	ay conditions and an ideal gas.	
and	The Mach number is limited to less than 1.0.			
Limitations	This engine system is for indication purposes only. It is not meant to be used as a reference model.			
	This engine	e system is assumed t	o have a high bypass ratio.	
References	Aeronautic Whitney, A	al Vestpocket Handbo ugust, 1986.	ok, United Technologies Pratt &	
	Raymer, D. P., <i>Aircraft Design: A Conceptual Approach</i> , AIAA Education Series, Washington, DC, 1989.			
	Hill, P. G., <i>of Propulsi</i> Massachus	and C. R. Peterson, <i>I</i> on, Addison-Wesley P etts, 1970.	Mechanics and Thermodynamics Publishing Company, Reading,	

Purpose Convert from velocity units to desired velocity units

Library Utilities/Unit Conversions

Description

>ft/s m/s⊳

The Velocity Conversion block computes the conversion factor from specified input velocity units to specified output velocity units and applies the conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected from the **Initial units** and the **Final units** lists.

Dialog Box

Block Parameters: Velocity Conversion	×
Velocity Conversion (mask) (link)	
Convert units of input signal to desired output units.	
Parameters	
Initial units: ft/s	•
Final units: m/s	•
OK Cancel Help Apply	

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

ft/sFeet per secondkm/sKilometers per secondin/sInches per secondkm/hKilometers per hourmphMiles per hour	m/s	Meters per second
km/sKilometers per secondin/sInches per secondkm/hKilometers per hourmphMiles per hour	ft/s	Feet per second
in/sInches per secondkm/hKilometers per hourmphMiles per hour	km/s	Kilometers per second
km/hKilometers per hourmphMiles per hour	in/s	Inches per second
mph Miles per hour	km/h	Kilometers per hour
	mph	Miles per hour

	kts ft/min		Nautica Feet per	l miles per hour minute
Inputs and Outputs	Input First	Dimension	Туре	Description Contains the velocity in initial
				velocity units.
	Output First	Dimension	Туре	Description Contains the velocity in final velocity units.
See Also	Acceleration Angle Conv Angular Ac Angular Vo Density Co Force Conv Length Conv Mass Conv Pressure C Temperatu	on Conversion version cceleration Con elocity Conversion version version version conversion conversion	nversion	

Purpose Generate continuous wind turbulence with Von Kármán velocity spectra

Library

Environment/Wind

Description

×	h (m)	Continuous ↓ V _{Wind} (m/s) >
×	V (m/s)	E I
>	DGM	Von Karman ∞ (+q+r) (rad/s)

The Von Kármán Wind Turbulence Model (Continuous) block uses the Von Kármán spectral representation to add turbulence to the aerospace model by passing band-limited white noise through appropriate forming filters. This block implements the mathematical representation in the Military Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined by velocity spectra. For an aircraft flying at a speed V through a frozen turbulence field with a spatial frequency of Ω radians per meter, the circular frequency ω is calculated by multiplying V by Ω . The following table displays the component spectra functions:

	MIL-F-8785C	MIL-HDBK-1797
Longitudinal		
$\Phi_u(\omega)$	$\frac{2\sigma_u^2 L_u}{\pi V} \cdot \frac{1}{\left[1 + \left(1.339 L_u \frac{\omega}{V}\right)^2\right]^{5/6}}$	$\frac{2\sigma_u^2 L_u}{\pi V} \cdot \frac{1}{\left[1 + \left(1.339 L_u \frac{\omega}{V}\right)^2\right]^{5/6}}$
$\Phi_p(\omega)$	$\frac{\sigma_w^2}{VL_w} \cdot \frac{0.8 \left(\frac{\pi L_w}{4b}\right)^{1/3}}{1 + \left(\frac{4b\omega}{\pi V}\right)^2}$	$\frac{\sigma_w^2}{2VL_w} \cdot \frac{0.8 \left(\frac{2\pi L_w}{4b}\right)^{1/3}}{1 + \left(\frac{4b\omega}{\pi V}\right)^2}$
Lateral		

	MIL-F-8785C	MIL-HDBK-1797
$\Phi_v(\omega)$	$\frac{\sigma_{v}^{2}L_{v}}{\pi V} \cdot \frac{1 + \frac{8}{3} \left(1.339L_{v} \frac{\omega}{V}\right)^{2}}{\left[1 + \left(1.339L_{v} \frac{\omega}{V}\right)^{2}\right]^{\frac{11}{6}}}$	$\frac{2\sigma_{v}^{2}L_{v}}{\pi V} \cdot \frac{1 + \frac{8}{3} \left(2.678L_{v}\frac{\omega}{V}\right)^{2}}{\left[1 + \left(2.678L_{v}\frac{\omega}{V}\right)^{2}\right]^{11/6}}$
$\Phi_r(\omega)$	$\frac{\mp \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{3b\omega}{\pi V}\right)^{2}} \cdot \Phi_{v}(\omega)$	$\frac{\mp \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{3b\omega}{\pi V}\right)^{2}} \cdot \Phi_{v}\left(\omega\right)$
Vertical		
$\Phi_w(\omega)$	$\frac{\sigma_w^2 L_w}{\pi V} \cdot \frac{1 + \frac{8}{3} \left(1.339 L_w \frac{\omega}{V}\right)^2}{\left[1 + \left(1.339 L_w \frac{\omega}{V}\right)^2\right]^{\frac{11}{6}}}$	$\frac{2\sigma_w^2 L_w}{\pi V} \cdot \frac{1 + \frac{8}{3} \left(2.678 L_w \frac{\omega}{V}\right)^2}{\left[1 + \left(2.678 L_w \frac{\omega}{V}\right)^2\right]^{1/6}}$
$\Phi_{q}\left(\omega ight)$	$\frac{\pm \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{4b\omega}{\pi V}\right)^{2}} \cdot \Phi_{w}\left(\omega\right)$	$\frac{\pm \left(\frac{\omega}{V}\right)^{2}}{1 + \left(\frac{4b\omega}{\pi V}\right)^{2}} \cdot \Phi_{w}\left(\omega\right)$

The variable b represents the aircraft wingspan. The variables L_u , L_v , L_w represent the turbulence scale lengths. The variables σ_u , σ_v , σ_w represent the turbulence intensities:

The spectral density definitions of turbulence angular rates are defined in the references as three variations, which are displayed in the following table:

$$p_{g} = \frac{\partial w_{g}}{\partial y} \qquad q_{g} = \frac{\partial w_{g}}{\partial x} \qquad r_{g} = -\frac{\partial v_{g}}{\partial x}$$
$$p_{g} = \frac{\partial w_{g}}{\partial y} \qquad q_{g} = \frac{\partial w_{g}}{\partial x} \qquad r_{g} = \frac{\partial v_{g}}{\partial x}$$

$$p_g = -\frac{\partial w_g}{\partial y}$$
 $q_g = -\frac{\partial w_g}{\partial x}$ $r_g = \frac{\partial v_g}{\partial x}$

The variations affect only the vertical (\boldsymbol{q}_{g}) and lateral (r_{g}) turbulence angular rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, $\Phi_p(\omega)$, is a rational function. The rational function is derived from curve-fitting a complex algebraic function, not the vertical turbulence velocity spectrum, $\Phi_w(\omega)$, multiplied by a scale factor. Because the turbulence angular rate spectra contribute less to the aircraft gust response than the turbulence velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral turbulence angular rate spectra.

Vertical	Lateral
$\Phi_q(\omega)$	$-\Phi_r(\omega)$
$\Phi_q(\omega)$	$\Phi_r(\omega)$
$-\Phi_q(\omega)$	$\Phi_r(\omega)$

Von Karman Wind Turbulence Model (Continuous)

To generate a signal with the correct characteristics, a unit variance, band-limited white noise signal is passed through forming filters. The forming filters are approximations of the Von Kármán velocity spectra which are valid in a range of normalized frequencies of less than 50 radians. These filters can be found in both the Military Handbook MIL-HDBK-1797 and the reference by Ly and Chan.

 $\begin{array}{c|c} \mbox{MIL-F-8785C} \\ \hline \mbox{Longitudinal} \\ \hline \\ H_u(s) & & \\ \hline \\ \sigma_u \sqrt{\frac{2}{\pi} \cdot \frac{L_u}{V}} \left(1 + 0.25 \frac{L_u}{V} s\right) \\ \hline \\ 1 + 1.357 \frac{L_u}{V} s + 0.1987 \left(\frac{L_u}{V}\right)^2 s^2 \\ \hline \\ H_p(s) & & \\ \hline \\ \sigma_w \sqrt{\frac{0.8}{V}} \cdot \frac{\left(\frac{\pi}{4b}\right)^{1/6}}{L_w^{1/3} \left(1 + \left(\frac{4b}{\pi V}\right)s\right)} \\ \hline \\ \hline \\ \mbox{Lateral} \\ \hline \\ H_v(s) & & \\ \hline \\ \frac{\sigma_v \sqrt{\frac{1}{\pi} \cdot \frac{L_v}{V}} \left(1 + 2.7478 \frac{L_v}{V} s + 0.3398 \left(\frac{L_v}{V}\right)^2 s^2\right)}{1 + 2.9958 \frac{L_v}{V} s + 1.9754 \left(\frac{L_v}{V}\right)^2 s^2 + 0.1539 \left(\frac{L_v}{V}\right)^3 s^3 \end{array}$

The following two tables display the transfer functions.

	MIL-F-8785C
$H_r(s)$	$\frac{\mp \frac{s}{V}}{\left(1 + \left(\frac{3b}{\pi V}\right)s\right)} \cdot H_v\left(s\right)$
Vertical	
$H_w(s)$	$\frac{\sigma_w \sqrt{\frac{1}{\pi} \cdot \frac{L_w}{V}} \left(1 + 2.7478 \frac{L_w}{V} s + 0.3398 \left(\frac{L_w}{V}\right)^2 s^2\right)}{1 + 2.9958 \frac{L_w}{V} s + 1.9754 \left(\frac{L_w}{V}\right)^2 s^2 + 0.1539 \left(\frac{L_w}{V}\right)^3 s^3}$
$H_q(s)$	$\frac{\pm \frac{s}{V}}{\left(1\!+\!\left(\frac{4b}{\pi V}\right)\!s\right)}\!\cdot H_w(s)$
	MIL-HDRK-1707

	MIL-HDBK-1797
Longitudinal	
$H_{u}(s)$	$\frac{\sigma_u \sqrt{\frac{2}{\pi} \cdot \frac{L_u}{V}} \left(1 + 0.25 \frac{L_u}{V} s\right)}{1 + 1.357 \frac{L_u}{V} s + 0.1987 \left(\frac{L_u}{V}\right)^2 s^2}$

	MIL-HDBK-1797
$H_{w}\left(s ight)$	$\frac{\sigma_w \sqrt{\frac{1}{\pi} \cdot \frac{2L_w}{V}} \left(1 + 2.7478 \frac{2L_w}{V} s + 0.3398 \left(\frac{2L_w}{V}\right)^2 s^2\right)}{1 + 2.9958 \frac{2L_w}{V} s + 1.9754 \left(\frac{2L_w}{V}\right)^2 s^2 + 0.1539 \left(\frac{2L_w}{V}\right)^3 s^3}$
$H_{q}\left(s ight)$	$rac{\pmrac{s}{V}}{\left(1\!+\!\left(rac{4b}{\pi V} ight)\!s ight)}\!\cdot H_{w}\left(s ight)$

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of altitude.

Note The same transfer functions result after evaluating the turbulence scale lengths. The differences in turbulence scale lengths and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low altitudes, where h is the altitude in feet, are represented in the following table:

MIL-F-8785C	MIL-HDBK-1797
$L_{w} = h$	$2L_w = h$
$L_{u} = L_{v} = \frac{h}{(0.177 + 0.000823h)^{1.2}}$	$L_u = 2L_v = \frac{h}{(0.177 + 0.000823h)^{1.2}}$

The turbulence intensities are given below, where W_{20} is the wind speed at 20 feet (6 m). Typically for light turbulence, the wind speed at 20 feet is 15 knots; for moderate turbulence, the wind speed is 30 knots; and for severe turbulence, the wind speed is 45 knots.

 $\sigma_{w} = 0.1W_{20}$ $\frac{\sigma_{u}}{\sigma_{w}} = \frac{\sigma_{v}}{\sigma_{w}} = \frac{1}{(0.177 + 0.000823h)^{0.4}}$

The turbulence axes orientation in this region is defined as follows:

- Longitudinal turbulence velocity, $\boldsymbol{u}_{g},$ aligned along the horizontal relative mean wind vector
- Vertical turbulence velocity, w_{g} , aligned with vertical.

At this altitude range, the output of the block is transformed into body coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are based on the assumption that the turbulence is isotropic. In the military references, the scale lengths are represented by the following equations:

MIL-F-8785C	MIL-HDBK-1797
$L_u = L_v = L_w = 2500 \text{ ft}$	$L_u=2L_v=2L_w=2500~{\rm ft}$

The turbulence intensities are determined from a lookup table that provides the turbulence intensity as a function of altitude and the probability of the turbulence intensity being exceeded. The relationship of the turbulence intensities is represented in the following equation: $\sigma_u = \sigma_v = \sigma_w$.

The turbulence axes orientation in this region is defined as being aligned with the body coordinates:

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and turbulence angular rates are determined by linearly interpolating between the value from the low altitude model at 1000 feet transformed from mean horizontal wind coordinates to body coordinates and the value from the high altitude model at 2000 feet in body coordinates.

Von Karman Wind Turbulence Model (Continuous)

Dialog Box

na i urbuienc	ce Model (mask) (link)	
enerate atmo	ospheric turbulence. White noise is passed through a filter to give the turbulence the specified velocity spectra.	
edium/high a	altitude scale lengths from the specifications are 762 m (2500 ft) for Von Karman turbulence and 533.4 m (1750 ft) for Dryden	n turbulenc
rameters		
Index Later	· (1//2)	
Jnits: Metr	JIC (MK5)	
pecification:	n: MIL-F-8785C	
Model type:	Continuous Von Karman (+n +r)	-
		î
Vind speed a	at 5 m defines the low-altitude intensity (m/s):	
15		
Count allows when		
Mina airectio	on at 6 m (degrees clockwise from north):	
0 0	on at 6 m (degrees clockwise from north):	
Probability of	on at 6 m (degrees clockwise from north):	
^o robability of	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: 10^-2 - Light	
Probability of Cale length	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: 10^-2 - Light at medium/high altitudes (m):	
Probability of Cale length	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: 10^-2 - Light at medium/high altitudes (m):	
Probability of Scale length 762 Vingspan (m	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: 10^-2 - Light i at medium/high altitudes (m): n):	
Probability of Scale length 762 Vingspan (m 10	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: 10^-2 - Light i at medium/high altitudes (m): n):	
Probability of Scale length 762 Vingspan (m 10 Fand limited r	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: 10^-2 - Light at medium/high altitudes (m): n): noise sample time (sec):	
Probability of Scale length 762 Vingspan (m 10 Sand limited r 0.1	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: 10^-2 - Light at medium/high altitudes (m): n): noise sample time (sec):	,
Vind direction 0 Probability of Scale length 762 Vingspan (m 10 3 and limited r 0.1 Voise seeds	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: 10^-2 - Light at medium/high altitudes (m): n): noise sample time (sec): [ug vg wg pg]:	
Vind direction O Probability of Scale length 762 Vingspan (m 10 3 and limited r 0.1 Voise seeds [23341 2334	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: f 10^-2 - Light at medium/high altitudes (m): n): noise sample time (sec): [ug vg wg pg]: 42 23343 23344]	,
Viria directio 0 Probability of Scale length 762 Vingspan (m 10 3 and limited r 0.1 Voise seeds 1 (23341 2334 ⁷ Turbulence	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: f at medium/high altitudes (m): n): noise sample time (sec): [ug vg wg pg]: 42 23343 23344] 2e on	
Vind direction Probability of Scale length 762 Vingspan (m 10 3 and limited r 0.1 Voise seeds [23341 23341 7 Turbulence	on at 6 m (degrees clockwise from north): f exceedance of high-altitude intensity: f exceedance of high-altitudes (m): n): noise sample time (sec): [Ug vg wg pg]: 42 23343 23344] 2e on	

Units

Define the units of wind speed due to the turbulence.
Units	Wind Velocity	Altitude	e Air Speed
Metric (MKS)	Meters/second	Meters	Meters/second
English (Velocity in ft/s)	Feet/second	Feet	Feet/second
English (Velocity in kts)	Knots	Feet	Knots

Specification

Define which military reference to use. This affects the application of turbulence scale lengths in the lateral and vertical directions

Model type

Select the wind turbulence model to use:

Continuous -r)	Von	Karman	(+q	Use continuous representation of Von Kármán velocity spectra with positive vertical and negative lateral angular rates spectra.
Continuous +r)	Von	Karman	(+q	Use continuous representation of Von Kármán velocity spectra with positive vertical and lateral angular rates spectra.
Continuous +r)	Von	Karman	(- q	Use continuous representation of Von Kármán velocity spectra with negative vertical and positive lateral angular rates spectra.

Von Karman Wind Turbulence Model (Continuous)

Continuous Dryden (+q -r)	Use continuous representation of Dryden velocity spectra with positive vertical and negative lateral angular rates spectra.
Continuous Dryden (+q +r)	Use continuous representation of Dryden velocity spectra with positive vertical and lateral angular rates spectra.
Continuous Dryden (-q +r)	Use continuous representation of Dryden velocity spectra with negative vertical and positive lateral angular rates spectra.
Discrete Dryden (+q -r)	Use discrete representation of Dryden velocity spectra with positive vertical and negative lateral angular rates spectra.
Discrete Dryden (+q +r)	Use discrete representation of Dryden velocity spectra with positive vertical and lateral angular rates spectra.
Discrete Dryden (-q +r)	Use discrete representation of Dryden velocity spectra with negative vertical and positive lateral angular rates spectra.

The Continuous Von Kármán selections conform to the transfer function descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 20 feet (6 meters) provides the intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 20 feet (6 meters) is an angle to aid in transforming the low-altitude turbulence model into a body coordinates.

Probability of exceedance of high-altitude intensity

Above 2000 feet, the turbulence intensity is determined from a lookup table that gives the turbulence intensity as a function of altitude and the probability of the turbulence intensity's being exceeded.

Scale length at medium/high altitudes

The turbulence scale length above 2000 feet is assumed constant, and from the military references, a figure of 1750 feet is recommended for the longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density asymptote and gust load.

Wingspan

The wingspan is required in the calculation of the turbulence on the angular rates.

Band-limited noise sample time (seconds)

The sample time at which the unit variance white noise signal is generated.

Noise seeds

There are four random numbers required to generate the turbulence signals, one for each of the three velocity components and one for the roll rate. The turbulences on the pitch and yaw angular rates are based on further shaping of the outputs from the shaping filters for the vertical and lateral velocities.

Turbulence on

Selecting the check box generates the turbulence signals.

Von Karman Wind Turbulence Model (Continuous)

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the altitude in units selected.
	Second		Contains the aircraft speed in units selected.
	Third		Contains a direction cosine matrix.
	Output	Dimension Type	Description
	First	Three-element signal	Contains the turbulence velocities, in the selected units.
	Second	Three-element signal	Contains the turbulence angular rates, in radians per second.
Assumptions and Limitations	The frozen mean-wind intensity, a	turbulence field assu velocity and the root re small relative to th	mption is valid for the cases of -mean-square turbulence velocity, or ne aircraft's ground speed.
	 s intensity, are small relative to the aircraft's ground speed. The turbulence model describes an average of all conditions for air turbulence because the following factors are not incorporated the model: 	an average of all conditions for clear ving factors are not incorporated into	
	• Terrain 1	roughness	
	• Lapse ra	te	
	• Wind she	ears	
	• Mean wi	nd magnitude	
	• Other me	eteorological factions	(except altitude)
References	U.S. Militar	ry Handbook MIL-HI	DBK-1797, 19 December 1997.
	U.S. Militar	ry Specification MIL-	F-8785C, 5 November 1980.

Von Karman Wind Turbulence Model (Continuous)

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., "Background
Information and User Guide for MIL-F-8785B(ASG), 'Military
Specification-Flying Qualities of Piloted Airplanes'," AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., *Gust Loads on Aircraft: Concepts and Applications*, AIAA Education Series, 1988.

Ly, U., Chan, Y., "Time-Domain Computation of Aircraft Gust Covariance Matrices," AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference, Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., *Aircraft Dynamics and Automatic Control*, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., "Background Information and User Guide for MIL-F-8785C, 'Military Specification-Flying Qualities of Piloted Airplanes'," ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., "A Standard Kinematic Model for Flight Simulation at NASA-Ames," NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., "Simulation of Atmospheric Turbulent Gusts and Gust Gradients," AIAA Paper 81-0300, Aerospace Sciences Meeting, St. Louis, MO., January 12-15, 1981.

Yeager, J., "Implementation and Testing of Turbulence Models for the F18-HARV Simulation," NASA CR-1998-206937, Lockheed Martin Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

WGS84 Gravity Model

Purpose Implement 1984 World Geodetic System (WGS84) representation of Earth's gravity

Library Environment/Gravity

Description

The WGS84 Gravity Model block implements the mathematical representation of the geocentric equipotential ellipsoid of the World Geodetic System (WGS84). The block output is the Earth's gravity at a specific location. Gravity precision is controlled via the **Type of gravity model** parameter.

The WGS84 Gravity Model block icon displays the input and output units selected from the **Units** list.

Dialog Box

🙀 Function Block Parameters: WG584 Gravity Model 📃 🔰
WGS84 Gravity Model 3D (mask) (link)
Calculate Earth's gravity at a specific location using World Geodetic System (WGS 84).
The WGS 84 model is defined as a geocentric equipotential ellipsoid. This model can be found in NIMA TR8350.2, "Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems."
Height is entered in the same unit system as selected for gravity. Geodetic latitude and longitude are entered in degrees.
Parameters
Type of gravity model: WGS84 Taylor Series
Units: Metric (MKS)
Action for out of range input: Warning
OK Cancel Help Apply

Type of gravity model

Specifies the method to calculate gravity:

• WGS84 Taylor Series

- WGS84 Close Approximation
- WGS84 Exact

Units

Specifies the input and output units:

Units	Height	Gravity
Metric	Meters	Meters per second squared
English	Feet	Feet per second squared

Exclude Earth's atmosphere

Select for the value for the Earth's gravitational field to exclude the mass of the atmosphere.

Clear for the value for the Earth's gravitational field to include the mass of the atmosphere.

This option is available only with **Type of gravity model** WGS84 Close Approximation or WGS84 Exact.

Precessing reference frame

When selected, the angular velocity of the Earth is calculated using the International Astronomical Union (IAU) value of the Earth's angular velocity and the precession rate in right ascension. To obtain the precession rate in right ascension, Julian centuries from Epoch J2000.0 is calculated using the dialog parameters of **Month**, **Day**, and **Year**.

If cleared, the angular velocity of the Earth used is the value of the standard Earth rotating at a constant angular velocity.

This option is available only with **Type of gravity model** WGS84 Close Approximation or WGS84 Exact.

Input Julian date

When selected, another input port, JD, appears on the block mask. Select this check box if you want to manually specify the Julian date for the block. Otherwise, the block calculates the Julian date given the values of **Month**, **Day**, and **Year**. Selecting this block disables the **Month**, **Day**, and **Year** parameters.

Month

Specifies the month used to calculate Julian centuries from Epoch J2000.0.

This option is available only with **Type of gravity model WGS84 Close Approximation** or **WGS84 Exact** and only when **Precessing reference frame** is selected. It is disabled if you select **Input Julian Date**.

Day

Specifies the day used to calculate Julian centuries from Epoch J2000.0.

This option is available only with **Type of gravity model WGS84 Close Approximation** or **WGS84 Exact** and only when **Precessing reference frame** is selected. It is disabled if you select **Input Julian Date**.

Year

Specifies the year used to calculate Julian centuries from Epoch J2000.0. The year must be 2000 or greater.

This option is available only with **Type of gravity model WGS84 Close Approximation** or **WGS84 Exact** and only when **Precessing reference frame** is selected. It is disabled if you select **Input Julian Date**.

No centrifugal effects

When selected, calculated gravity is based on pure attraction resulting from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force resulting from the Earth's angular velocity.

This option is available only with **Type of gravity model** WGS84 Close Approximation or WGS84 Exact.

Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

Inputs and Outputs	Input	Dimension Type	Description
	First	Three-element vector	Contains the position in geodetic latitude, longitude and altitude, with units in degrees, degrees, and selected units of length respectively.
	Second (Option	Scalar al)	Contains the Julian centuries that you specified.
	Output	Dimension Type	Description
	Output	Vector	Applies to gravity in the north-east-down (NED) coordinate system. The Exact method should output both normal and

Assumptions and Limitations

The WGS84 gravity calculations are based on the assumption of a geocentric equipotential ellipsoid of revolution. Since the gravity potential is assumed to be the same everywhere on the ellipsoid, there must be a specific theoretical gravity potential that can be uniquely determined from the four independent constants defining the ellipsoid.

coordinate system).

tangent gravity (down and north in the NED

Use of the WGS84 Taylor Series model should be limited to low geodetic heights. It is sufficient near the surface when submicrogal precision is not necessary. At medium and high geodetic heights, it is less accurate.

	Use of the WGS84 Close Approximation model should be limited to a geodetic height of 20,000.0 m (approximately 65,620.0 feet). Below this height, it gives results with submicrogal precision.
	To predict and determine a satellite orbit with high accuracy, use the EGM96 through degree and order 70.
Examples	See the Environment Models subsystem in the Airframe subsystem of the aeroblk_HL20 model for an example of this block.
Reference	[1] NIMA TR8350.2: "Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local Geodetic Systems."

Purpose Convert wind angles to direction cosine matrix

Library Util

Utilities/Axes Transformations

Description

The Wind Angles to Direction Cosine Matrix block converts three wind rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix performs the coordinate transformation of a vector in earth axes (ox_0, oy_0, oz_0) into a vector in wind axes (ox_3, oy_3, oz_3) . The order of the axis rotations required to bring this about is:

- **1** A rotation about oz_0 through the heading angle (χ) to axes (ox_1 , oy_1 , oz_1)
- **2** A rotation about oy_1 through the flight path angle (y) to axes (ox_2, oy_2, oz_2)
- **3** A rotation about ox_2 through the bank angle (μ) to axes (ox_3 , oy_3 , oz_3)

$$\begin{bmatrix} ox_3 \\ oy_3 \\ oz_3 \end{bmatrix} = DCM_{we} \begin{bmatrix} ox_0 \\ oy_0 \\ oz_0 \end{bmatrix}$$

ox_3		[1	0	0]	$\cos \gamma$	0	$-\sin\gamma$	$\cos \chi$	$\sin \chi$	0]	$\left[ox_{0} \right]$
oy_3	=	0	$\cos \mu$	$\sin \mu$	0	1	0	$-\sin \chi$	$\cos \chi$	0	oy ₀
oz_3		0	$-\sin\mu$	$\cos \mu$	$\sin \gamma$	0	$\cos \gamma$	0	0	1	oz_0

Combining the three axis transformation matrices defines the following DCM.

$$DCM_{we} = \begin{bmatrix} \cos\gamma\cos\chi & \cos\gamma\sin\chi & -\sin\gamma \\ (\sin\mu\sin\gamma\cos\chi - \cos\mu\sin\chi) & (\sin\mu\sin\gamma\sin\chi + \cos\mu\cos\chi) & \sin\mu\cos\gamma \\ (\cos\mu\sin\gamma\cos\chi + \sin\mu\sin\chi) & (\cos\mu\sin\gamma\sin\chi - \sin\mu\cos\chi & \cos\mu\cos\gamma \end{bmatrix}$$

Wind Angles to Direction Cosine Matrix

Dialog Function Block Parameters: Wind Angles to Direction Cosine Matrix × -Wind2DCM (mask) (link)-Determine the 3-by-3 direction cosine matrix (DCM) from a wind orientation (mu, gamma, chi). The output DCM transforms vectors from geodetic earth or north-east-down (NED) axes to wind axes. ΟK Cancel Help Apply

_			
Inputs and	Input	Dimension Type	Description
Outputs	First	3-by-1 vector	Contains wind angles, in radians.
	Output	Dimension Type	Description
	First	3-by-3 direction cosine matrix	Transforms earth vectors to wind vectors.
Assumptions and Limitations	This imple degrees, ar	ementation generates nd bank and heading	a flight path angle that lies between ±90 angles that lie between ±180 degrees.
See Also	Direction	Cosine Matrix Body to	o Wind
	Direction	Cosine Matrix to Rota	tion Angles
	Direction	Cosine Matrix to Wine	d Angles
	Rotation A	angles to Direction Co	sine Matrix

Box

Purpose Calculate wind angular rates from body angular rates, angle of attack, sideslip angle, rate of change of angle of attack, and rate of change of sideslip

Library Flight Parameters

Description

Dialog Box

The Wind Angular Rates block supports the equations of motion in wind-fixed frame models by calculating the wind-fixed angular rates

 (p_w, q_w, r_w) . The body-fixed angular rates (p_b, q_b, r_b) , angle of attack (α) , sideslip angle (β) , rate of change of angle of attack $(\dot{\alpha})$, and rate of

change of sideslip $(\dot{\beta})$ are related to the wind-fixed angular rate by the following equation.

$$\begin{bmatrix} p_w \\ q_w \\ r_w \end{bmatrix} = \begin{bmatrix} \cos\alpha\cos\beta & \sin\beta & \sin\alpha\cos\beta \\ -\cos\alpha\sin\beta & \cos\beta & -\sin\alpha\sin\beta \\ -\sin\alpha & 0 & \cos\alpha \end{bmatrix} \begin{bmatrix} p_b - \dot{\beta}\sin\alpha \\ q_b - \dot{\alpha} \\ r_b + \dot{\beta}\cos\alpha \end{bmatrix}$$

-Wind Angular F	Rates (mask) (link)			
Compute wind rate of change	f angular rates using boo e of angle of attack and	y angular rates, rate of change	angle of attack of sideslip angle	k, sideslip angle e.

_					
Inputs and	Input	Dimension Type	Description		
Outputs	First	2-by-1 vector	Contains angle of attack and sideslip, in radians.		
		2-by-1 vector	Contains rate of change of angle of attack and rate of change of sideslip, in radians per second.		
			Contains the body angular rates, in radians per second.		
	Output	Dimension Type	Description		
	First		Contains the wind angular rates, in radians per second.		
See Also	3DoF (Body Axes)				
	6DoF Wind (Quaternion)				
	6DoF Wind (Wind Angles)				
	Custom Variable Mass 3DoF (Body Axes)				
	Custom Variable Mass 6DoF Wind (Quaternion)				
	Custom Variable Mass 6DoF Wind (Wind Angles)				
	Simple Vari	iable Mass 3DoF (Boo	ly Axes)		
	Simple Vari	iable Mass 6DoF Win	d (Quaternion)		
	Simple Variable Mass 6DoF Wind (Wind Angles)				

Purpose Calculate wind shear conditions

Library Environment/Wind

Description

>h (m) >DCM Shear V_{vind} (m/s) >

> The Wind Shear Model block adds wind shear to the aerospace model. This implementation is based on the mathematical representation in the Military Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by the following equation for the mean wind profile as a function of altitude and the measured wind speed at 20 feet (6 m) above the ground.

$$u_w = W_{20} \frac{\ln\left(\frac{h}{z_0}\right)}{\ln\left(\frac{20}{z_0}\right)}, \ 3ft < h < 1000ft$$

where u_w is the mean wind speed, W_{20} is the measured wind speed at an altitude of 20 feet, h is the altitude, and z_0 is a constant equal to 0.15 feet for Category C flight phases and 2.0 feet for all other flight phases. Category C flight phases are defined in reference [1] to be terminal flight phases, which include takeoff, approach, and landing.

The resultant mean wind speed in the flat Earth axis frame is changed to body-fixed axis coordinates by multiplying by the direction cosine matrix (DCM) input to the block. The block output is the mean wind speed in the body-fixed axis. Dialog Box

Units

Define the units of wind shear.

Units	Wind	Altitude
Metric (MKS)	Meters/second	Meters
English (Velocity in ft/s)	Feet/second	Feet
English (Velocity in kts)	Knots	Feet

Flight phase

Select flight phase:

- Category C Terminal Flight Phases
- Other

Wind speed at 6 m (20 feet) altitude (m/s, f/s, or knots)

The measured wind speed at an altitude of 20 feet (6 m) above the ground.

Wind direction at 6 m (20 feet) altitude (degrees clockwise from north)

The direction of the wind at an altitude of 20 feet (6 m), measured in degrees clockwise from the direction of the Earth *x*-axis (north). The wind direction is defined as the direction from which the wind is coming.

Inputs and	Input	Dimension Type	Description	
Outputs	First		Contains the altitude in units selected.	
	Second	3-by-3 direction cosine matrix		
	Output	Dimension Type	Description	
	First	3-by-1 vector	Contains the mean wind speed in the body axes frame, in the selected units.	
Examples	See the Airframe subsystem in the aeroblk_HL20 model for an example of this block.			
Reference	U.S. Military Specification MIL-F-8785C, 5 November 1980.			
See Also	Discrete Wind Gust Model Dryden Wind Turbulence Model (Continuous)			
	Dryden Wind Turbulence Model (Discrete)			
	Von Karm	an Wind Turbulence I	Model (Continuous)	

World Magnetic Model 2000

PurposeCalculate Earth's magnetic field at specific location and time using
World Magnetic Model 2000 (WMM2000)

Library

Environment/Gravity

Description

h (m)	Magnetic Field (nT)	þ
	Horizon al Intensity (nT)	þ
tr(geĝ)	Declination (deg)	þ
l (deg)	Inclination (deg)	þ
Decimal Year	Total Intensity (nT)	þ
	h (m) μ(deg) I (deg) Decimal Year	h (m) Magnetic Field (nT) μ(deg) Declination (deg) Ι (deg) Inclination (deg) Ι (deg) Inclination (deg) Decimal Year Total Intensity (nT)

The WMM2000 block implements the mathematical representation of the National Geospatial Intelligence Agency (NGA) World Magnetic Model 2000. The WMM2000 block calculates the Earth's magnetic field vector, horizontal intensity, declination, inclination, and total intensity at a specified location and time. The reference frame is north-east-down (NED).

Function Block Parameters: World Magnetic Model 2000	×
World Magnetic Model 2000 (mask) (link)	
Calculate the Earth's magnetic field at a specific location and time using the World Magnetic Model (WMM). This model is valid for the year 2000 through the year 200)5.
The WMM-2000 can be found in "British Geological Survey, Technical Report WM/00/17R, Geomagnetism Series".	
Height is entered in length units of selected unit system. Latitude and longitude are entered in degrees.	
Parameters	
Units: Metric (MKS)	3
✓ Input decimal year	
Month: January	3
Day: 1	3
Year: 2000	3
Action for out of range input: Error	J
Cutput horizontal intensity	
Cutput declination	
Contraction	
Output total intensity	
OK Cancel Help Apply	

Units

Specifies the input and output units:

Units	Height	Magnetic Field	Horizontal Intensity	Total Intensity			
Metric (MKS)	Meters	Nanotesla	Nanotesla	Nanotesla			
English	Feet	Nanogauss	Nanogauss	Nanogauss			
	Input decimal year When selected, the decimal year is an input for the World Magnetic Model 2000 block. Otherwise, a date must be spec using the dialog parameters of Month , Day , and Year .						
	Month Specifies the month used to calculate decimal year.						
	Day Specifies the day used to calculate decimal year.						
	Year Specifies the year used to calculate decimal year.						
	Action for out of range input Specify if out-of-range input invokes a warning, error or no action.						
	Output horizontal intensity When selected, the horizontal intensity is output.						
	Output declination When selected, the declination, the angle between true north and the magnetic field vector (positive eastwards), is output.						
	Output inclination When selected, the inclination, the angle between the horizontal plane and the magnetic field vector (positive downwards), is output.						
	Output total intensity When selected, the total intensity is output.						

Inputs and Outputs	Input	Dimension Type	Description	
	First		Contains the height, in selected units.	
	Second		Contains the latitude in degrees.	
	Third		Contains the longitude in degrees.	
	Fourth (Optional)		Contains the desired year in a decimal format to include any fraction of the year that has already passed. The value is the current year plus the number of days that have passed in this year divided by 365.The following code illustrates how to calculate the decimal year, dyear, for March 21, 2005:	
			%%%BEGIN CODE%%%	
			dyear=decyear('21-March-2005','dd-mmm-yyyy' %%%END CODE%%%	

Output	Dimension Type	Description
First		Contains the magnetic field vector in selected units.
Second (Optional)		Contains the horizontal intensity in selected units.
Third (Optional)		Contains the declination in degrees.
Fourth (Optional)		Contains the inclination in degrees.
Fifth (Optional)		Contains the total intensity in selected units.

Limitations	The WMM2000 specification produces data that is reliable five years after the epoch of the model, which is January 1, 2000.			
	The internal calculation of decimal year does not take into account local time or leap seconds.			
	The WMM2000 specification describes only the long-wavelength spatial magnetic fluctuations due to the Earth's core. Intermediate and short-wavelength fluctuations, contributed from the crustal field (the mantle and crust), are not included. Also, the substantial fluctuations of the geomagnetic field, which occur constantly during magnetic storms and almost constantly in the disturbance field (auroral zones), are not included.			
Reference	Macmillian, S. and J. M. Quinn, 2000. "The Derivation of the World Magnetic Model 2000," <i>British Geological Survey Technical Report</i> WM/00/17R.			
	http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml			
See Also	World Magnetic Model 2005			

World Magnetic Model 2005

PurposeCalculate Earth's magnetic field at specific location and time using
World Magnetic Model 2005 (WMM2005)

Library

Environment/Gravity

Description

>h (m)	Magnetic Field (nT)
u (dag)	Horizonal Intensity (nT)
μ(deg)	Declination (deg)
>l (deg)	Inclination (deg)
>Decimal Year	Total Intensity (nT)

The WMM2005 block implements the mathematical representation of the National Geospatial Intelligence Agency (NGA) World Magnetic Model 2005. The WMM2005 block calculates the Earth's magnetic field vector, horizontal intensity, declination, inclination, and total intensity at a specified location and time. The reference frame is north-east-down (NED).

Note You cannot use this block to model the Earth magnetic field above an altitude of 1,000,000 meters.

Dialog	Function Block Parameters: World Magnetic Model 2005				
Box	World Magnetic Model 2005 (mask) (link)				
DUX	Calculate the Earth's magnetic field at a specific location and time using the World Magnetic Model (WMM). This model is valid for the year 2005 through the year 2010.				
	The WMM-2005 can be found on the web at http://www.ngdc.noaa.gov/seg/DoDW/MM.shtml and in "NDAA Technical Report: The US/UK World Magnetic Model for 2005-2010 ".				
	Height is entered in length units of selected unit system. Latitude and longitude are entered in degrees.				
	Parameters				
	Units: Metric (MKS)				
	✓ Input decimal year				
	Month: January				
	Day: 1				
	Year: 2005				
	Action for out of range input: Error				
	Output horizontal intensity				
	Cutput declination				
	Cutput inclination				
	Cutput total intensity				
	OK Cancel Apply				

Units

Specifies the input and output units:

Units	Height	Magnetic Field	Horizontal Intensity	Total Intensity
Metric (MKS)	Meters	Nanotesla	Nanotesla	Nanotesla
English	Feet	Nanogauss	Nanogauss	Nanogauss

Input decimal year

When selected, the decimal year is an input for the World Magnetic Model 2005 block. Otherwise, a date must be specified using the dialog parameters of **Month**, **Day**, and **Year**.

Month

Specifies the month used to calculate decimal year.

Day

Specifies the day used to calculate decimal year.

Year

Specifies the year used to calculate decimal year.

Action for out of range input

Specify if out-of-range input invokes a warning, error or no action.

Output horizontal intensity

When selected, the horizontal intensity is output.

Output declination

When selected, the declination, the angle between true north and the magnetic field vector (positive eastwards), is output.

Output inclination

When selected, the inclination, the angle between the horizontal plane and the magnetic field vector (positive downwards), is output.

Output total intensity

When selected, the total intensity is output.

Inputs and	Input	Dimension Type	Description
Outputs	First		Contains the height, in selected units.
	Second		Contains the latitude in degrees.

Input	Dimension Type	Description
Third		Contains the longitude in degrees.
Fourth (Optional)		Contains the desired year in a decimal format to include any fraction of the year that has already passed. The value is the current year plus the number of days that have passed in this year divided by 365.The following code illustrates how to calculate the decimal year, dyear, for March 21, 2005:
		%%%BEGIN CODE%%% dyear=decyear('21-March-2005','dd-mmm-yyyy' %%%END CODE%%%

Output	Dimension Type	Description
First	Vector	Contains the magnetic field in selected units.
Second (Optional)	Contains the horizontal intensity in selected units.
Third (Optional)	Contains the declination in degrees.
Fourth (Optional)	Contains the inclination in degrees.
Fifth (Optional)	Contains the total intensity in selected units.

Limitations

The WMM2005 specification produces data that is reliable five years after the epoch of the model, which is January 1, 2005.

The internal calculation of decimal year does not take into account local time or leap seconds.

The WMM2005 specification describes only the long-wavelength spatial magnetic fluctuations due to the Earth's core. Intermediate and short-wavelength fluctuations, contributed from the crustal field (the mantle and crust), are not included. Also, the substantial fluctuations of the geomagnetic field, which occur constantly during magnetic storms and almost constantly in the disturbance field (auroral zones), are not included.

Reference http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

See Also World Magnetic Model 2000

PurposeCalculate Earth's magnetic field at specific location and time using
World Magnetic Model 2010 (WMM2010)

Library

Environment/Gravity

Description

h (m)	Magnetic Field (nT) >		
	Horizontal Intensity (nT) >		
>μ(deg)	Declination (deg)		
>l (deg)	Inclination (deg)		
>Decimal Year	Total Intensity (nT) >		
World Magnetic Model 2010			

The WMM2010 block implements the mathematical representation of the National Geospatial Intelligence Agency (NGA) World Magnetic Model 2010. The WMM2010 block calculates the Earth's magnetic field vector, horizontal intensity, declination, inclination, and total intensity at a specified location and time. The reference frame is north-east-down (NED).

Note You cannot use this block to model the Earth magnetic field above an altitude of 1,000,000 meters.

World Magnetic Model 2010

Dialog Box

World Magnetic Model 201	10 (mask) (li	ink)		
Calculate the Earth's mag Magnetic Model (WMM). T 2015.	netic field a his model is	t a specific loo valid for the	ation and time us year 2010 throug	ing the World Ih the year
The WMM-2010 can be fo http://www.ngdc.noaa.g Technical Report: The US/	und on the ov/geomag, UK World M	web at /WMM/DoDWI lagnetic Mode	4M.shtml and in "I I for 2010-2015 "	NOAA
Height is entered in lengt are entered in degrees.	n units of se	elected unit sy	stem. Latitude ar	nd longitude
Parameters				
Units: Metric (MKS)				•
Input decimal year				
Month: January				7
Day: 1				v
Year: 2010				~
, Action for out of range in	put: Error			
Output horizontal inte	nsity			
 Output declination 				
Output inclination				
-				

Units

Specifies the input and output units:

Units	Height	Magnetic Field	Horizontal Intensity	Total Intensity
Metric (MKS)	Meters	Nanotesla	Nanotesla	Nanotesla
English	Feet	Nanogauss	Nanogauss	Nanogauss

Input decimal year

When selected, the decimal year is an input for the World Magnetic Model 2010 block. Otherwise, a date must be specified using the dialog parameters of **Month**, **Day**, and **Year**.

Month

Specifies the month used to calculate decimal year.

Day

Specifies the day used to calculate decimal year.

Year

Specifies the year used to calculate decimal year.

Action for out of range input

Specify if out-of-range input invokes a warning, error or no action.

Output horizontal intensity

When selected, the horizontal intensity is output.

Output declination

When selected, the declination, the angle between true north and the magnetic field vector (positive eastwards), is output.

Output inclination

When selected, the inclination, the angle between the horizontal plane and the magnetic field vector (positive downwards), is output.

Output total intensity

When selected, the total intensity is output.

Input	s c	Ind
Outp	uts	;

Input	Dimension Type	Description
First		Contains the height, in selected units.
Second		Contains the latitude in degrees.

Input	Dimension Type	Description
Third		Contains the longitude in degrees.
Fourth (Optional)		Contains the desired year in a decimal format to include any fraction of the year that has already passed. The value is the current year plus the number of days that have passed in this year divided by 365.
		The following code illustrates how to calculate the decimal year, dyear, for March 21, 2010:
		%%%BEGIN CODE%%% dyear=decyear('21-March-2010','dd-mmm-yyyy' %%%END CODE%%%

Output	Dimension Type	Description
First	Vector	Contains the magnetic field in selected units.
Second (Optional)		Contains the horizontal intensity in selected units.
Third (Optional)		Contains the declination in degrees.
Fourth (Optional)		Contains the inclination in degrees.
Fifth (Optional)		Contains the total intensity in selected units.

Limitations The WMM2010 specification produces data that is reliable five years after the epoch of the model, which is January 1, 2015.

The internal calculation of decimal year does not take into account local time or leap seconds.

The WMM2010 specification describes only the long-wavelength spatial magnetic fluctuations due to the Earth's core. Intermediate and short-wavelength fluctuations, contributed from the crustal field (the mantle and crust), are not included. Also, the substantial fluctuations of the geomagnetic field, which occur constantly during magnetic storms and almost constantly in the disturbance field (auroral zones), are not included.

Reference	http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

See Also World Magnetic Model 2000, World Magnetic Model 2005

Purpose Calculate zonal harmonic representation of planetary gravity

Library Environment/Gravity

Description

 $\times_{ecer}(m)$ $g_{ecer}(m/s^2) >$

The Zonal Harmonic Gravity Model block calculates the zonal harmonic representation of planetary gravity at a specific location based on planetary gravitational potential. This block provides a convenient way to describe the gravitational field of a planet outside its surface.

By default, the block uses the fourth order zonal coefficient for Earth to calculate the zonal harmonic gravity. It also allows you to specify the second or third zonal coefficient.

gravityzonal is implemented using the following planetary parameter values for each planet:

Planet	Equatorial Radius (Re) in Meters	Gravitational Parameter (GM) in m ³ /s ²	Zonal Harmonic Coefficients (J Values)
Earth	6378.1363e3	3.986004415e14	[0.0010826269 -0.0000025323 -0.0000016204]
Jupiter	71492.e3	1.268e17	[0.01475 0 -0.00058]
Mars	3397.2e3	4.305e13	[0.001964 0.000036]
Mercury	2439.0e3	2.2032e13	0.00006
Moon	1738.0e3	4902.799e9	0.0002027
Neptune	24764e3	6.809e15	0.004
Saturn	60268.e3	3.794e16	[0.01645 0 -0.001]

Planet	Equatorial Radius (Re) in Meters	Gravitational Parameter (GM) in m ³ /s ²	Zonal Harmonic Coefficients (J Values)
Uranus	25559.e3	5.794e15	0.012
Venus	6052.0e3	3.257e14	0.000027

Dialog Box

Function Block Parameters: Zonal Harmonic Gravity Model
Zonal Harmonic Gravity Model (mask) (link)
Calculate a zonal harmonic representation of planetary gravity at a specific location based on planetary gravitational potential.
The zonal harmonic gravity is calculated for planet using fourth order zonal coefficients by default.
Position is entered in length units of selected unit system.
Main Planet
Units: Metric (MKS)
Degree: 4
Action for out of range input: Warning
OK Cancel Help Apply

l	Function Block Parameters: Zonal Harmonic Gravity Model
Γ	Zonal Harmonic Gravity Model (mask) (link)
	Calculate a zonal harmonic representation of planetary gravity at a specific location based on planetary gravitational potential.
	The zonal harmonic gravity is calculated for planet using fourth order zonal coefficients by default.
	Position is entered in length units of selected unit system.
	Main Planet
	Planet model: Earth
	OK Cancel Help Apply

Units

Specify the input units:

Units	Position	Equatorial Radius	Gravitational Parameter
Metric (MKS)	Meters	Meters	Meters cubed per second squared
English	Feet	Feet	Feet cubed per second squared

Degree

Specify the degree of harmonic model.

- 2 Second degree, J2. Most significant or largest spherical harmonic term, which accounts for the oblateness of a planet.
- 3 Third degree, J3.
- 4 Fourth degree, J4 (default).

Action for out of range input

Specify if out-of-range input invokes a warning, error, or no action.

Planet model

Specify the planetary model. From the list, select Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, or Custom.

Selecting Custom enables you to specify your own planetary model. This option enables the Equatorial radius, Gravitational parameter, and J values parameters.

Selecting Mercury, Venus, Moon, Uranus, or Neptune limits the degree to 2.

Selecting Mars limits the degree to 3.

Equatorial radius

Specify the planetary equatorial radius in the length units that the **Units** parameter defines.

Gravitational parameter

Specify the planetary gravitational parameter in the length units cubed per second squared that the **Units** parameter defines.

J values

Specify a 3-element array that defines the zonal harmonic coefficients.

Inputs and Outputs

This block accepts only scalar inputs (m=1).

Input	Dimension Description Type	
First	m-by-3 matrix	Contains planet-centered planet-fixed coordinates from the center of the planet in the selected length units. If Planet model has a value of Earth, this matrix contains Earth-centered Earth-fixed (ECEF) coordinates.

Ту	Dimension Description Type	
First m- arr	-by-3 rray	Contains gravity values in the <i>x</i> -axis, <i>y</i> -axis and <i>z</i> -axis of the planet-centered planet-fixed coordinates in the selected length units per second squared.

References Vallado, D. A., *Fundamentals of Astrodynamics and Applications*, McGraw-Hill, New York, 1997.

Fortescue, P., J. Stark, G. Swinerd, (Eds.). *Spacecraft Systems Engineering*, Third Edition, Wiley & Sons, West Sussex, 2003.

Tewari, A., Atmospheric and Space Flight Dynamics Modeling and Simulation with MATLAB and Simulink, Birkhäuser, Boston, 2007.
A

Aerospace Units

The main blocks of theAerospace Blockset library support standard measurement systems. The Unit Conversion blocks support all units listed in this table.

Quantity	Metric (MKS)	English
Acceleration	meters/second ² (m/s ²), kilometers/second ² (km/s ²), (kilometers/hour)/second (km/h-s), g-unit (g)	inches/second ² (in/s ²), feet/second ² (ft/s ²), (miles/hour)/second (mph/s), g-unit (g)
Angle	radian (rad), degree (deg), revolution	radian (rad), degree (deg), revolution
Angular acceleration	radians/second ² (rad/s ²), degrees/second ² (deg/s ²), revolutions/minute (rpm), revolutions/second (rps)	radians/second ² (rad/s ²), degrees/second ² (deg/s ²), revolutions/minute (rpm), revolutions/second (rps)
Angular velocity	radians/second (rad/s), degrees/second (deg/s), revolutions/minute (rpm)	radians/second (rad/s), degrees/second (deg/s), revolutions/minute (rpm)
Density	kilogram/meter ³ (kg/m ³)	pound mass/foot ³ (lbm/ft ³), slug/foot ³ (slug/ft ³), pound mass/inch ³ (lbm/in ³)
Force	newton (N)	pound (lb)
Inertia	kilogram-meter ² (kg-m ²)	slug-foot ² (slug-ft ²)
Length	meter (m)	inch (in), foot (ft), mile (mi), nautical mile (nm)

Quantity	Metric (MKS)	English
Mass	kilogram (kg)	slug (slug), pound mass (lbm)
Pressure	Pascal (Pa)	pound/inch ² (psi), pound/foot ² (psf), atmosphere (atm)
Temperature	kelvin (K), degrees Celsius (°C)	degrees Fahrenheit (°F), degrees Rankine (°R)
Torque	newton-meter (N-m)	pound-feet (lb-ft)
Velocity	meters/second (m/s), kilometers/second (km/s), kilometers/hour (km/h)	inches/second (in/s), feet/second (ft/s), feet/minute (ft/min), miles/hour (mph), knots

Index

Symbols and Numerics

- 1D Controller [A(v),B(v),C(v),D(v)] block 5-2
- 1D Controller Blend u=(1-L).K1.y+L.K2.y block[oneD Controller Blend u=(1-L).K1.y+L.K2.y block 5-5
- 1D Observer Form [A(v),B(v),C(v),F(v),H(v)]block 5-9
- 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block 5-13
- 2D Controller [A(v),B(v),C(v),D(v)] block 5-17
- 2D Controller Blend block 5-21
- 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block 5-25
- 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block 5-30
- 3D Controller [A(v),B(v),C(v),D(v)] block 5-35
- 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block 5-39
- 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block 5-44
- 3DoF (Body Axes) block 5-52
- 3DoF (Wind Axes) block 5-57
- 3DoF Animation block 5-49
- 3x3 Cross Product block 5-63
- 4th Order Point Mass (Longitudinal) block 5-64
- 4th Order Point Mass Forces (Longitudinal) block 5-68
- 6DoF (Euler Angles) block 5-73
- 6DoF (Quaternion) block 5-80
- 6DoF Animation block 5-70
- 6DoF ECEF (Quaternion) block 5-86
- 6DoF Wind (Quaternion) block 5-97
- 6DoF Wind (Wind Angles) block 5-104
- 6th Order Point Mass (Coordinated Flight) block 5-110
- 6th Order Point Mass Forces (Coordinated Flight) block 5-115

A

AC3D coordinates 2-24 Acceleration Conversion block 5-118 Actuators library 2-4 Adjoint of 3x3 Matrix block 5-120 Aerodynamic Forces and Moments block 5-122 Aerodynamics library 2-4 airspeed correction 3-2 Angle Conversion block 5-127 Angular Acceleration Conversion block 5-129 Angular Velocity Conversion block 5-131 Animation library 2-4 Animation Support Utilities sublibrary 2-5 Flight Simulator Interfaces sublibrary 2-5 MATLAB-Based Animation sublibrary 2-5

B

Besselian Epoch to Julian Epoch block 5-133 body coordinates 2-18

C

Calculate Range block 5-135 CIRA Atmosphere Model block 5-138 COESA Atmosphere Model block 5-143 Controllers 1D Controller [A(v),B(v),C(v),D(v)]block[oneD Controller [A(v),B(v),C(v),D(v)] 5-2 coordinate systems display 2-23 modeling 2-18 navigation 2-20 overview 2-16 Create 3x3 Matrix block 5-146 creating an aerospace model basic steps 2-8 Custom Variable Mass 3DoF (Body Axes) block 5-148

Custom Variable Mass 3DoF (Wind Axes) block 5-153 Custom Variable Mass 6DoF (Euler Angles) block 5-159 Custom Variable Mass 6DoF (Quaternion) block 5-166 Custom Variable Mass 6DoF ECEF (Quaternion) block 5-172 Custom Variable Mass 6DoF Wind (Quaternion) block 5-182 Custom Variable Mass 6DoF Wind (Wind Angles) block 5-189

D

demo models running 1-17 Density Conversion block 5-195 Determinant of 3x3 Matrix block 5-197 **Digital DATCOM Forces and Moments** block 5-199 Direction Cosine Matrix Body to Wind block 5-206 Direction Cosine Matrix Body to Wind to Alpha and Beta block 5-208 Direction Cosine Matrix ECEF to NED block 5-211 Direction Cosine Matrix ECEF to NED to Latitude and Longitude block 5-214 **Direction Cosine Matrix to Quaternions** block 5-217 Direction Cosine Matrix to Rotation Angles block 5-219 Direction Cosine Matrix to Wind Angles block 5-222 Discrete Wind Gust Model block 5-225 Dryden Wind Turbulence Model (Continuous) block 5-229 Dryden Wind Turbulence Model (Discrete) block 5-243

Dynamic Pressure block 5-256

E

ECEF coordinates 2-22 ECEF Position to LLA block 5-257 ECI coordinates 2-21 Environment library 2-5 Atmosphere sublibrary 2-5 Gravity sublibrary 2-5 Wind sublibrary 2-5 Equations of Motion library 2-5 3DoF sublibrary 2-6 6DoF sublibrary 2-6 Point Mass sublibrary 2-6 Estimate Center of Gravity block 5-265 Estimate Inertia Tensor block 5-267

F

Flat Earth to LLA block 5-269
Flight Parameters library 2-6
FlightGear

aircraft models 2-33
example 2-48
flight simulator overview 2-26
installing 2-30
obtaining 2-26
running 2-38

FlightGear coordinates 2-23
FlightGear Preconfigured 6DoF Animation block 5-274
Force Conversion block 5-277

G

Gain Scheduled Lead-Lag block 5-279 Generate Run Script block 5-281 Geocentric to Geodetic Latitude block 5-285 Geodetic to Geocentric Latitude block 5-291 GNC Library Control sublibrary 2-6 Guidance sublibrary 2-6 Navigation sublibrary 2-6

Η

Horizontal Wind Model block 5-295

Ideal Airspeed Correction block 5-298 Incidence & Airspeed block 5-302 Incidence, Sideslip & Airspeed block 5-304 Interpolate Matrix(x) block 5-306 Interpolate Matrix(x,y) block 5-308 Interpolate Matrix(x,y,z) block 5-311 Invert 3x3 Matrix block 5-315 ISA Atmosphere Model block 5-316

J

Julian Epoch to Besselian Epoch block 5-318

L

Lapse Rate Model block 5-320 latitude 2-20 Length Conversion block 5-325 lifting body (HL-20) 3-19 LLA to ECEF Position block 5-327

Μ

Mach Number block 5-331 Mass Conversion block 5-332 Mass Properties library 2-6 MATLAB opening demos using the command line 1-17 using the Start button 1-17 MATLAB files running simulations from 2-15 missile guidance system 3-34 Moments about CG due to Forces block 5-338

Ν

NED coordinates 2-21 Non-Standard Day 210C block 5-340 Non-Standard Day 310 block 5-346 NRLMSISE-00 Model block 5-352

Ρ

Pack net_fdm Packet for FlightGear block 5-360 parameters tuning 2-14 Pilot Joystick All block 5-383 Pilot Joystick block 5-379 Pressure Altitude block 5-386 Pressure Conversion block 5-388 Propulsion library 2-6

Q

Quaternion Conjugate block 5-390 Quaternion Division block 5-392 Quaternion Inverse block 5-394 Quaternion Modulus block 5-396 Quaternion Multiplication block 5-398 Quaternion Norm block 5-400 Quaternion Normalize block 5-402 Quaternion Rotation block 5-404 Quaternions to Direction Cosine Matrix block 5-406 Quaternions to Rotation Angles block 5-408

R

Radius at Geocentric Latitude block 5-411 Relative Ratio block 5-415 Rotation Angles to Direction Cosine Matrix block 5-418

S

Second Order Linear Actuator block 5-423 Second Order Nonlinear Actuator block 5-425 Self-Conditioned [A,B,C,D] block 5-427 Send net_fdm Packet to FlightGear block 5-432 Simple Variable Mass 3DoF (Body Axes) block 5-435 Simple Variable Mass 3DoF (Wind Axes) block 5-442 Simple Variable Mass 6DoF (Euler Angles) block 5-449 Simple Variable Mass 6DoF (Quaternion) block 5-457 Simple Variable Mass 6DoF ECEF (Quaternion) block 5-464 Simple Variable Mass 6DoF Wind (Quaternion) block 5-476 Simple Variable Mass 6DoF Wind (Wind Angles) block 5-484 Simulation Pace block 5-492 simulations running from MATLAB file 2-15 Simulink block libraries 2-2 modifying models 1-12 opening Aerospace Blockset 2-2 opening demos using the Help browser 1-17 running demos 1-10 using the Simulink Library Browser 2-3 SinCos block 5-495 Symmetric Inertia Tensor block 5-502

Т

Temperature Conversion block 5-504 Three-Axis Accelerometer block 5-506 Three-axis Gyroscope block 5-512 Three-Axis Inertial Measurement Unit block 5-516 tuning parameters 2-14 Turbofan Engine System block 5-523

U

Utilities library 2-7 Axes Transformation sublibrary 2-7 Math Operations sublibrary 2-7 Unit Conversions sublibrary 2-7

V

Velocity Conversion block 5-527 Von K\x87 rm\x87 n Wind Turbulence Model (Continuous) block 5-529

W

WGS84 Gravity Model block 5-544
Wind Angles to Direction Cosine Matrix block 5-549
Wind Angular Rates block 5-551
wind coordinates 2-19
Wind Shear Model block 5-553
World Magnetic Model 2000 block 5-556
World Magnetic Model 2005 block 5-560
World Magnetic Model 2010 block 5-565
Wright Flyer 3-9